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One possible solution to this problem is to use some kind of a paraconsistent logic([dC74]), i.e.: a logic in which trivial reasoning from a contradiction is not allowed. Severalcandidates has been suggested in the literature (see, e.g., [BCDLP, BDP95, CSHL, KL92,Lo94, Pr89, Pr91, Su90a, Su90b, Su94]). The use of such logic has, however, its own draw-backs. The major one is the fact that it forces us to give up classical reasoning altogether.This is certainly not justi�ed in case the given knowledge base is consistent. Moreover: theclassical calculus is a very convenient framework to work with; Adding new mechanisms orconnectives to it generally causes a considerable growth in the computational complexityneeded to maintain the resulting system. The fact that many relatively e�cient theoremprovers which are based on classical logic already exist is also signi�cant from a pragmaticpoint of view.The purpose of this work is to propose means for drawing conclusions from systems thatare based on classical logic, even though the information might be inconsistent. The ideais to detect �rst those parts of the knowledge-base that \cause" the inconsistency, and toisolate the parts that are \recoverable". The outcome of this approach is a constructionof a subset of the original knowledge-base, which is consistent, and preserves most of theoriginal data without changing its meaning. Since we are not changing any assertion (andin particular we are not damaging the syntax), we can continue handling the \recovered"knowledge-base by the usual methods of current theorem provers.Consider for example the following set of assertions: S = f:s; r1; r1!:r2; r2! ig.This set is consistent, therefore classical logic might be used for drawing conclusions fromit. Assume now that a new information arrives, and we are told that s is known to betrue. The new knowledge-base, S0 = S[fsg, is inconsistent. Since everything classicallyfollows from S0, another mechanism for drawing plausible conclusions is needed. A commonapproach of doing so is to consider some maximal consistent subset of the knowledge-base(see, e.g., [RM70, Po88, BCDLP, Lo94]). The drawback of this method is that it mightlead to conclusions that are in a direct conict with the original information. In the caseof S0, for instance, every maximal consistent subset must contain either s or :s (but notboth), and therefore such a set classically entails formulae that contradict an explicit dataof the original knowledge-base.Instead of looking for maximal consistent subsets it seems to us more reasonable to tryto do the following things:1. Detect and isolate the cause of the inconsistency together with what is related to it.Any data that is not related to the conicting information should not be a�ected orchanged.2. Make sure that the remaining information yields conclusions that are semanticallycoherent with the original data (i.e.: only inferences that do not contradict any pre-viously drawn conclusions are allowed).In the speci�c example considered above, for instance, it is clear that the ambiguity in S0is connected only to fs;:sg, while fr1; r1!:r2; r2! ig seems to be the part of S0 fromwhich one would like to draw (classical) conclusions.2



How do we practically recover consistent data from an inconsistent knowledge-base with-out changing it? The method that we suggest in this paper is to switch into a multi-valuedframework. For this we use special algebraic structures called bilattices. Bilattices were �rstproposed by Ginsberg (see [Gi88]) as a basis for a general framework for many applicationssuch as �rst-order theorem provers, truth maintenance systems, and implementations ofdefault inferences. This notion was further developed by Fitting, who used bilattices forextending some well known logics (like Kleene 3-valued logics; see [Fi90a, Fi94]), and intro-duced bilattice-based logic programming methods ([Fi89, Fi90b, Fi91, Fi93]). In bilatticesthe elements (which are also referred to as \truth values") are arranged in two partial orderssimultaneously: one, �t, may intuitively be understood as a measure of the degree of truththat each element represents; the other, �k, describes (again, intuitively) di�erences in theamount of information that each element exhibits on the assertions that it is supposed torepresent.1Just adding truth values is not enough, of course. In order to recover the informationtruthfully we have to develop a mechanism that enables paraconsistent inferences. Forthis we use an epistemic entailment proposed in [KL92] (denoted here by j=con) as theconsequence relation of the logic. This relation can be viewed as a kind of \closed worldassumption", since it considers only the \most consistent" models (mcms) of a given set ofassertions. As was shown in [AA94, AA96], this consequence relation enjoys some appealingproperties, such as being non-monotonic, paraconsistent, and a \plausibility logic" in thesense of Lehmann [Le92].By using j=con we would be able to construct subsets of the knowledge-base (called\support sets"), which are useful means to override the contradictions when attention isfocused on certain (recoverable) formulae. These sets are the candidates to be the recov-ered knowledge-base. The common property shared by every recovered knowledge-base isthat it considers some contradictory information as useless, and regards all the remaininginformation not depending on it as una�ected. This kind of approach is called conservative(skeptical) [Wa94] or coherent [BCDLP, BDP95].It should be emphasized at this point that our method, like many other well-knownapproaches in the literature of AI, does not act as a complete reasoner. That is, it doesnot always propose a unique solution which is the best interpretation of the conicts in theknowledge-base. Instead, it suggests several support sets that can be extracted from theoriginal inconsistent set of assertions. The reasoners are then expected to choose the onethat is most suitable according to their actual epistemic beliefs. In the sequel we providesome heuristics that might guide them which support set to choose.Before turning to the technical details, a few words on implementation issues: A majorchallenge encountered by every reasoning method is to turn the proposed formalism into acomputationally feasible process. There are many ways of dealing with this problem: Themethod proposed in [Le86, Wa94], e.g., is to restrict the representation language, taking1The idea of using two partial orders may be traced back to Belnap and his well-known four-valued logic[Be77a, Be77b], which is exactly the simplest bilattice FOUR (see below). Belnap was also the one who �rstproposed FOUR as being useful for computer-based reasoning.3



into account the trade-o� between expressiveness and e�ciency. Here we use a di�erent ap-proach: for practical implementations we restrict ourselves to a particular family of commonknowledge-bases (called strati�ed { see Subsection 3.3). We provide an e�cient algorithmfor recovering consistent data from this type of knowledge-bases.The paper is organized as follows: In the next section we describe the framework of thediscussion. We survey some basic notions related to bilattices, de�ne bilattice-based logics,and present the general kinds of knowledge-bases to be considered in the sequel. Section 3contains the basic ideas of recovering consistent data from conicting information. In thissection we also examine some of the properties of the recovered data and propose a methodfor producing it in several important cases. In section 4 we consider a special family ofmodels that is su�cient for the task of recovering consistent data, and in section 5 we showhow to extend the results to �rst-order logic. In section 6 we summarize the ideas developedalong the paper and provide several examples of their use (the most important of whichseems to be in the area of model-based diagnostic systems). In Section 7 we compare ourapproach to other formalisms that deal with inconsistency. Finally, in Section 8 we givesome concluding remarks and discuss directions for further study.2 Preliminaries2.1 BilatticesDe�nition 2.1 [Gi88] A bilattice is a structure B = (B;�t;�k;:) such that B is a nonempty set containing at least two elements; (B;�t), (B;�k) are complete lattices; and : isa unary operation on B with the following properties:a) if a �t b, then :a �t :b.b) if a �k b, then :a �k :b.c) ::a = a.Bilattices are therefore algebraic structures that contain two partial orders simultane-ously, each one reects a di�erent concept: �t intuitively reects di�erences in the \measureof truth" that the bilattice elements are supposed to represent, while �k might intuitivelybe understood as reecting di�erences in the amount of knowledge (or in the amount ofinformation) that each one of these elements exhibits. The basic relation between thesetwo partial orders is via negation. Note that negation is order preserving w.r.t �k . Thisreects the intuition that while one expects negation to invert the notion of truth, it shouldkeep the amount of information: we know no more and no less about :p than we knowabout p (see [Gi88, p.269] and [Fi90b, p.239] for further discussion).Notation 2.2 Following Fitting, we shall use ^ and _ for the meet and join which corre-spond to �t, and 
, � for the meet and join under �k . He suggested to intuitively under-stand 
 and � as representing the \consensus" and \accept all" operations, respectively.22These operators would not play a central role in what follows, since we will be most interested in the\classical" operators ^ and _. However, since our method allows the usage of these operators without anyfurther e�ort (and without increasing the complexity of the methods below { see Proposition 2.22 and itsproof), we shall refer to them as well. 4



f and t will denote, respectively, the least and the greatest element w.r.t. �t, while ? and> { the least and the greatest element w.r.t. �k . While t and f may have their usualintuitive meaning, ? and > could be thought of as representing no information and incon-sistent knowledge, respectively. Obviously, f; t;? and > are all di�erent (see also Lemma2.5 below). Finally, unlike in [AA94, AA96],  !� is here just an abbreviation for : _�.De�nition 2.3a) [Gi88] A distributive bilattice is a bilattice in which all the (twelve) possible distributivelaws concerning ^, _, 
, and � hold. (i.e.: a4(brc) = (a4b)r(a4c) for every 4;r2f^;_;
;�g; 4 6= r).b) [Fi90b] An interlaced bilattice is a bilattice in which each one of ^, _, 
, and � ismonotonic with respect to both �t and �k ; i.e.:if a�t b, then a
c�tb
c, and a�c�tb�c.if a�k b, then a^c�k b^c, and a_c�k b_c.Lemma 2.4 [Fi90b] Every distributive bilattice is also interlaced.Lemma 2.5 Let B = (B;�t;�k;:) be a bilattice, and let a; b be arbitrary elements of B.a) [Gi88] :(a^b) = :a_:b; :(a_b) = :a^:b; :(a
b) = :a
:b; :(a�b) = :a�:b.b) [Gi88] :f= t; :t=f ; :?=?; :>=>.c) [Fi90b] If B is interlaced, then ?^>=f ; ?_>= t; f
t=?; f�t=>.De�nition 2.6 [AA94] Let B = (B;�t;�k;:) be a bilattice.a) A bi�lter is a nonempty set F�B, such that:a^b2F i� a2F and b2Fa
b2F i� a2F and b2Fb) A bi�lter F is called prime, if it satis�es also:a_b2F i� a2F or b2Fa�b2F i� a2F or b2FThe notion of a (prime) bi�lter is a natural generalization to bilattices of the notion ofa (prime) �lter, which is a basic tool in algebraic treatments of logic. The set of designatedvalues in a multiple-valued semantics of a logic is almost always required to be a �lter,because the algebraic properties of a �lter reect the properties of a consequence relation.Moreover, the meet operator behaves like conjunction relative to �lters. In most cases the�lter which is used for de�ning a logic is further required to be prime, because only relativeto prime �lters the join operator behaves like a disjunction. Relative to bi�lters both meetoperators of a bilattice behave like conjunctions, while relative to prime bi�lters the joinoperators, in addition, behave like disjunctions.Lemma 2.7 Let F be a bi�lter of B. Then:a) F is upward-closed w.r.t both �t and �k.b) t;> 2 F , while f;? 62 F .Proof: Claim (a) follows immediately from the de�nition of F ; the �rst part of (b) followsfrom (a), and from the maximality of t and >; the fact that the minimal elements are not5



in F follows also from (a), since F 6=B. 2The following sets are contained in every bi�lter:De�nition 2.8� Dk(B)=fb2B j b �k tg (the designated values w.r.t. �k of B).3� Dt(B)=fb2B j b �t >g (the designated values w.r.t. �t of B).In [AA94] it is shown that in every interlaced bilattice B, Dk(B) = Dt(B), and that thisentails that Dt(B) itself is a bi�lter, and it is the smallest one. This fact makes it a verynatural choice, but it is not the only possible or useful one.4A property of Dt(B) that will be used later is the following:Lemma 2.9 Let B=(B;�t;�k;:) be a bilattice. For every b2B, fb;:bg�Dt(B) i� b=>.Proof: fb;:bg�Dt(B) i� b�t> and :b�t>, i� b�t> and b�t:>=>, i� b=>. 2De�nition 2.10 [AA94] A logical bilattice is a pair (B;F), where B is a bilattice, and Fis a prime bi�lter. The elements of F are called the designated elements of the bilattice.Example 2.11 FOUR and NINE (Figure 1) are distributive bilattices (hence also inter-laced). Each of FOUR;NINE and DEFAULT (Figure 2) is a logical bilattice B with F =Dk(B). NINE forms also another logical bilattice if we take F=Dk(NINE)[ fof; d>; dtg.6k
-tu?uf u tu>������@@@@@@������@@@@@@ 6k

-tu?udf u dtuf ud> u tuof u otu>������@@@@@@������@@@@@@������@@@@@@Figure 1: FOUR and NINE3These elements may be viewed as those that are \at least true" (see [Be77b, p.36]).4Note that unless otherwise stated, what we do below is independent of the choice of the bi�lter.6



6k
-tu?udf u dtud>uf u tu>������HHHHHHAAAAAA���@@@HHHHHH������@@@���������Figure 2: DEFAULT2.2 The logicDenote by BL the standard propositional language over f^;_;:;
;�; t; fg, and let KB bea set of formulae over BL. A(KB) denotes the set of all atomic formulae that appear insome formula of KB, and L(KB) denotes the set of all literals that appear in some formulaof KB.De�nition 2.12 Let (B;F) be a logical bilattice.a) A valuation � in B is a function that assigns a truth value from B to each atomicformula, and it maps each constant to its corresponding value in B. Any valuation isextended to complex formulas in the standard way: �(: ) = :�( ), �( ��) = �( ) � �(�)for: � 2 f^;_;
;�g, and �( ! �) = :�( ) _ �(�). We shall sometimes write  : b 2 �instead of �( ) = b.b) We say that � satis�es  (� j= ), i� �( )2F .  is said to be valid i� every valuationsatis�es it.c) A valuation that satis�es every formula in a given set of formulas, KB, is said to be amodel of KB. The set of the models of KB will be denoted mod(KB).Given KB we shall use the lettersM and N (with or without subscripts) to denote modelsof KB.The next notion describes the truth values of B that represent inconsistent beliefs:De�nition 2.13 [AA94, AA96] Let (B;F) be a logical bilattice. A subset I of B is calledan inconsistency set , if it has the following properties:a) b 2 I i� :b 2 I.b) b 2 F \ I i� b 2 F and :b 2 FNote that by (b) of De�nition 2.13 it must follow that >2I and t 62I. Hence, by (a), f 62I.Example 2.14 I1=fb j b 2 F ^ :b 2 Fg is the minimal inconsistency set in every logicalbilattice. I2 = fb j b = :bg is an inconsistency set in the case that B is interlaced and7



F = Dk(B). Note that ? 62 I1 while ? 2 I2. Indeed, one of the major considerationswhen choosing an inconsistency set is whether to include ? in I or not. Although in everybilattice :?=? (see Lemma 2.5), ? intuitively reects no information whatsoever aboutthe assertion it represents; in particular one might not take such assertions as inconsistent.In the following discussion we �x some logical bilattice (B;F) as well as an inconsistencyset I.Notation 2.15 Let M be a valuation on KB. The set of atomic formulae in A(KB)that are assigned under M values from I is denoted IncM (KB), i.e.: IncM (KB) = fp 2A(KB) j M(p)2Ig.De�nition 2.16 Let M;N be two models of a set of formulae, KB.a) M is more consistent than N (M>conN) i� IncM (KB)�IncN(KB).b) M is a most consistent model of KB (mcm, in short) if there is no other model of KBwhich is more consistent than M . The set of the most consistent models of KB will bedenoted con(KB).c) M is smaller than N with respect to <k (M<kN) if for any p2A(KB), M(p)�kN(p),and that there is at least one q2A(KB) s.t. M(q) <k N(q).d) M is a minimal model of KB, if there is no other model of KB which is smaller thanM . The set of all the minimal models of KB will be denoted min(KB).De�nition 2.17 Let KB be a set of formulae and  a formula. Let S be any set ofvaluations. We denote KB j=S  if each model of KB which is in S, is also a model of  .Some particularly interesting instances of De�nition 2.17 are the following:� KB j=mod(KB) if every model of KB is a model of  .� KB j=con(KB) if every mcm of KB is a model of  .� KB j=min(KB) if every minimal model of KB is a model of  .We shall abbreviate the above cases by KB j= , KB j=con , and KB j=min , respectively.Example 2.18 Consider the knowledge-base KB=fs; :s; r1; r1!:r2; r2! ig discussedin the introduction. Let B=FOUR and F=ft;>g. The models of KB are listed in Figure3. Model No. s r1 r2 i Model No. s r1 r2 iM1 > t f ? M9 > > ? tM2 > t f t M10 > > ? >M3 > t f f M11 �M12 > > t t;>M4 > t f > M13 �M16 > > f ?; t; f;>M5 �M8 > t > ?; t; f;> M17 �M20 > > > ?; t; f;>Figure 3: The models of KB (Example 2.18)It follows that con(KB)=fM1;M2;M3g provided that ?62I, and if ?2I, then con(KB)=fM2;M3g. Also, min(KB)= fM1;M9g, thus KB j=con :r2, while KB 6j=:r2 and KB 6j=min:r2. 8



2.3 The knowledge-basesIn this subsection we de�ne the kind of knowledge-bases that we are dealing with:De�nition 2.19 A formula  is an extended clause if: is a literal (an atom or a negated atom), or = � _ ', where � and ' are extended clauses, or = �� ', where � and ' are extended clauses.De�nition 2.20 A formula  is said to be normalized if it has no subformula of the forms�_�, �^�, ���, �
�, or ::�.5The following lemma is clearly valid in every logical bilattice (B;F):Lemma 2.21 For every formula  there is an equivalent normalized formula  0 such thatfor every valuation �, �( )2F i� �( 0)2F .From now on, unless otherwise stated, the knowledge-bases that we shall consider wouldbe sets of normalized extended-clauses. As the following proposition shows, representingthe formulae in a (normalized) extended clause form does not reduce the generality:Proposition 2.22 For every formula there is a �nite set S of normalized extended clausessuch that for every valuation �, � j= i� � j=S.Proof: First, translate  into its extended negation normal form,  0, where the negationoperator precedes atomic formulae only. This can be done in every bilattice. The rest ofthe proof is by an induction on the structure of  0:If  0= 01^ 02 or  0= 01
 02, then by induction hypothesis, there exists Si s.t. � j=Si i�� j= 0i (i=1; 2). Take: S=S1[S2, then: � j=S i� � j=S1 and � j=S2, i� � j= 0.If  0 =  01_ 02 or  =  01� 02, then again, there exist S1 = f�igni=1 and S2 = f'jgmj=1 s.t.� j= 0i i� � j=Si (i=1; 2). Take: S=f�i_'j j 1� i�n ; 1�j�mg. Now, since F is a primebi�lter, we have:� If � j= 0, then � j= 01 or � j= 02. Suppose that � j= 01. Then � j=�i for i=1:::n. So, forevery 1� i�n and for every 1�j�m: � j=�i_'j , hence � j=S.� If � 6j=  0, then � 6j=  01 and � 6j=  02, i.e. � 6j= �i and � 6j= 'j for some 1� i� n and some1�j�m. Then, for those i and j, � 6j=�i_'j , hence � 6j=S. 2Here is another useful property of extended clauses over logical bilattices. It will beused several times in the sequel:Lemma 2.23 Let  be an extended clause over BL, li (i = 1 : : :n) its literals, and � avaluation on A( ). Then � j= i� there is an 1� i�n s.t. � j= li.Proof: By an induction on the structure of  . 2A basic notion in every paraconsistent system is that of consistency. Next, we expandthis notion to the multi-valued case.5We could de�ne stronger notions of normalized formulae, but this one is su�cient for our needs.9



De�nition 2.24 Suppose that I is an inconsistency set of (B;F).a) A modelM of KB is consistent if IncM(KB)=;, i.e.: M assigns a consistent truth valueto every member of A(KB).6b) KB is consistent if it has a consistent model.Lemma 2.25 KB is consistent (in the sense of De�nition 2.24b) i� it is classically consistent(i.e: has a classical model).Proof: One direction is obvious. For the other, assume thatM is a consistent model ofKB.Then there is no p2A(KB) s.t. both M(p)2F and :M(p)2F . Consider the valuationM 0de�ned for every l2L(KB) as follows: M 0(l)= t if M(l)2F , and M 0(l)=f otherwise. Theconsistency assumption entails that whenever M(l)2F for some l2L(KB), M 0(l)2F also.By Lemma 2.23 it follows that M 0 is a (classical) model of KB as well. 2A fundamental property of the knowledge-bases that we consider here is that for everymodel there is an mcm which is at least as consistent. In �nite knowledge-bases this is triv-ially the case. The following proposition assures, nevertheless, that in every propositionalknowledge-base this property holds:Proposition 2.26 (Lin's Lemma, [Pr91]) Let KB be a (possibly in�nite) set of extendedclauses. For every model M of KB there is an mcmM 0 of KB s.t. M 0�conM .Proof: For the reader's convenience we repeat the proof given in [Pr91], adjusted to ourframework: Suppose that M is some model of KB, and SM =fN j N 2mod(KB); N �conMg. Let C �SM be a chain w.r.t. �con. We shall show that C is bounded, so by Zorn'sLemma, C has a maximal element, which is the required mcm. Indeed, if C is �nite we aredone. Otherwise, consider the following sets:C0 =\ fIncN(KB) j N2CgKB0 = f 2 KB j A( )\ C0 = ;gLet KB00 be a �nite subset of KB0. Since KB00 is �nite and C is a chain, there exists someN 2 C s.t. A(�)\IncN(KB) = ; for every � 2KB00. Since N is a model of KB and thereduction of N to A(KB00) is a consistent model of KB00, it follows that every �nite subsetof KB0 is consistent. Hence, by Lemma 2.25 and the classical compactness theorem, KB0is consistent, and so it has a consistent model, N 0. Now, consider the following valuationde�ned for every p2A(KB):M 0(p) = ( > if p2C0N 0(p) otherwise.Clearly, M 0 �con N for every N 2 C. It remains to show that M 0 2mod(KB), but this isobvious, since for every  2KB0 and for every p2A( ), p 62C0 hence M 0(p)=N 0(p), andso M 0( ) =N 0( )2F . Also, for every  2KBnKB0 there is a p2A( ) s.t. p2C0, thusM 0(p)=>, and by Lemma 2.23, M 0( )2F . 26Note that every consistent model of KB is trivially an mcm of KB.10



3 Classi�cation of the atomic formulaeThe �rst step to recover inconsistent situations is to identify the atomic formulae that areinvolved in the conicts. In order to do so, we shall divide the atomic formulae that appearin the clauses of the knowledge-base into four subsets as follows:De�nition 3.1 Let l2L(KB) and denote by l its complement.a) If KB j=con l and KB j=con l, then l is said to be spoiled .b) If KB j=con l and KB 6j=con l, then l is said to be recoverable.c) If KB 6j=con l and KB 6j=con l, then l is said to be incomplete.7Obviously, for each l2L(KB), either l is spoiled, or l is recoverable, or l is incomplete, or lis recoverable.Example 3.2 In the knowledge-base of Example 2.18, s is spoiled, r1 and :r2 are recov-erable, and i is incomplete.3.1 The spoiled literalsWe treat �rst those literals that form, as their name suggests, the \core" of the inconsistencyin KB. As it is shown in the following theorem, those literals are very easy to detect:Theorem 3.3 The following conditions are equivalent:a) l is a spoiled literal of KB.b) M(l) 2 I \ F for every model M of KB.c) M 0(l) 2 I \ F for every mcmM 0 of KB.d) fl; lg � KB.Proof: Without loss of generality, suppose l = p, where p 2 A(KB). The case l = :p isproved similarly.(a) ! (c): If p is spoiled, i.e. KB j=con p and KB j=con :p, then for every mcm M 0 ofKB, M 0(p)2F , and also :M 0(p) =M 0(:p)2F . Hence (property (b) in De�nition 2.13),M 0(l)2I \ F .(c)! (d): Suppose that for every mcmM 0 of KB, M 0(l)2I \ F . By Proposition 2.26 l isassigned some inconsistent truth value in every model of KB. Assume that l2fp;:pg, andconsider the following valuations: �t = fq :> j q2A(KB); q 6= pg [ fp : tg; �f = fq :> j q2A(KB); q 6= pg [ fp : fg. Since �t is not a model of KB (because p has a consistent valueunder �t), :p2KB (otherwise, every formula  2KB contains a literal l0 s.t. �t(l0)2F , andso �t j= by Lemma 2.23). Similarly, since �f is not a model of KB, p2KB.(d) ! (b): If fl; lg � KB, then obviously, for every model M of KB, M(l) 2 F , and:M(l)2F . From property (b) in De�nition 2.13, then, M(l)2I \ F .(b)! (a): If for every modelM of KB M(l) 2 I \F , then M(l)2F and M(l)2F . HenceKB j= l and KB j= l which implies that KB j=con l and KB j=con l. Thus l is spoiled. 27In [KL92] literals of this kind are called \damaged". We feel that this terminology is somewhat toostrong. 11



Corollary 3.4 If F =Dt(B) then every model of KB assigns > to the spoiled literals ofKB.Proof: Immediate from (d) of Theorem 3.3, and Lemma 2.9. 2Corollary 3.5 It takes O(jKBj) running time to discover the spoiled literals of KB.Proof: Immediate from (d) of Theorem 3.3. 23.2 The recoverable literals and their support setsThe recoverable literals are those that may be viewed as the \robust" part of a given incon-sistent knowledge-base, since all the mcms \agree" on their validity. As we shall see, eachrecoverable literal l can be associated with a consistent subset, which preserves the informa-tion about l. In fact, one can view this as a mechanism that \bypasses" the inconsistency,and generates a reduced supporting knowledge-base for every recoverable literal. In such asupport set the information is consistent with that of the original knowledge-base.De�nition 3.6 A subset KB0�KB is consistent in KB if KB0 has a consistent modelM 0,and there is a (not necessarily consistent) model M of KB s.t. M(p) =M 0(p) for everyp2A(KB0).Example 3.7 KB0=fqg is a consistent set, which is not consistent in KB=fq;:qg, sincethere is no consistent model M 0 of KB0 and a model M of KB s.t. M 0(q)=M(q).De�nition 3.8 A nonempty subset SS(l) of KB is a support set of a literal l (or: SS(l)supports l), if it is consistent in KB and l is recoverable in SS(l).De�nition 3.9 If SS(l) supports l and there is no support set SS0(l) s.t. SS(l)�SS0(l), thenSS(l) is said to be amaximal support set of l, or a recovered subset ofKB. A knowledge-basethat has a recovered subset is called recoverable.Example 3.10 Consider again the example given in 2.18 and 3.2: KB=fs; :s; r1; r1!:r2; r2! ig. Here KB is a recoverable knowledge-base, since S=fr1; r1!:r2; r2! ig isa maximal support set of both r1 and :r2. Note that S does not support i, since S 6j=con i.Support sets are our candidates to be the recovered knowledge-base. Hence, our systemrecovers knowledge-bases only if there is at least one recoverable literal. This is not a majordrawback, since most knowledge-bases contain some atomic facts, which are recoverableliterals unless they are spoiled. Hence, the case that there are no recoverable literals is notlikely to happen.In Examples 3.2 and 3.10 every recoverable literal of the knowledge-base has a supportset, as the following theorem shows.Theorem 3.11 Every recoverable literal has a support set.12



Proof: Without loss of generality, suppose that l=p, where p2A(KB) is recoverable; Thecase l=:p is proved similarly. Let M be an mcm of KB such that M(p)2F n I. Let M 0be the reduction of M to A(KB) n IncM (KB) only. De�ne:SS0(p) = f 2 KB j A( ) � A(KB) n IncM (KB)gWe will show that SS0(p) is a support set of p:a) Obviously, SS0(p) � KB. Assume for contradiction that SS0(p) is empty. Then every 2 KB contains some element of IncM (KB) or its negation. De�ne: N = fr : f j r 2A(KB) n IncM(KB)g [ fs :>2 IncM(KB)g. By Lemma 2.23, N is a model of KB. More-over, N is an mcm of KB since IncN(KB)=IncM (KB). But p2A(KB) n IncM (KB), henceN(p)=f ; a contradiction to KB j=con p.b) SS0(p) is a consistent set in KB, since M 0 is a consistent model of SS0(p) that is expand-able to the model M of KB (i.e. 8q2A(SS0(p)) M 0(q)=M(q)).c) SS0(p) j=con p: Suppose that N 0 is an mcm of SS0(p) and N 0(p) 62F . Notice that N 0 mustbe consistent, otherwise N 0 <conM 0, and N 0 cannot be an mcm of SS0(p). Let N be thefollowing expansion of N 0 to KB: fN 0(q) j q2A(KB)nIncM (KB)g[fq :> j q2IncM(KB)g.Clearly, N is a model of KB (Indeed, if  2 SS0(p) then N( ) = N 0( ) 2 F , and if 2KB n SS0(p), then IncM (KB) \ A( ) 6= ;, and since N(s)=> for every s2 IncM (KB),then by Lemma 2.23,N( )2F again). Furthermore,N is an mcm ofKB, since IncN(KB)=IncM(KB), and M is an mcm of KB. But N(p)=N 0(p) 62F , so KB 6j=con p; a contradiction.d) SS0(p) 6j=con :p: Otherwise, for every mcm N of SS0(p), :N(p)=N(:p)2F , and sincewe have shown that SS0(p) j=con p, N(p)2F as well. Thus N(p)2 I for every mcm N ofSS0(p), and so SS0(p) cannot be a consistent set. 2As a matter of fact, the relation between recoverable literals and support sets is evenstronger, as the following theorem shows:Theorem 3.12 If l is a recoverable literal in KB, then there is no subset in KB thatsupports its complement, l.Proof: Without loss of generality, suppose that l= p. Assume that there exists SS0�KBwhich is non empty, consistent in KB, and SS0 j=con:p. Since SS0 is consistent in KB, it hasa consistent model,M 0, which is expandable to a modelM of KB (i.e. 8q2A(SS0)M 0(q)=M(q)). M preserves the valuations of M 0 on A(SS0), so M(q) = M 0(q) 62 I for everyq2A(SS0). Let N be an mcm of KB s.t. N�conM (see Proposition 2.26). Since N�conM ,N(q) 62 I for every q 2A(SS0). Also, N is an mcm of KB, and p is a recoverable atom ofKB, hence N(p)2F . Let N 0 be the reduction of N to A(SS0). Since N 0 is identical to Non A(SS0), and since N is a model of KB, then: (a) N 0 is a model of SS0, (b) N 0(q) 62I forevery q 2A(SS0), and (c) N 0(p)2F . Form (a) and (b), then, N 0 is a consistent model ofSS0, and so from (c), N 0(:p) 62 F (otherwise, N 0(p)2 F and N 0(:p)2F , hence N 0(p) 2 Iand so N 0 cannot be consistent). Thus SS0 6j=con:p; a contradiction. 2The converse of the combination of Theorems 3.11 and 3.12 does not necessarily hold.In KB= fp; :p_q; :p_:r; :q_rg and B= FOUR, for instance, fp; :p_qg supports q,and there is no support set for :q, although q is incomplete. However, there are certain13



important cases in which the converse of 3.11 is true. The following propositions specifysuch cases:Proposition 3.13 Let l be a literal s.t. KB j=con l. l is recoverable i� it has a support set.Proof: The \only if" direction was proved in Theorem 3.11. For the \if" direction notethat since l has a support set, it cannot be spoiled. l cannot be incomplete either, sinceKB j=con l. This is also the reason why l cannot be recoverable. The only possibility left,then, is that l is recoverable. 2As a corollary of the last proposition we can specify another condition that guaranteesthat a given literal is recoverable. This time, however, instead of considering models of thewhole knowledge-base, it is su�cient to check only the models of a subset that supports l:Corollary 3.14 If a literal l has a support set SS(l), and SS(l) j= l, then l is recoverable.Proof: Since j= is monotonic, the assumption that SS(l) j= l implies that KB j= l as well,and so KB j=con l. From Proposition 3.13, then, l is recoverable. 2Note: Demanding that SS(l) j= l in the de�nition of a support set would have been toorestrictive. By doing so, not every recoverable literal would have been guaranteed to beassociated with a support set. In this case, for instance, p would have been a recoverableatom in KB = fq; :q_pg. This is actually the only support set of p. But M(q) = >,M(p)=? is a model of KB in which p is not assigned a designated truth value, hence thereis no support set SS(p)�KB s.t. SS(p) j=p.From the last corollary one can deduce another way of assuring that a given literal isrecoverable:Corollary 3.15 Every literal l such that l2KB and l 62KB is recoverable.Proof: It is easy to see that if l 62KB then SS(l)=flg is a support set of l (not necessarilymaximal). Since SS(l) j= l, l is recoverable by Corollary 3.14. 2Note: The converse of Corollary 3.15 is, of course, not true. To see that, consider, e.g.KB1 = fp; p! qg, or KB2 = fp! q; :p! qg. In these knowledge-bases q is recoverablealthough q 62KBi (i=1; 2). Moreover,KB2 is an example of a knowledge-base that containsa recoverable literal although there is no l2L(KB) s.t. l2KB.Another re�nement of Proposition 3.13 is considering only the reductions of the mcms ofKB to the support sets: Suppose that KB0�KB. Denote by con(KB)#KB0 the reductionsof the mcms of KB to the language of KB0. Then:Proposition 3.16 l is recoverable i� it has a support set SS(l) s.t. SS(l) j=con(KB)#SS(l) l(see also De�nition 2.17). 14



Proof: If l is recoverable, then by Theorem 3.11 it must have a support set SS(l). Also, sincel is recoverable, it is assigned a designated truth value by every mcm. These values remainthe same when reducing the mcms to the language of SS(l), hence SS(l) j=con(KB)#SS(l) l.For the converse, let SS(l) be a support set of l. l cannot be recoverable because of Theorem3.12 (since SS(l) supports its complement). l cannot be spoiled either, since spoiled literalsobviously have no support sets. It remains to show that l cannot be incomplete, but thisfollows from the fact that if l is incomplete, there would have been an mcmM of KB (andso a model of SS(l)) s.t. M(l) 62 F . In the reduction of M to the language of SS(l), l isassigned the same truth value, hence SS(l) 6j=con(KB)#SS(l) l. 2We have already seen that every recoverable literal is guaranteed to have at least onesupport set. Sometimes, however, it might have several support sets. In such a case itseems reasonable to prefer those that are maximal (w.r.t. containment relation). We nextconsider such sets:De�nition 3.17 Let l be a recoverable literal, and suppose that M is an mcm such thatM(l)2F and M(l) 62 I. The support set of l that is associated with M is: SSM(l) = f 2KB j A( )\ IncM (KB)=;g.8Proposition 3.18 Every maximal support set of a recoverable literal l is associated withsome mcmM s.t. M(l) 62I.Proof: Again, we shall prove the claim just for the case l=p, where p2A(KB). Supposethat SS 0(p) is an arbitrary support set of p. Let N 0 be a consistent model of SS0(p), andN its expansion to the whole KB. Consider any mcm M that satis�es N �con M . SinceA(SS0(p))�A(KB)nIncN(KB)�A(KB)nIncM(KB), then every formula  2SS0(p) consistsonly of literals that are assigned consistent truth values by M . Hence SS0(p) � SSM(p).Since SSM(p) is also a support set, SS0(p)=SSM(p) in case SS0(p) is maximal. 2One can rephrase the last proposition as follows:Corollary 3.19 A knowledge-base is recoverable i� it has a recoverable literal.Proof: By De�nition 3.9, a recoverable knowledge-base KB must have a maximal supportset, and by Proposition 3.18, such a set is of the form SSM (l) where l is a recoverableliteral of KB. In the converse direction, let l be a recoverable literal of KB. In the proof ofTheorem 3.11 we have shown that there is an mcmM of KB such that SSM(l) is a supportset of l. By the proof of Proposition 3.18 this support set is contained in some maximalsupport set of l (which is also associated with some mcm of KB), and so KB is a recoverableknowledge-base. 2The converse of the Proposition 3.18 is not true; not every support set that is associatedwith some mcm is necessarily maximal. There may be another mcm whose associatedsupport set is bigger. To see that, consider KB = fp; p ! r; r ! s; r ! :sg. Both8This is indeed a support set of l. See the proof of Theorem 3.11.15



M1= fp : t; r :>; s : tg and M2= fp : t; r : t; s :>g are mcms of KB, but SSM1(p)= fpg �fp; p! rg=SSM2(p). In Subsection 3.4 we shall see that SSM2(p) is not only bigger thanSSM1(p), but also preferable according to some other criteria.Corollary 3.20 For every recoverable literal l there exists an mcm M of KB in whichM(l)= t, and for which SSM(l) is a maximal support set.Proof: Suppose that l = p. Consider an mcm N of KB s.t. N(p) 2 F n I, and whoseassociated support set SSN(p) is maximal (from Proposition 3.18, such an mcm exists). LetM be the valuation that assigns t to p, and which is identical to N on every element ofA(KB) n fpg. Suppose that  is an extended clause of KB. If p is a disjunct of  , thensince M(p)= t, necessarily M( )2F by Lemma 2.23. If not, then by Lemma 2.23 again,there must be some literal of  other than p or :p that is assigned a designated truth valuein N . Such a literal is assigned a designated truth value in M as well, hence M( )2F inthis case also. It follows thatM is a model of KB. Moreover, since IncM (KB)=IncN(KB),M is also an mcm of KB, and SSM(p) =SSN(p). Hence, M and SSM(p) are the requiredmcm and support set, respectively. 23.3 Computing mcms and support sets for strati�ed knowledge-basesIn general, computing mcms for a given knowledge-base and discovering its recoverableliterals might not be an easy task. Even in the simplest cases, where the bilattice is FOURwith I=f>;?g and the knowledge-base is consistent, �nding the recoverable literals reducesto the problem of logical entailment. Therefore, in this subsection we con�ne ourselves to aspecial (nevertheless common) family of knowledge-bases, for which we provide an e�cientalgorithm that computes their maximal recoverable subsets.De�nition 3.21 Let (B;F) be a �nite logical bilattice with an inconsistency set I.a) Denote: T>=fb j b 2 F \ Ig, Tt=fb j b 2 F n Ig, Tf =fb j :b 2 F n Ig.b) Let b>, bt, and bf denote the k-meet of all the elements of T>, Tt, and Tf , respectively.(I.e.: bx=
fb j b2Txg for x2f>; f; tg). We also denote by b? an arbitrary element whichis k-minimal among the consistent elements of B.Intuitively, b>; bt; bf and b? are four elements of B which strongly resemble in theirproperties to the four elements of FOUR. They adequately represent the main four typesof the elements of (B;F).Example 3.22 If B = FOUR and I = f>g, then b> = >, bt = t, bf = f , and b? = ?. IfB=DEFAULT and I=fb j b 6=:bg, then b>=>, bt= t, bf =f , and b? is an element of theset fdt; dfg. If B=NINE, F = fb j b�k dtg, and I = fb j b� d>g, then b> = d>, bt= dt,bf=df , and b?=?.Lemma 3.23 For every �nite logical bilattice (B;F), b> 2 T>, bt 2 Tt, and bf 2 Tf . Also,b>=
fb j b;:b2Fg, bt=
fb j b2Fg, bf =
fb j :b2Fg, and bf =:bt. Also, b?=? i�?62I. 16



Proof: Let bF =
fb j b2Fg. We show that bt=bF , leaving the other parts to the reader.Obviously, bF 2F . We show that bF 62 I. Assume otherwise. Then :bF 2F as well. Sincet 2F then t�k bF . Thus f =:t�k :bF 2F , and so f 2F , contradicting Lemma 2.7b. Itfollows that bF 2Tt. Hence bF�k bt. Since obviously bF�k bt, then bF=bt. 2De�nition 3.24 KB� | the dilution of KB w.r.t. a partial valuation � | is constructedfrom KB by the following transformations:1. Deleting every  2KB s.t. �( )2 F (in other words,  is deleted if it has a literalthat is assigned a designated value by �),2. Removing from what is left every occurrence of a literal l s.t. �(l) is de�ned and�(l) 62F .De�nition 3.25 A knowledge-base KB is called strati�ed , if there is a set of \strati�ca-tions" KB0=KB, KB1, : : :, KBn= ;, so that for every 0� i�n�1 there is a p2A(KBi)s.t.:a) Either p2KBi (and then p is called a positive fact), or :p2KBi (and then p is a negativefact of KBi).b) KBi+1 is a dilution of KBi w.r.t. the partial valuation p :bt if p is a positive fact of KBi,p : bf if p is a negative fact of KBi, and p : b> if p is both a positive and a negative fact ofKBi. 9Example 3.26 Consider again the knowledge-base KB of Examples 2.18, 3.2 and 3.10. Apossible strati�cation for KB is KB0 = fs; :s; r1; r1 !:r2; r2! ig, KB1 = fr1; r1 !:r2; r2! ig, KB2=f:r2; r2! ig, and KB3=;.Note: In all the examples given here (see especially those of Section 6), as well as in mostof the known examples of the literature, the knowledge-bases involved are strati�ed.The algorithm given in Figure 4 can be applied for checking whether a knowledge-baseis strati�ed, and for recovering strati�ed knowledge-bases (see Corollary 3.29).Notes:1. The process of Figure 4 may produce several valuations forKB, each of which is deter-mined by a sequence of the picked atomic formulae fp0; p1; : : : ; png. For abbreviationwe shall just write � when referring to arbitrary valuation produced by the algorithm,instead of �(p0; p1; : : : ; pn).2. By Theorem 3.3, if �i(l)=b> then l is a spoiled literal of KBi. Similarly, by Corollary3.15 if �i(l) = bt then l is a recoverable literal of KBi, and if �i(l) = bf then l isrecoverable in KBi. By Theorem 3.28 below, if �i(l)=b? then l is incomplete in KBi.9Note that while B, F , and I a�ect the particular values of b>; bt, and bf , they do not determine whetherKB is strati�ed. 17



i=0; KB0=KB;while (KBi 6=;) fif (9p2A(KBi) s.t. p2KBi and :p2KBi) then �i(p)=b>;else if (9p2A(KBi) s.t. p2KBi) then �i(p)=bt;else if (9p2A(KBi) s.t. :p2KBi) then �i(p)=bf ;else print \KB is not strati�ed" and exit;KBi+1=(KBi)�i ; /*** dilution ***/8p2A(KBi)n A(KBi+1) s.t. p wasn't picked in KBi, �i(p)=b?; /*** �lling ***/i++;goutput: � = [0�j�i�1�j ;Figure 4: An algorithm for recovering strati�ed knowledge-bases3. It is possible to assign any other truth value to the atoms that are assigned b? (duringthe \�lling" process, see line 8 of Figure 4), but if this value is inconsistent, then �cannot be an mcm of KB (see the proof of Theorem 3.28). Also, if this value is not?, then � cannot be minimal w.r.t. �k (see Proposition 3.32). The value b? assuresthat � would be a �k-minimal mcm (see Section 4).Example 3.27 Consider the set KB= fp; p_q; :p_r; :p_:r; :p_:u; :p_:v; u_vgwhere B= FOUR and I = f>g. Then b> =>, bt = t, bf = f , and b? =?. Our algorithmproduces two mcms of KB, denoted �a and �b:�a(p)= t; �a(q)=?; �a(r)=>; �a(u)=f; �a(v)=>;�b(p)= t; �b(q)=?; �b(r)=>; �b(u)=>; �b(v)=f:Note that in this case there are other mcms of KB (such as fp :>; q :?; r :?; u : t; v :?g),but neither of the other mcms can be used for constructing (maximal) support sets in KB,since each one of them assigns an inconsistent truth value to p, which is the only recoverableliteral of KB. Theorems 3.28 and 3.30 show that this holds in general.Figure 5 illustrates the processing of the algorithm for KB and its recoverable literal, p.Theorem 3.28 The process of Figure 4 checks whether a given knowledge-base KB isstrati�ed. If KB is not strati�ed it exits; Otherwise it halts and produces an mcm of KB.Proof: To see the �rst part of the theorem, note that if a knowledge-base is strati�ed thenany order in which the facts are chosen determines a strati�cation. This is so since dilution18



KB0=fp; p_q; :p_r; :p_:r; :p_:u; :p_:v; u_vgStep 0: pick p. set �0(p)= t and �0(q)=?.KB1=fr; :r; :u; :v; u_vgStep 1: pick r. set �1(r)=>.KB2=f:u; :v; u_vg������������XXXXXXXXXXXXStep 2: pick u. set �2a(u)=f . pick v. set �2b(v)=f .KB3a=f:v; vg KB3b=f:u; ugStep 3: pick v. set �3a(v)=> pick u. set �3b(u)=>Step 4: KB4a=; KB4b=;SSa(p)=fp; p_q; :p_:ug SSb(p)=fp; p_q; :p_:vgFigure 5: Construction of recovered subsets for KB (Example 3.27)
19



does not change facts; A fact (positive, negative, or both) of a certain strati�cation levelremains a fact in the successive levels unless it is used for the next dilution. Therefore, ifthere are two facts p1 and p2 in someKBi, there is a strati�cationKBi, KBi+1=(KBi)p1:b1 ,: : :, KBn= ; i� there is a strati�cation KBi, KBi+1=(KBi)p2:b2 , : : :, KBm= ;. Therefore,the algorithm fails in constructing a strati�cation for KB i� there is no possible way ofproviding such a strati�cation, and so the algorithm halts without a valuation for A(KB)i� KB is not strati�ed. 2Suppose, next, that KB is strati�ed.Lemma 3.28a: The algorithm constructs well de�ned valuations.Proof: We have to show that the process terminates after a �nite number of steps (theminimal n, s.t. KBn= ;), and the result is a valuation � for KB. Indeed, a picked atomp2A(KBi) does not appear in any one of KBj for j > i. Also, there may be other atomsthat are eliminated in the dilutions of KBi. Every one of these atomic formulae is assignedits (unique) truth value at the i-th step, and so jA(KBi+1)j� jA(KBi)j � 1. On the otherhand, an atomic formula does not appear in A(KBi+1) only if it is assigned a value offb>; bt; bf ; b?g in the i-th step. Therefore, the process terminates after jA(KB)j steps atthe most and assigns a unique truth value to every member of A(KB).Lemma 3.28b: Every valuation � produced by the algorithm is a model of KB.Proof: Let  be an extended clause that appears in KB. By De�nition 3.24 and the algo-rithm of Figure 4 it is obvious that  is eliminated from KBi+1 during the transformationfromKBi toKBi+1 i� (at least) one of its literals l is assigned a designated truth value by �i(note that a formula cannot be eliminated by sequentially removing every literal accordingto (2) of De�nition 3.24, since the last literal left must be assigned a designated value).Since �(l) = �i(l), � assigns a designated truth value to at least one of the literals thatappear in  . By Lemma 2.23, then, �( )2F .Lemma 3.28c: Every valuation � produced by the algorithm is a most consistent modelof KB.Proof: The proof is by an induction on the number of steps (n) that are required to create�. If n=0 then KB1=;, so there is only the initial step in which �0 might assign a valuefrom I only to a spoiled literal, so � must be most consistent. Suppose now that it takesn�1 steps to create �. Then:(1): Inc�(KB) = [0�i�n Inc�i(KBi) = Inc�0(KB)[ Inc�0(KB1)where �0= [1�i�n�i. Now, let M be any mcm of KB.(2): IncM(KB) = fp2A(KB)nA(KB1) j M(p)2Ig [ fp2A(KB1) j M(p)2Ig= fp2A(KB)nA(KB1) j M(p)2Ig [ IncM (KB1)20



By its de�nition, �0 may assign an inconsistent truth value only to a spoiled literal of KB.By Theorem 3.3b this literal is assigned an inconsistent value in every mcm of KB, espe-cially M , therefore:(3): Inc�0(KB) � fp2A(KB)nA(KB1) j M(p)2Ig� Suppose �rst thatM is a model of KB1. Since the creation of �0 requires only n�1 steps,then by the induction hypothesis �0 is an mcm of KB1. In particular, either Inc�0(KB1)and IncM (KB1) are incomparable w.r.t. containment relation, or else:(4): Inc�0(KB1) � IncM(KB1)By (1) { (4), either Inc�(KB) and IncM (KB) are incomparable, or Inc�(KB)�IncM(KB).Hence � is an mcm of KB.� If M is not a model of KB1, then there is a  1 2KB1 s.t. M( 1) 62 F . Since M is amodel of KB, then by Lemma 2.23, there is a  2 KB and l 2 L( ) s.t. M(l) 2 F , andflg [ L( 1)� L( ). Obviously, l 2 A(KB)nA(KB1). But then �0(l) 62 F (otherwise  iseliminated in the dilution, and so  1 62KB1). Moreover, �0(l)2F , since if �0(l) 62F thennecessarily �0(l)=b?, and this happens only if there is a literal l02L( ) s.t. �0(l0)2F , andin this case  is eliminated in the dilution, i.e.  1 62KB1. Therefore, �0(l)2F , �0(l) 62F ,and by the de�nition of �0, l was picked by �0. Since �0(l) 62F , l cannot be spoiled. Also,KB is strati�ed, thus l 2 KB0, and so it must be a recoverable literal of KB0, i.e.: it isrecoverable literal of KB. Now, since M is an mcm of KB, M(l)2F . But we have shownthat M(l) 2 F as well, hence M(l) 2 I while by Lemma 3.23 �0(l) = bf 62 I. ThereforeIncM(KB) 6�Inc�(KB), and we are done.This proves Theorem 3.28. 2Corollary 3.29 Suppose that KB is strati�ed. Then the algorithm above provides a sup-port set for every recoverable literal of KB that is not assigned the value b>.Proof: By Theorem 3.28, every valuation � that is generated by the algorithm is an mcmof KB. If a recoverable literal l of KB was not assigned the value b>, then �(l) 62I. Hence,by the proof of Theorem 3.11, SS�(l) is a support set of l. 2Theorem 3.30 Let � be a valuation produced by the algorithm for strati�ed KB, and letl be a recoverable literal of KB that is not assigned the value b> by �. Then SS�(l) is amaximal support set of l.Proof: By Corollary 3.29, SS�(l) is a support set of l. It remains to show that SS�(l) isalso a maximal set with this property. Suppose otherwise. Then by Proposition 3.18 thereis an mcmM of KB s.t. SS�(l)�SSM(l). Hence Inc�(KB) 6=IncM(KB). Since by Theorem3.28 � is also an mcm of KB, there is a p2A(KB) s.t. �(p) 6=b> while M(p)2I. Considersome  2KB s.t. p2A( ). Since M(p)2I then  is not an element of SSM (l). Now, since 62SSM(l),  62SS�(l) either. Therefore there is a q2A( ) s.t. �(q)=b>. By the de�nition21



of � this is possible only if there is a strati�cation S0; : : : ; Sn of S and an index 1� i� ns.t. q;:q2Si. Therefore �(p) 6=b? (Otherwise, p as well as all the other elements of A( )are diluted from Sj for some j � i, and so q 62 A(Si)). It follows that either �(p) = bt or�(p)=bf , and therefore either p or :p (but not both) is a (positive or negative) fact of somestrati�cation level Sk of S. Hence there is some �2S s.t. p2A(�) and A(�)\Inc�(KB)=;(Otherwise, if there is some r 2 A(�) s.t. �(r) = b>, then � and its atoms are diluted insome stage before stage k, and so p cannot be a fact of Sk). Therefore � 2 SS�(l) while� 62SSM (l) { a contradiction. 2Example 3.31 Consider again Figure 5. SSa(p) and SSb(p) are the recovered support setsproduced by the algorithm for the recoverable literal p of KB. Both are maximal.Next we consider another important property of � (see Corollary 3.33 below):Proposition 3.32 Let KB be strati�ed. In every logical bilattice where b? = ?, � isk-minimal (�2min(KB); Recall De�nition 2.16(d)).Proof: The proof is by an induction on the number of steps required to create �:n=0 : �0 may assign to a spoiled literal of KB the value b>, which is the only k-minimalpossible value (see Theorem 3.3b). The same is true for any recoverable literal that isassigned bt, and for a complement of recoverable literal that is assigned bf . It is alsoobviously true for all the literals that are assigned ?.n� 1 : Let M be a model of KB, and suppose for a contradiction that M <k �. By theinduction hypothesis, �1 is a k-minimal model of KB1. If M is a model of KB1 then thereis a q 2 A(KB1) s.t. M(q) 6�k �1(q) and so M 6<k �. The other possibility is that M isnot a model of KB1. In this case there must be a  1 2KB1 s.t. M( 1) 62 F . Since M isa model of KB, then by Lemma 2.23 there is a  2 KB and an l 2 L( ) s.t. M(l) 2 F ,and flg [ L( 1)�L( ). But then �(l) 62 F (Otherwise,  is eliminated in the dilution ofKB and so  1 62KB1), while M(l)2F . Since F is upward closed w.r.t. �k it follows thatM(l) 6<k�(l), therefore M 6<k� { a contradiction again. 2Corollary 3.33 Let KB be strati�ed. In every logical bilattice for which b? = ?, � isk-minimal among the mcms of KB (see Section 4 for the importance of this).Proof: By Theorem 3.28, � 2 con(KB). Since b? = ? then by Proposition 3.32, � 2min(KB). Therefore � is a �k-minimal model among the mcms of KB. 2Next we consider the complexity of the algorithm. As it is shown below, this is aparticularly e�cient mechanism for recovering strati�ed knowledge-bases:Proposition 3.34 It takes O(jKBj � jA(KB)j) running time to check whether a givenknowledge-base is strati�ed, and if so, this is also the time required to recover it (i.e.,to provide a recoverable subset of KB).Proof: Computing stage i of the algorithm requires only O(jKBij) running time. Sincethere are O(jA(KB)j) stages at the most, the complexity of the whole process is no more22



than O(jKBj � jA(KB)j). Now, since we have already shown that for strati�ed knowledge-bases the algorithm generates mcms, this is also the time required to recover KB. 2Another method of recovering inconsistent knowledge-bases is mentioned at the end ofsection 6.2.3.4 Choosing the preferred support setsAs we have already noted, the support sets may be viewed as representing possible consis-tent interpretations (states) of the world that is inconsistently described in KB. Since ingeneral there are several support sets that can be produced from a polluted knowledge-base,one has to develop means that would guide one to an interpretation that is most likely tobe the accurate description. In this section we suggest some heuristics for choosing thepreferred support set.A �rst observation is that when there are two support sets SS1 and SS2 s.t. SS1�SS2, itseems reasonable to prefer the latter, i.e. to choose the maximal support w.r.t. containmentrelation (cf. Propositions 3.18 and 4.5). Still, in many cases there are several such sets.Here are some other criteria that might be useful for a proper choice of the preferred set:A. Maximal information considerationsA possible approach for taking precedences among the support sets is to de�ne somequantitative estimation on the plausibility of each set. Lozinskii [Lo94], for example,takes the quantity of semantic information to be the criteria for such estimations.10 Thequantity of information in a set S of classical formulae is de�ned there to be I(S) =jA(S)j� log2 jmod(MCS(S))j where mod(MCS(S)) is the set of all the models of the maxi-mal consistent subsets of S (see [Lo94] for a detailed discussion and justi�cations for takingthis formula as representing information). A possible analogue in the case of a logical bilat-tice (B;F) may be I1(S)= jA(S)j� log2jFj jmod(MCS(S))j. Since we consider the mcms asthe most relevant interpretations for the recovery process, we here use a di�erent de�nition:I2(S) = jA(S)j � logc jcon(MCS(S))j, where: c = jfb 2 B j b 2 F n I _ :b 2 F n Igj (seeProposition 3.35 below for some justi�cations for taking this particular c as the base of thelogarithm). Since c � 2 (always ft; fg � fb2F n I _ :b2F n Ig), I2(S) is well de�ned.A possible strategy, then, would prefer support sets with maximal information. Sincesupport sets are consistent , MCS(S) is just fSg, so I1(S) and I2(S) reduce to jA(S)j �log2jFj jmod(S)j and jA(S)j � logc jcon(S)j, respectively.The next proposition shows that both I1(S) and I2(S) accord with Lozinskii's intuitionregarding the notion of information (cf. [Lo94, Theorem 3.1]):Proposition 3.35a) An empty set contains no information; I1(;)=I2(;)=0.b) A set S consisting of complementary literals p;:p for every p2A(S) contains no semantic10As a matter of fact,the quantitative approach is used in [Lo94] for a slightly di�erent goal: givingsemantics to inconsistent systems. 23



information.c) If S is a consistent set of formulae, and  is a formula s.t. A( )�A(S) and S j= , thenI1(S)=I1(S[f g) and I2(S)=I2(S[f g).d) If S is a consistent set of formulae, and  is a consistent formula s.t. A( )�A(S) andS[f g is inconsistent, then I2(S)>I2(S[f g).e) If S has only one model, then I1(S)=0; If S is consistent and has one mcm, then I2(S)is maximal. 11Proof:a) M=fp :> j p2A(S)g is a model of every set S, hence jmod(MCS(S))j�1. On the otherhand, if S = ; then S itself is the only most consistent subset, hence: jmod(MCS(S))j=jmod(S)j � jBjjA(S)j = 1. Thus, jmod(MCS(S))j = jmod(S)j = 1, and so, by the de�ni-tion of I1, I1(S) = 0. Regarding I2, since the set of the mcms of S consists of minimalelements of a nonempty set (that of the models of S), then jcon(S)j � 1. On the otherhand, we have shown that whenever S = ;, we have that jcon(S)j � jmod(S)j= 1. Thusjcon(MCS(S))j= jcon(S)j=1, and so I2=0.b) Consider S=fpi;:pi j 1� i�ng. This particular S has 2n maximal consistent subsets,each one has jFjn models, and ( c2)n mcms (since there is no b2B such that both b2F n Iand :b2F n I, every pi in a possible subset can be assigned exactly c2 di�erent values fromF n I). Hence, I1(S)=n� log2jFj 2njFjn=0, and I2(S)=n� logc 2n( c2)n=0.c) Since A( )� A(S), then A(S[f g) = A(S). Also, the assumptions that S is consis-tent and that S j= easily imply that mod(MCS(S))=mod(MCS(S[f g)) and con(S)=con(S[f g). Thus, I1(S)=I1(S[f g) and I2(S)=I2(S[f g).d) The proof in [Lo94, Theorem 3.1, part (v)] is suitable for the present case as well. Werepeat the proof adjusted to our notations: S is a maximal consistent subset of S [ f g,and since  62S (S [ f g is inconsistent, while S is not), there must be another maximalconsistent subset S0�S [ f g s.t.  2 S0. S and S0 have no mcm in common, since sucha model would have been a consistent model (as a model of S), which is also a model ofthe inconsistent set S [ f g. Hence con(MCS(S))= con(S)� con(MCS(S[f g)), and soI2(S)>I2(S[f g).e) If S has only one model, this model must assign > to every element of A(S) (this is amodel of every S). Hence, using parts (b) and (d) of Theorem 3.3, S must be of the formfp;:p j p2A(S)g. Thus, by part (b), I1(S)=0. On the other hand, if S is consistent andhas exactly one mcm, then I2(S)= jA(S)j, which is the maximal possible value of I2(S) forevery set S. 2B. Largest size approach11In this particular case I1(S) and Lozinskii's I(S) do not behave in the same way (cf. [Lo94, Theorem3.1, part vi]). The di�erence is due to the nature of logical bilattices as multiple-valued: If S has only one(degenerate) model in a logical bilattice, this single model is fp : > j p2A(S)g. This model actually tells usnothing, hence S contains no meaningful information. However, this is certainly not the case for consistentsets that have one mcm. In this case the mcm is meaningful, and the fact that there are no other possiblemodels just increases the validity of that single model as well as its respective semantic information aboutS. 24



Another reasonable approach is to prefer those support sets with the largest size. Accord-ing to this method some prioritization formula f is de�ned s.t. f(S1) > f(S2) wheneverjS1j > jS2j. The intuition behind this is that the larger the size of the support set, thestronger similarity it has with the original knowledge-base. An example of the use of thisapproach is the heuristic of weighted maximal consistent subsets in [Lo94].C. Maximal support considerationSince support sets should support recoverable literals, and since the truth values of the re-coverable literals are the ones which are most likely to be recovered truthfully (i.e., as theywere before polluting the data in KB), then a plausible system may prefer those supportsets that simultaneously support as much recoverable literals as possible.D. Prioritizations on the domain of discourseThere might be cases in which the reasoner has reasons to believe that some assertions aremore trustable than others (for example, when there are di�erent resources with di�erentreliability, or when one receives several news about something that has happened, and onetends to believe that the latter news are more accurate). In such situations the reasonermight prioritize the atomic formulae, and choose the support set whose literal consequencesare the greatest with respect to his ordering. For example, suppose that a; b; c; d and e arethe prioritizations of some reasoner in a descending order, and that in this order every atomis considered equal to its negation. Then a subset that entails a;:c, and d is preferable toa subset that entails, say, a; d and e.12We shall return to the above methods of choosing the best support set in section 6,when we demonstrate these considerations on some examples.3.5 The \absolutely recoverable" formulaeAlthough there must be a maximal support set for every recoverable literal, there is noguarantee that all the recoverable literals would be part of the same recovered subset of KB(that is, they may not all be simultaneously recovered). In particular, not every recoverableliteral must be a part of every recovered knowledge-base. In this subsection we considersome conditions that assure that a formula  would be a member of every recovered subsetof KB.De�nition 3.36 A formula  2KB is said to be absolutely recoverable if  is a member ofevery possible recovered subset of KB.Proposition 3.37 Let  be a formula of a recoverable knowledge-base KB. If for everymcmM of KB, and for every p2A( ), M(p) 62I, then  is absolutely recoverable.Proof: If for every mcmM and for every p2A( ),M(p) 62I, then in particular  2SSM(l)for every mcmM and for every recoverable literal l s.t. M(l) 62I (such a literal exists, since12This approach has often been considered in the literature. One should note, however, that the use ofthis criterion for making precedences among sets is highly arguable. In the example considered above, forinstance, it is not clear which of the two sets fa; dg and fb; cg should be preferred.25



KB is recoverable; see Corollary 3.19). By Proposition 3.18, every recovered knowledge-baseis of the form SSM(l), hence  is absolutely recoverable. 2Corollary 3.38 Every element of the set f 2KB j 8(l2L( )) l 62L(KB)g is an absolutelyrecoverable formula.Proof: Suppose that  02f 2KB j 8(l2L( )) l 62L(KB)g. By the previous proposition itis su�cient to show that every mcm M assigns to every p2A( 0) consistent truth values.Suppose otherwise. Then there is an mcm M 0 and a p0 2A( 0) s.t. M 0(p0)2I. Considerthe valuation N 0, de�ned as follows:N 0(q) = 8><>: M 0(q) if q 6=p0t if q=p0, p02L(KB), and :p0 62L(KB)f if q=p0, p0 62L(KB), and :p02L(KB)It is easy to verify that for every  2KB, N 0( )2 F whenever M 0( )2 F , thus N 0 is amodel of KB. But IncN 0(KB)=IncM 0(KB)[fp0g, thus N 0 is more consistent than M 0 { acontradiction. 2Corollary 3.39 Let KB1 and KB2 be two subsets of KB, s.t. KB = KB1 [ KB2, andA(KB1) \ A(KB2)=; (in such a case we say that KB1 and KB2 form a partition of KB).If KBi for i=1 or i=2 is consistent, than every  2KBi is absolutely recoverable.Proof: Suppose that KB1 is consistent, and  2KB1. Let C be a consistent model of KB1.Again, in order to prove that  is absolutely recoverable, it is su�cient to show that forevery mcm M of KB, and for every p2A( ), M(p) 62 I. Otherwise, let M 0 be an mcm ofKB and let p0 2 A( ) s.t. M 0(p0)2 I. Consider the following valuation, de�ned for everyq2A(KB) as follows: N(q) = ( C(q) if q2A(KB1)M 0(q) if q2A(KB2)N is a model of KB, since by using the fact that KBi (i=1; 2) form a partition on KB, itis easy to see that for every formula �2KB, N(�)=C(�) if �2KB1, and N(�)=M 0(�) if�2KB2. Moreover, IncN(KB)= IncM 0(KB2) � fp0g [ IncM 0(KB2) � IncM 0(KB), thus Nis more consistent than M 0 { a contradiction. 2Example 3.40 Consider again the example given in Examples 2.18, 3.2, 3.10, and 3.26.Here, KB1= fs; :sg and KB2 = fr1; r1!:r2; r2! ig form a partition of KB, and KB2is consistent. Hence, by Corollary 3.39, every  2KB2 is absolutely recoverable (r2! i isabsolutely recoverable by Corollary 3.38 as well).3.6 The incomplete literalsThe last class of literals according to the j=con-categorization consists of those literals thata consistent truth value cannot be reliably attached to them (at least, not according tothe most consistent models of the knowledge-base). The following theorem strengthens thisintuition: 26



Theorem 3.41 l is an incomplete literal in KB i� there exist mcmsM1 and M2 such thatM1(l) = f and M2(l) = t.Proof: The \if" direction follows directly from the de�nition of incomplete literals. Forthe other direction, suppose that p is the atomic part of l. Since l is incomplete i� p isincomplete, it su�ces to prove the claim for p. Now, p is incomplete, so KB 6j=con p andKB 6j=con :p. Thus, there are mcms N1 and N2 s.t. N1(p) 62 F and N2(:p) 62 F . Supposethat M1 is a valuation that assigns f to p and is equal to N1 for all the other elementsof A(KB). Let M2 be a valuation that assigns t to p and is equal to N2 for all the othermembers of A(KB). Like in the proof of Corollary 3.20, one can easily show that since N1and N2 are mcms of KB, M1 and M2 are also mcms of KB. 2We conclude this subsection with some observations related to incomplete literals:� The existence of a support set for an incomplete literal is not assured. Consider forexample KB = fp; :p; p_qg. Here q is incomplete without any support set. Foranother example, consider again Example 3.10. The incomplete literal i is a memberof a support set (S), but this set, and any other support set in KB, do not support i.� Even if there are support sets for an incomplete literal, there can be other subsets thatsupport its negation: For example, in KB=fp; :p_q; r; :r_:qg with B=FOUR, qis incomplete. It has a support set: SS(q)=fp; :p_qg, but there is a support set for:q as well: SS(:q)=fr; :r_:qg.� Consider KB = fp_q; :p_:qg. Here both p and q are incomplete although KB isa consistent set. Intuitively, this is so because there isn't enough data in KB abouteither p or q. Indeed, this knowledge-base has two classical models (fpg and fqg), bothof which are minimal. Without further information there is no way to choose betweenthe two, and so the truth values of the atoms cannot be recovered safely. Until suchnew information arrives, the two atoms should therefore be considered problematicbecause of a lack of information. These particular two models, and the fact that wecannot choose between them, exactly reect the information which is contained inthis KB.4 The minimal mcms of KBIn this section we show that if one is interested only in recovering a �nite inconsistentknowledge-base (that is, discovering the spoiled, incomplete, and recoverable literals ofKB, as well as the corresponding support sets), then it is su�cient to consider only the�k-minimal models among the most consistent models of KB (minimal mcms of KB, inshort).Notation 4.1a) The set of the minimal mcms of KB will be denoted henceforth by 
(KB), or just 
.b) Denote KB j=
  if every minimal mcm of KB is a model of  (see De�nition 2.17).27



Abstractly, we can view the construction of 
 as a composition of the two consequencerelations \j=con" and \j=min". First, we con�ne ourselves to the mcms ofKB by using j=con,then we minimize the valuations that we have by using j=min. This process is a special caseof what is called \strati�cation" in [BS88].13Lemma 4.2 Let KB be a �nite knowledge-base. For every mcm M of KB there is anN 2
(KB) s.t. N�kM and IncN (KB)=IncM(KB).Proof: Suppose that M is an mcm of KB. Since KB is �nite, there is an N 2
(KB) s.t.N�kM . Suppose that IncN (KB) 6=IncM(KB). Since bothM andN are mcms ofKB, thereare q1; q22A(KB) s.t. q12IncN (KB) n IncM(KB) and q22IncM (KB) n IncN (KB). Assumethat N(q1) 2 F . Then since N(q1) 2 I, N(:q1) 2 F as well. Thus M(q1) �k N(q1) 2 Fand M(:q1)�k N(:q1)2F , so M(q1)2 I { a contradiction. Hence N(q1) 62 F . Similarly,N(:q1) 62F . Now, consider the valuation N 0 de�ned for every p2A(KB) as follows:N 0(p) = ( t if p=q1N(p) otherwise.By an induction on the structure of a formula  2KB is it easy to verify (using Lemma2.23) that N 0( )2F whenever N( )2F , and so N 0 is a model of KB. But IncN(KB) =IncN 0(KB)[fq1g, thereforeN 0>con N , and soN cannot be an mcm ofKB, and in particularN 62
(KB) { a contradiction. 2Theorem 4.3 Let KB be a �nite knowledge-base and  an extended clause. Then KB j=con i� KB j=
 .Proof: One direction is immediate. For the other, suppose that KB 6j=con  . Then thereis an mcm M of KB s.t. M( ) 62F . By Lemma 2.23, 8l2L( ) M(l) 62F . By Lemma 4.29N 2
(KB) s.t. N �k M . Since F is upward-closed w.r.t. �k, 8l2L( ) N(l) 62F as well.Therefore KB 6j=
 . 2Corollary 4.4 Let KB be a �nite set of normalized extended clauses in BL. Then:a) l is a spoiled literal in KB i� for every model M 2
(KB), M(l)2F and M(l)2F .b) l is a recoverable literal in KB i� for every M 2
(KB), M(l)2F , and there exists anN 2
(KB) s.t. N(l)2F n I.c) l is an incomplete literal in KB i� there are M1;M2 2 
(KB) s.t. M1(l) 62 F andM2(l) 62F .Proof: Immediate from De�nition 3.1 and Theorem 4.4 2Another result related to minimal mcms is the following re�nement of Theorem 3.18.The outcome is a characterization of the maximal support sets in terms of minimal mcms:Proposition 4.5 Every maximal support set of a recoverable literal l in a �nite knowledge-base is associated with some minimal mcmM 2
 s.t. M(l) 62I.13Which is, of course, a completely di�erent notion than that of De�nition 3.25.28



Proof: Follows easily from Proposition 3.18 and Lemma 4.2. 2The next result, which is the analogue of Proposition 3.37 for minimal mcms, showsthat 
 might as well be used in order to discover the absolutely recoverable formulae ofKB:Corollary 4.6 Let  be a formula of a �nite recoverable KB. If for everyM 2
(KB), andfor every p2A( ), M(p) 62I, then  is absolutely recoverable.Proof: Immediate from Proposition 4.5 and Corollary 3.19. 2The results of this section show the advantage of using bilattices and not just lattices:While the partial order �t is used to determine the semantics of the classical connectives,�k can be used to considerably reduce the number of the models that should be taken intoaccount!5 Extensions to �rst-order logicSo far we have considered only propositional knowledge-bases. However, it is possible to di-rectly expand the present discussion to any �rst-order knowledge-bases provided that thereare no quanti�ers within the clauses; Each extended clause that contains variables is con-sidered as universally quanti�ed. Consequently, a knowledge-base containing non-groundedformula,  , will be viewed as representing the corresponding set of ground formulae formedby substituting each variable that appears in  with every possible member of the Herbranduniverse, U .14 Formally:KBU = f�( ) j  2 KB; � : var( )! Ugwhere � is a ground substitution of variables to the individuals of U . KBU is called theHerbrand expansion of KB w.r.t. Herbrand universe U .6 Examples and applicationsLet's summarize the major steps in the process of turning an inconsistent knowledge-baseinto a consistent one: Given an inconsistent set S of assertions in BL, perform the followingactions:1. Translate every formula  2 S to an equivalent set NEC( ) of normalized extendedclauses (cf. Proposition 2.22). Let KB=SfNEC( ) j  2Sg.2. Compute con(KB) [alternatively, compute 
(KB)]. From con(KB) [
(KB)] computeall the recoverable literals of KB (cf. Corollary 3.20) [(cf. Proposition 4.4b)].14In fact, the limitations imposed on BL guarantee that we stay, essentially, on a propositional level.29



3. Generate the support sets for the recoverable literals of KB as follows: For everyM 2 con(KB) [M 2 
(KB)] and for every literal l such that M(l) 62 I compute theassociated support set SSM(l) (cf. Proposition 3.18) [(cf. Proposition 4.5)]. If KB isstrati�ed, the algorithm given in Subsection 3.3 might be useful for this purpose.4. Use the heuristics mentioned in subsection 3.4 to choose the best support set amongthose that were produced in the previous step. This is the recovered knowledge-baseof the original inconsistent set S. De�nition 3.8 and Theorem 3.12 guarantee that therecovered knowledge-base is consistent and semantically corresponds to the data of S.In the rest of this section we give some examples for illustrating the process describedabove. Then we consider an important type of problems in AI (that of model-based diag-noses) for which the methods developed in this paper are particularly useful.6.1 Nonmonotonic aspects of the recovering processIn this subsection we gather some benchmark problems which are given in [Li88] (undercategory A { default reasoning) for evaluating nonmonotonic formalisms. All the examplesare considered in B=FOUR with F=ft;>g and I=f>g. As it is shown below, our systemmanages to keep the results very close to those suggested in [Li88].Consider the following block world description, KB1:heavy(Block A)heavy(Block B)heavy(x)! on the table(x):on the table(Block A)Obviously, KB1 is inconsistent, and the problem is with the information about block A. Inorder to recover consistent data, we have to calculate the mcms of KB1, which are given inthe table of Figure 6. 15mcm heavy(A) heavy(B) on the table(A) on the table(B)M1a t t > tM1b > t f tFigure 6: The (minimal) mcms of KB1The respective support sets, which correspond to these mcms, are the following:KB1a=fheavy(A); heavy(B); heavy(B)! on the table(B)g,KB1b=f:on the table(A); heavy(B); heavy(B)! on the table(B)g.15From now on we shall use X instead of Block X; X=A;B.30



KB1a supports the recoverable literals heavy(A); heavy(B) and on the table(B); KB1bsupports the recoverable literals heavy(B); on the table(B), and :on the table(A). Thus,the data about block B is absolutely recoverable. Particularly, in either support sets blockB is on the table, as suggested in [Li88, Problem A1].Suppose a new data is introduced that is unrelated to existing information. For exam-ple, assume that KB2 = KB1 [ f:red(B)g. It is easy to verify that the literals that wererecoverable in KB1 still have the same status in KB2 (the new assertion, :red(B), is alsorecoverable, of course. In fact, by Corollary 3.38, it is absolutely recoverable), and the samesupport sets can be constructed in a similar manner as before when adding to them thenew data. Thus, on the table(B) is still supported by every support set in KB2, and therecovered knowledge-bases are KB2a=KB1a [ f:red(B)g and KB2b=KB1b[ f:red(B)g(cf. [Li88, Problem A2]).Suppose that we are informed that every heavy block must be painted red. Let KB3denote the knowledge base that contains all the information we have so far:heavy(A)heavy(B)heavy(x)! on the table(x)heavy(x)! red(x):on the table(A):red(B)The minimal mcms of KB3 are given in Figure 7.16 Their associated support sets are listedbelow:mcm heavy(A) heavy(B) red(A) red(B) on the table(A) on the table(B)M3a t t t > > tM3b t > t f > ?M3c > t ? > f tM3d > > ? f f ?Figure 7: The minimal mcms of KB3KB3a = fheavy(A); heavy(B); heavy(A)! red(A); heavy(B)! on the table(B)gKB3b = fheavy(A); :red(B); heavy(A)! red(A)gKB3c = f:on the table(A); heavy(B); heavy(B)! on the table(B)g16KB3 has 16 mcms. We omit the other 12, which are not �k-minimal. As was shown in Section 4, bydoing so we are not losing any meaningful data. 31



KB3d = f:on the table(A); :red(B)gThe \conservative" (or \skeptical") nature of the system is emphasized here: each suggestedsolution ignores the information it considers as contradictory, and leaves all the other dataunchanged.Note that KB3a is the preferable support sets according to many criteria that were men-tioned through Subsection 3.4: It is the largest set, it supports more literals than anyother support set, and it contains maximal information. To see the last claim, note thatjA(KB3a)j = 4, jA(KB3b)j= jA(KB3c)j= 3, jA(KB3d)j= 2, jcon(KB3a)j= 1, (the onlymcm is the reduction of M3a in Figure 7 to the language of KB3a) and jcon(KB3b)j=jcon(KB3c)j= jcon(KB3d)j=1 as well. Hence: I2(KB3a)=4, while I2(KB3b)=I2(KB3c)=3, and I2(KB3d)=2.So, it seems that the most reasonable set to recover KB3 is indeed KB3a. KB3a impliesthat on the table(B) and red(A). These are also the conclusions in [Li88, Problem A3].Note: The last example nicely demonstrates also the practical importance of having thetruth value ?. One can reach, in fact, the same conclusions using only the other threevalues (see Subsection 7.3 below). In that case, however, nine mcms should be consideredinstead of the four of Figure 7. The reason is that had we used only t, f , and >, then everyoccurrence of ? in Figure 7 should have been replaced by a classical truth value, and both ofthe two possibilities would have produced models that should have been taken into account.For a last example of the block world, consider the following knowledge-base, KB4:heavy(A)heavy(B)heavy(C)heavy(x)! on the table(x):on the table(A)_ :on the table(B)Note that the last assertion in KB4 states that there is an unknown exception in theinformation. The mcms of KB4 are given in Figure 8.mcm heavy(A) heavy(B) heavy(C) on table(A) on table(B) on table(C)M4a > t t f t tM4b t > t t f tM4c t t t > t tM4d t t t t > tFigure 8: The (minimal) mcms of KB4Hence, heavy(X) forX=A;B;C and on the table(C) are all recoverable, while on the table(A)and on the table(B) are incomplete. The support sets of KB4 are listed bellow:32



KB4a = fheavy(B); heavy(C); heavy(B)! on the table(B);heavy(C)! on the table(C); :on the table(A)_ :on the table(B)gKB4b = fheavy(A); heavy(C); heavy(A)! on the table(A);heavy(C)! on the table(C); :on the table(A)_ :on the table(B)gKB4c = fheavy(A); heavy(B); heavy(C); heavy(B)! on the table(B);heavy(C)! on the table(C)gKB4d = fheavy(A); heavy(B); heavy(C); heavy(A)! on the table(A);heavy(C)! on the table(C)gNote that no matter which set the reasoner chooses as the recovered knowledge-base, all ofthem preserve the intuitive conclusions of KB4, i.e.: in every recovered knowledge-base (a)block C is on the table, and (b) either block A or block B is on the table, but there is noevidence that both are on the table. Again, these conclusions are similar to those of [Li88].Suppose now that the reasoner prioritize the atomic formulae of KB4 in the followingdescending order: heavy(A), on the table(A), heavy(B), on the table(B), heavy(C), andon the table(C) (the reasoner might know, for example, that block A is the heaviest whileblock C is the lightest, or the information about block A is known to be more reliable,etc.). As a result, the possible recoverable knowledge-bases are prioritized in the followingdescending order: KB4d, KB4b, KB4c, and KB4a,17 thus KB4d is the preferred set in thiscase.Due to the lack of space we have not considered here all the benchmarks of [Li88]. Wecon�ned ourselves with most of the examples under category A (default reasoning). How-ever, it might be interesting to check which of the other test criteria mentioned there aremet in our system (Most notable: the inheritance features and the autoepistemic charac-terizations), and to what degree the conclusions reached by our method resemble those of[Li88].6.2 Model-based diagnosisSuppose that one is given a description of some system (physical device, for example)together with an observation of its behavior. Suppose further that this observation conictswith the way the system is meant to behave. The obvious goal is to identify the componentsof the system that behave abnormally, so that the discrepancy between the observed and thecorrect system behavior would be explained. In such cases it seems reasonable to assumethat some minimal components are faulty. Therefore, the most consistent models and theircorresponding support sets are good candidates to provide accurate diagnoses, especiallysince they minimize the set of components that are assumed to behave di�erently thanexpected (those that cause the conicts).17For example, the support set KB4d is preferable to KB4b, since its atomic consequences are heavy(A),on the table(A), heavy(B), heavy(C), and on the table(C). This is greater w.r.t. the reasoner prioritiza-tion than the consequences of KB4b, which are heavy(A), on the table(A), on the table(B), heavy(C) andon the table(C). 33



Example 6.1 Figure 9 depicts a binary full adder, examined extensively in the literatureof diagnostic systems (See, e.g., [Ge84, Re87, Gi88, Ra92] and many others). It consists of�ve components: two and-gates A1 and A2, two xor-gates X1 and X2, and an or-gate O1.----- --- -- --r r r r��A1 ��A2���� ��X1 ���� ��X2�� ��O1101 01Figure 9: A full adderFor the sake of the current example only we use the symbol� to denote the binary operationxor (instead of using this symbol for denoting �k-meet operations of bilattices). The fulladder's description is then given by the following system, FA:� The expected behavior of the components of the system:andGate(x) ^ ok(x)! (out(x)$ (in1(x)^ in2(x))),xorGate(x) ^ ok(x)! (out(x)$ (in1(x)� in2(x))),orGate(x) ^ ok(x)! (out(x)$ (in1(x)_ in2(x))),� The gates of the system:andGate(A1), andGate(A2), xorGate(X1), xorGate(X2), orGate(O2),� Each gate is assumed to function correctly:ok(A1), ok(A2), ok(X1), ok(X2), ok(O1),� Integrity constraints:andGate(x)! (:orGate(x)^ :xorGate(x)),xorGate(x)! (:andGate(x)^ :orGate(x)),orGate(x)! (:andGate(x)^ :xorGate(x)),� Description of the circuits of the system:in1(X1)$ in1(A1), in2(X1)$ in2(A1),out(X1)$ in2(A2), out(X1)$ in1(X2),in1(A2)$ in2(X2), out(A2)$ in1(O1),out(A1)$ in2(O1), 34



� The set of observations:in1(X1), :in2(X1), in1(A2), out(X2), :out(O1)Notice that the observation indicates that the physical circuit is faulty; Both circuit outputsare wrong for the given inputs. Notice also, that by Corollary 3.15, ok(x) is recoverable forevery component x, therefore the mcms of FA and their corresponding recovered subsetswould indicate which gates are faulty and which ones behave correctly.The predicates in1(x), in2(x), and out(x) are assigned values that correspond to binaryvalues of the wires of the system. Therefore they should have only classical values (e.g.,in(G)=> for a gate G is a meaningless value). Also, it seems natural to restrict the valuesof the predicates andGate, orGate, and xorGate to be only t or f . This is because weknow in advance what is the kind of each gate G in the system, and so the only openquestion about G (that might have inconsistent answers according to the actual behaviorof the system) is whether it behaves as expected (i.e., whether ok(G)).Let's denote by Exact(KB) the predicates ofKB that are assumed to have only classicalvalues. We are interested only in those models in which every instance of a predicate ofExact(KB) has a classical value. If D denotes the domain of discourse, the set of relevantmodels is the following:mod(KB;Exact) = fM 2mod(KB) j 8p2Exact 8xi2D M(p(x1;: : :; xn))2ft; fggWhere in our case, Exact=fin1; in2; out; andGate; orGate; xorGateg.Notes:1. This restriction on the relevant models means that our basic consequence relationis now not j=mod(KB) but rather j=mod(KB;Exact), which is a particular case of theconsequence relations de�ned at 2.17. The various concepts de�ned above, like thatof an mcm, should be relativised accordingly. We note also that this approach ofrestricting some of the predicates to have only classical values is quite common (see,e.g., [Wa94]). There are certain theories in which this meta-level is used also foradding integrity constraints for the speci�c problem. This can easily be done in oursystems as well. See [AA97] for a more detailed study of these considerations in casethat B=FOUR and I=f>g.2. It is not any longer true that �> = fp : > j p 2 A(KB)g must be an acceptablemodel of KB. In fact, there might be cases in which mod(KB;Exact)=;. However,althoughmod(KB;Exact) is treated here as the set of the accepted valuations insteadof mod(KB), all the propositions that were proved above, except those of Subsection3.4-A, remain valid under the obvious reformulations.3. A natural generalization to what we are doing here is to consider not only t; f , butany subset of truth values in B. That is, if Val � B, and Pred � A(KB), thenmod(KB;Pred; Val) = fM 2 mod(KB) j 8p 2 Pred 8x 2 D M(p(x)) 2 Valg. Forinstance, the set of the all the consistent models of KB (w.r.t. an inconsistent set I;see De�nition 2.24a) may now be formulated as mod(KB;A(KB); BnI).35



The table of Figure 10 lists the models of mod(FA;Exact). We have omitted fromthe table predicates (like in1(X1)) that have the same (obvious) value in every model inmod(FA;Exact), and predicates that have the same values as other predicates (like in2(A2),which is identical to in1(X2)).Model No. in1 in1 in2 ok ok ok ok okX2 O1 O1 A1 A2 X1 X2 O1M1 { M16 f f f t;> t;> > t;> t;>M17 { M20 f t f t;> > > t;> >M21 { M24 f f t > t;> > t;> >M25 { M26 f t t > > > t;> >M27 { M34 t f f t;> > t;> > t;>M35 { M42 t t f t;> t;> t;> > >M43 { M44 t f t > > t;> > >M45 { M48 t t t > t;> t;> > >Figure 10: The models in mod(FA;Exact)The corresponding (minimal) mcms are given in Figure 11.Model in1 in1 in2 ok ok ok ok okNo. X2 O1 O1 A1 A2 X1 X2 O1M1 f f f t t > t tM27 t f f t > t > tM35 t t f t t t > >Figure 11: The mcms of mod(FA;Exact)The mcms among the elements of mod(FA;Exact), and the support sets that are as-sociated with them preserves what Reiter [Re87] calls the principle of parsimony ; theyrepresent the conjecture that some minimal set of components are faulty. For example,according to M1, which is one of the mcms of FA, the only component that is knownto behave incorrectly is the xor gate X1. The associated support set of M1 reects thisindication:SSM1 = FA n fok(X1); xorGate(X1) ^ ok(X1)!(out(X1)$(in1(X1)� in2(X1)))gIn particular, SSM1 is a support set of ok(x) for x2fA1; A2; X2; O1g, and SSM1 6j=con ok(X1).Similarly, the other two most consistent models M27 and M35, as well as their associatedsupport sets represent respective situations, in which gates fX2; A2g and gates fX2; O1gare faulties. These are the generally accepted diagnoses of this speci�c case (see, e.g. [Re87,Example 2.2], [Gi88, Sections 15,16], and [Ra92, Examples 1,4]).According to the heuristics mentioned in Subsection 3.4, SSM1 is preferable than SSM27and SSM35, since it is bigger, and supports more recoverable literals than the other two sets.In this particular case one have additional reasons to prefer SSM1, since it claims that onlya single component is faulty, and one normally expects components to fail independently of36



each other. This kind of diagnosis is known as a single fault diagnosis . We see, then, thatin some cases the particular nature of the situation impose preference criteria | maybeother than those mentioned in Subsection 3.4 | so that a particular recovered set is judgedas more likely to be correct than other solutions.Next we show that the correspondence between the fault diagnoses and the inconsistentassignments of the mcms in the previous example is not accidental. For that we �rst presenttwo basic notions from the literature on model-based diagnosis:De�nition 6.2 [Re87] A system is a triple (Sd; Comps;Obs), where:a) Sd, the system description, is a set of �rst-order sentences.b) Comps, the system components , is a �nite set of constants.c) Obs, a set of observations , is a �nite set of sentences.De�nition 6.3 [Re87] A diagnosis is a minimal set ��Comps s.t. Sd[Obs[ fok(c) j c2Comps n�g [ f:ok(c) j c2�g is classically consistent.In the example above we assumed that the devices normally behave as expected. Wenow formalize this assumption:De�nition 6.4 A correct behavior assumption for a given set of components ��Comps isthe set CBA(�) = fok(c) j c2�g.Notation 6.5 For a given system (Sd; Comps;Obs), and a set of components ��Comps,denote KB(�) = Sd[Obs[CBA(�). Whenever � = Comps we shall write just KB insteadof KB(Comps). Also, in the sequel we will continue to assume that the KB(�)'s are sets ofnormalized extended clauses. Recall that by Proposition 2.22 this assumption can be takenwithout any loss of generality.Here are some useful properties of diagnoses:Proposition 6.6 Denote by j=cl the consequence relation of the �rst-order classical logic.a) [Re87, Proposition 3.4] ��Comps is a diagnosis for (Sd; Comps;Obs) i� � is a minimalset such that KB(Comps n�) is classically consistent.b) [Re87, Proposition 3.3] If � is a diagnosis for (Sd; Comps;Obs) then KB(Compsn�) j=cl:ok(c) for each c2�.We present now a treatment of diagnostic systems in the multi-valued framework ofbilattices, where only a subset of the atomic formulae necessarily have classical values.De�nition 6.7a) An extended diagnostic system (e-system for short) is a pair (KB;Exact), where KB=Sd[Obs[CBA(Comps), and Exact is a set of the predicates in the language of KB that areassumed to have only classical values.b) Let (KB;Exact) be an e-system. An exact model of KB (w.r.t. Exact) is an element ofmod(KB;Exact)=fM2mod(KB) j 8p2Exact 8xi2D M(p(x1;: : :; xn))2ft; fggc) A most consistent exact model of KB (mcem) is an mcm of mod(KB;Exact).Theorem 6.8 Let (KB;Exact) be an e-system, and suppose the Herbrand base H of KBis fp(x1;: : :; xn) j p2Exact; xi2Compsg [ CBA(Comps).18 An exact model M of KB is an18Note that this requirement is met Example 6.1. 37



mcem of KB i� IncM(KB)=CBA(�) for some diagnosis � of KB.Proof: (() Assume that M is an exact model of KB and that � is a diagnostic of KBs.t. IncM(KB) =CBA(�). If M is not an mcem of KB then there is an exact model M 0s.t. IncM 0(KB)� IncM(KB) = CBA(�), i.e.: there is a c0 2� s.t. M 0(ok(c0)) 62 I. But:(a) M 0 is a model of KB and ok(c0)2KB thus M 0(ok(c0))2 F , and: (b) by Proposition6.6(b), KB(Comps n�) j=cl:ok(c0) and by Lemma 4.11 of [AA96] 19, KB(Compsn�) j=con:ok(c0). Since M is a (most) consistent model of KB(Comps n�) then so is M 0, thereforeM 0(:ok(c0))2F . By (a) and (b), M 0(ok(c0))2I { a contradiction.()) From the condition on Herbrand base of KB it follows that for every model M ofKB, IncM (KB)�CBA(Comps). Suppose, then, that M is a most consistent model of KBand that IncM(KB)=CBA(�) for some ��Comp. By Proposition 6.6, in order to provethat � is a diagnosis for KB it is su�cient to show that � is a minimal set such thatKB(Compsn�) is classically consistent. Suppose not. Then there is a proper subset �0��s.t. KB(Compsn�0) is classically consistent. In particular, KB(Compsn�0) is a consistentset in the sense of De�nition 2.24(b), and so it has a consistent model N . Let M 0 be thefollowing valuation: M 0(p) = ( N(p) if p2A(KB(Compsn�0)).> otherwise.It is easy to verify (using Lemma 2.23) that M 0 is a model of KB. Therefore, sinceExact(KB) � A(KB(Comps n�0)), M 0 is in mod(KB;Exact). Moreover, IncM 0(KB) =CBA(�0), and �0��, thus IncM 0(KB)=CBA(�0)�CBA(�)= IncM(KB). It follows thatM cannot be a mcem of KB. 2Corollary 6.9 Under the assumption of Theorem 6.8, if � is a diagnosis of KB then thereexists an mcemM of KB s.t. IncM (KB)=CBA(�).Proof: Let � be a diagnosis forKB. If �=fg then CBA(�)=fg, and by Proposition 6.6(a)KB is classically consistent. Hence every mcemM of KB is a consistent model (in the senseof De�nition 2.24(a)), and so IncM (KB)=fg as well. If � 6=fg then KB is not (classically)consistent, since by Proposition 6.6(b) and by the monotonicity of j=cl, KB j=cl :ok(c) forevery c2�, and by reexivity, KB j=cl ok(c). On the other hand, by Proposition 6.6(a),KB(Compsn�) is classically consistent, therefore there is a model M of KB that assignsconsistent truth values to every atomic formulae in A(KB(Compsn�)), and assigns > toCBA(�), i.e.: IncM (KB)=CBA(�). This M is an mcem of KB by Theorem 6.8. 2Corollary 6.10 Let (KB;Exact) be an e-system as described in Theorem 6.8. Then ok(c)is absolutely recoverable in KB i� c cannot be faulty in KB.Proof: Obviously follows from Proposition 3.37 and Theorem 6.8. 219According to that lemma, if KB is a classically consistent knowledge-base,  is a clause that does notcontain any pair of an atomic formula and its negation, and  follows classically from KB, then KB j=con .38



Whenever the condition of Theorem 6.8 is met and KB is strati�ed, one can use thealgorithm of Subsection 3.3 for �nding diagnoses and constructing recovered knowledge-bases of KB. Alternatively, one can use any other algorithm for �nding diagnoses, and thenuse the results for recovering KB. The process is as follows: First, such an algorithm isexecuted (this algorithm can be, for example, Reiter's DIAGNOSE [Re87]); Suppose that �is returned as a diagnosis. Like in Section 5, given Herbrand universe U of KB, we denoteKBUn� = f�( ) j  2KB; � : var( )! (U n�)g. By Theorem 6.8, CBA(�) correspondsto the inconsistent assignments of some mcmM , so by the proof of Theorem 3.11, KBUn�is a recoverable subset of KB.7 A comparison with other formalismsIn this section we compare the present approach of recovering consistent data with someother formalisms for dealing with inconsistency. Since there are many such formalisms, weconsider only those with a close relationship to ours.7.1 Maximal consistent subsetsA common method to \recover" inconsistent knowledge-bases is to search for its maximalconsistent subsets. The main drawback of this method is that none of these subsets nec-essarily corresponds to the intended semantics of the original knowledge-base. Consider,for instance, KB of Example 2.18 (also considered in Examples 3.2, 3.10, 3.26, and 3.40).Every maximal consistent subset of KB must contain either s or :s. Hence, either s or itscomplement, but not both, must be a consequence of every such a subset, but this conse-quence contradicts another assertion that explicitly stated in the original knowledge-base.For another example, consider KB = fp;:p_q;:qg. This time, there is no spoiled literalin KB, but still every maximal consistent subset of KB entails (both classically and w.r.t.j=con) an assertion that contradicts an explicit data of KB. The support sets fpg andf:qg of this KB, as well as any support set of other knowledge-bases, do not have sucha drawback. The requirement that every support set would be consistent in the originalknowledge-base assures that their conclusions would not contradict any data entailed bythe original knowledge-base.20 The last example also shows that two-valued semantics isnot su�cient even in cases where there are no spoiled literals.7.2 Annotated logics; Kifer and Lozinskii's treatmentAnnotated logics were introduced by Subrahmanian [Su90a, Su90b], and further developedby him and others (see, e.g., [CSHL, KL92, KS92, Su94]). They also use multi-valuedalgebraic structures in order to provide a semantics for rule-based systems with uncertainty.As we have already noted, [KL92] use annotated logic for similar purposes as ours. However,the present treatment of inconsistency in knowledge-bases is free of some of the drawbacksof [KL92]. There, for example, just ordinary (semi)lattices were used, in which the partialorder relation corresponds, intuitively, to�k. Hence, no direct interpretation of the standard20In particular, support sets cannot contradict any explicit data of the knowledge-base, as it is the casewith the knowledge-bases and their maximal subsets considered above.39



logical connectives (which correspond, in fact, to the �t partial order) was available to theauthors. They were forced, therefore, to use a language, in which the atomic formulaeare of the form p : b (where p is an atomic formula of the basic language, and b { avalue from a semilattice).  : b is meaningless, however, for nonatomic  . Our treatmentneeds no such a restriction; The use of bilattices enables assignments of truth values to anyformula. Moreover, the present de�nitions follow the common method of logic systems, inwhich syntax and semantics are separated, while in the logic of [KL92] (and in annotatedlogics in general) semantic notions interfere with the syntax. In particular, the presenttreatment does not require any syntactic embedding of �rst-order formulae into the multi-valued language (like the ones denoted �epi and �ont in [KL92]); the syntactic structure ofeach assertion remains the same.7.3 Priest's minimally consistent LPmIn [Pr89, Pr91] Priest considers the logic LP { Kleene's strong three-valued logic withmiddle element (>) designated.21 According to Priest, the basic drawback of LP is that itinvalidates Disjunctive Syllogism (i.e.,  ; : _� 6`LP �, where `LP denotes the consequencerelation of LP).22 Priest resolves this drawback by reducing the relevant models only to thosethat are minimally inconsistent : For a given propositional LP-valuation �, Priest de�nesa corresponding set �!= fp j p ^ :p is true under �g that \measures" the inconsistency of�. The minimal inconsistent models of a set of formulae � are those models � such that if�!� �! then � is not a model of �. The consequence relation j=LPm of the obtained logic,LPm, is then de�ned as follows: � j=LPm i� every minimally inconsistent model of � is amodel of  .Obviously, Priest's main idea is very similar to ours, and the consequence relation j=LPmis very close to j=con. The di�erence is that Priest is using the f:;_;^g-closed subsetft; f;>g of the special bilattice FOUR, with the same F , and with I = f>g. As we haveseen in Section 6.1 (see the note there), the cost of using only this subset of FOUR mightbe an exponential growth in the number of models that should be examined. This is dueto the fact that every mcm M in FOUR (with I=f>g) s.t. M(p)=? for some p inducestwo LP-minimal models, which are identical to M , except that one assigns t to p, while theother assigns f to it.23It is not di�cult to see that if we take B = FOUR and I = f>g, then KB j=LPm  i�KB; p1_:p1; : : : ; pn_:pn j=con where A(KB)=fp1; : : : ; png. We conjecture that if, on theother hand, we take I=f>;?g (and B=FOUR) then j=LPm is identical to j=con.Our conclusion is that one can do with FOUR everything one can do with LPm, if soone wishes (and usually more e�ciently), but with FOUR one can do other things as well.The exact relation between FOUR and LPm deserves, however, further investigations.21This logic is also known as RM3 in the relevance literature ([AB75]) and J3 in the literature aboutparaconsistency { see, e.g., chapter IX of [Ep90] as well as [OdC70, Ot85, Av86, Ro89].22In a sense, Disjunctive Syllogism is the only classically valid inference which fails, since its addition toLP yields classical logic.23One should note, however, that the converse is not true: The existence of two LP-minimal models M1and M2 s.t. M1(p)=t, M2(p)=f and M1(q)=M2(q) for every q 6=p does not necessarily imply the existenceof a corresponding mcm M in FOUR s.t. M(p)=?. The clause p_:p provides a counterexample.40



8 Conclusion and further workThe consequence relation j=con was considered in [KL92] as an epistemic entailment forannotated logics. In [AA94, AA96] this relation was further examined and used in orderto develop bilattice-based proof systems. In this paper we demonstrate another aspectof implementing j=con together with (logical) bilattices, namely: a model-theoretic tech-nique for extending the semantics (without changing the syntax) of classical �rst-orderknowledge-bases, in order to deal with contradictions in a nontrivial way. The outcome isa nonmonotonic mechanism for �nding inconsistent parts of a given knowledge-base, and aparaconsistent approach for recovering consistent data from it. This approach is shown tobe e�cient in several important cases, and particularly useful whenever conicts are inher-ent parts of the situations, such as diagnostic problems.One issue we haven't dealt with so far is the choice of the particular bilattice to use. Inall our examples above we have used the simplest bilattice FOUR. We suspect that for thelanguage that we use here FOUR might indeed be su�cient, although we don't have yet aformal proof to this conjecture. Still, even if this conjecture is true, keeping the discussionon an abstract level (as we have done here) has obvious advantages:1. We do not intend our proposal to be an isolated method for dealing with inconsistentdata. Rather, we believe that it should be a part of a general framework for dealingwith knowledge-bases. Now, for other aspects of the subject, other bilattices mightbe useful. DEFAULT , for example, is usually taken to be suitable for default reason-ing. Bilattices like [0; 1]�[0; 1] (see [Fi90b] for the exact de�nition) may be used forstatistical reasoning, etc. The choice of the bi�lter also depends, of course, on theapplication. For example, the use of the bi�lter f>; tg of DEFAULT means taking as\true" only propositions that convey some truth. It is quite possible, however, thatfor certain application we would like to accept also a default \truth", represented(say) by d> or dt as standing for some extended notions of truth. We might use thenNINE rather than DEFAULT and choose NINE's second bi�lter for our application(DEFAULT itself does not have a bi�lter containing dt or d>).2. The fact that from the point of view of classical logic we can con�ne ourselves to thetwo-valued Boolean algebra does not mean that other Boolean algebras are useless inapplications of classical logic. Similarly, the fact that in principle we can always useFOUR (if this indeed is the case), does not exclude the potential usefulness of otherlogical bilattices (This point, of course, is not unrelated to the �rst one).3. The framework of bilattices opens the door for various nonclassical connectives (likeFitting's conation and guard connectives [Fi94], or the nonmonotonic implications of[AA96]). It is doubtful that with these extra connectives FOUR will still be su�cientfor de�ning j=con.The discussions in this section and in the previous ones leads to several directions ofresearch:� Determine the exact role of FOUR with respect to the consequence relation j=con.41
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