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Abstract

One of the most significant drawbacks of classical logic is its being useless in the
presence of an inconsistency. Nevertheless, the classical calculus is a very convenient
framework to work with. In this work we propose means for drawing conclusions from
systems that are based on classical logic, although the information might be inconsistent.
The idea is to detect those parts of the knowledge-base that “cause” the inconsistency,
and isolate the parts that are “recoverable”. We do this by temporarily switching into
Ginsberg/Fitting multi-valued framework of bilattices (which is a common framework
for logic programming and nonmonotonic reasoning). Our method is conservative in the
sense that it considers the contradictory data as useless and regards all the remaining
information unaffected. The resulting logic is nonmonotonic, paraconsistent, and a
plausibility logic in the sense of Lehmann.

1 Introduction

Most classical theorem provers are based on refutation procedures. In order to find out
whether a given formula ¢ follows from a given knowledge-base KB the negation of 1 is
temporarily added to KB. The question is then: is the resulting knowledge base consistent
or not? If it is, then ¢ follows from KB. Otherwise it does not.

A question now arises: what if the original KB is already inconsistent? The above
approach necessarily leads then to the conclusion that 1 follows from KB. Classically this
is fine. In classical logic an inconsistent theory entails everything. From a practical point
of view, however, this leaves something to be desired. Drawing any conclusion whatsoever
just because of the existence of a contradiction, is certainly unrealistic, e.g., in knowledge
bases in which the information comes from several sources.

*A preliminary version of this paper appears in [AA95].



One possible solution to this problem is to use some kind of a paraconsistent logic
([dC74]), i.e.: a logic in which trivial reasoning from a contradiction is not allowed. Several
candidates has been suggested in the literature (see, e.g., [BCDLP, BDP95, CSHL, KL92,
Lo94, Pr89, Pr91, Su90a, Sud0b, Su94|). The use of such logic has, however, its own draw-
backs. The major one is the fact that it forces us to give up classical reasoning altogether.
This is certainly not justified in case the given knowledge base is consistent. Moreover: the
classical calculus is a very convenient framework to work with; Adding new mechanisms or
connectives to it generally causes a considerable growth in the computational complexity
needed to maintain the resulting system. The fact that many relatively efficient theorem
provers which are based on classical logic already exist is also significant from a pragmatic
point of view.

The purpose of this work is to propose means for drawing conclusions from systems that
are based on classical logic, even though the information might be inconsistent. The idea
is to detect first those parts of the knowledge-base that “cause” the inconsistency, and to
isolate the parts that are “recoverable”. The outcome of this approach is a construction
of a subset of the original knowledge-base, which is consistent, and preserves most of the
original data without changing its meaning. Since we are not changing any assertion (and
in particular we are not damaging the syntax), we can continue handling the “recovered”
knowledge-base by the usual methods of current theorem provers.

Consider for example the following set of assertions: S = {-s, r1, r;1 — -y, 7o —i}.
This set is consistent, therefore classical logic might be used for drawing conclusions from
it. Assume now that a new information arrives, and we are told that s is known to be
true. The new knowledge-base, S’ = SU{s}, is inconsistent. Since everything classically
follows from S’, another mechanism for drawing plausible conclusions is needed. A common
approach of doing so is to consider some maximal consistent subset of the knowledge-base
(see, e.g., [RM70, Po88, BCDLP, Lo94|). The drawback of this method is that it might
lead to conclusions that are in a direct conflict with the original information. In the case
of S, for instance, every maximal consistent subset must contain either s or —s (but not
both), and therefore such a set classically entails formulae that contradict an explicit data
of the original knowledge-base.

Instead of looking for maximal consistent subsets it seems to us more reasonable to try
to do the following things:

1. Detect and isolate the cause of the inconsistency together with what is related to it.
Any data that is not related to the conflicting information should not be affected or
changed.

2. Make sure that the remaining information yields conclusions that are semantically
coherent with the original data (i.e.: only inferences that do not contradict any pre-
viously drawn conclusions are allowed).

In the specific example considered above, for instance, it is clear that the ambiguity in S’
is connected only to {s, s}, while {ry, r; — -7y, ro— i} seems to be the part of S’ from
which one would like to draw (classical) conclusions.



How do we practically recover consistent data from an inconsistent knowledge-base with-
out changing it? The method that we suggest in this paper is to switch into a multi-valued
framework. For this we use special algebraic structures called bilattices. Bilattices were first
proposed by Ginsberg (see [Gi88]) as a basis for a general framework for many applications
such as first-order theorem provers, truth maintenance systems, and implementations of
default inferences. This notion was further developed by Fitting, who used bilattices for
extending some well known logics (like Kleene 3-valued logics; see [Fi90a, Fi94]), and intro-
duced bilattice-based logic programming methods ([Fi89, Fi90b, Fi91, Fi93]). In bilattices
the elements (which are also referred to as “truth values”) are arranged in two partial orders
simultaneously: one, <;, may intuitively be understood as a measure of the degree of truth
that each element represents; the other, <g, describes (again, intuitively) differences in the
amount of information that each element exhibits on the assertions that it is supposed to
represent.1

Just adding truth values is not enough, of course. In order to recover the information
truthfully we have to develop a mechanism that enables paraconsistent inferences. For
this we use an epistemic entailment proposed in [KL92| (denoted here by FEcon) as the
consequence relation of the logic. This relation can be viewed as a kind of “closed world
assumption”, since it considers only the “most consistent” models (mcms) of a given set of
assertions. As was shown in [AA94, AA96], this consequence relation enjoys some appealing
properties, such as being non-monotonic, paraconsistent, and a “plausibility logic” in the
sense of Lehmann [Le92].

By using F.on we would be able to construct subsets of the knowledge-base (called
“support sets”), which are useful means to override the contradictions when attention is
focused on certain (recoverable) formulae. These sets are the candidates to be the recov-
ered knowledge-base. The common property shared by every recovered knowledge-base is
that it considers some contradictory information as useless, and regards all the remaining

information not depending on it as unaffected. This kind of approach is called conservative
(skeptical) [Wa94] or coherent [BCDLP, BDP95].

It should be emphasized at this point that our method, like many other well-known
approaches in the literature of Al, does not act as a complete reasoner. That is, it does
not always propose a unique solution which is the best interpretation of the conflicts in the
knowledge-base. Instead, it suggests several support sets that can be extracted from the
original inconsistent set of assertions. The reasoners are then expected to choose the one
that is most suitable according to their actual epistemic beliefs. In the sequel we provide
some heuristics that might guide them which support set to choose.

Before turning to the technical details, a few words on implementation issues: A major
challenge encountered by every reasoning method is to turn the proposed formalism into a
computationally feasible process. There are many ways of dealing with this problem: The
method proposed in [Le86, Wa94], e.g., is to restrict the representation language, taking

!The idea of using two partial orders may be traced back to Belnap and his well-known four-valued logic
[BeT77a, Be77b], which is exactly the simplest bilattice FOUR (see below). Belnap was also the one who first
proposed FOUR as being useful for computer-based reasoning.



into account the trade-off between expressiveness and efficiency. Here we use a different ap-
proach: for practical implementations we restrict ourselves to a particular family of common
knowledge-bases (called stratified — see Subsection 3.3). We provide an efficient algorithm
for recovering consistent data from this type of knowledge-bases.

The paper is organized as follows: In the next section we describe the framework of the
discussion. We survey some basic notions related to bilattices, define bilattice-based logics,
and present the general kinds of knowledge-bases to be considered in the sequel. Section 3
contains the basic ideas of recovering consistent data from conflicting information. In this
section we also examine some of the properties of the recovered data and propose a method
for producing it in several important cases. In section 4 we consider a special family of
models that is sufficient for the task of recovering consistent data, and in section 5 we show
how to extend the results to first-order logic. In section 6 we summarize the ideas developed
along the paper and provide several examples of their use (the most important of which
seems to be in the area of model-based diagnostic systems). In Section 7 we compare our
approach to other formalisms that deal with inconsistency. Finally, in Section 8 we give
some concluding remarks and discuss directions for further study.

2 Preliminaries

2.1 Bilattices

Definition 2.1 [Gi88] A bilattice is a structure B = (B, <t, <g, ) such that B is a non
empty set containing at least two elements; (B, <;), (B, <) are complete lattices; and — is
a unary operation on B with the following properties:

a) if a <; b, then —a >; —b.

b) if a <g b, then —a < —b.

¢) -—a = a.

Bilattices are therefore algebraic structures that contain two partial orders simultane-
ously, each one reflects a different concept: <; intuitively reflects differences in the “measure
of truth” that the bilattice elements are supposed to represent, while <; might intuitively
be understood as reflecting differences in the amount of knowledge (or in the amount of
information) that each one of these elements exhibits. The basic relation between these
two partial orders is via negation. Note that negation is order preserving w.r.t <g. This
reflects the intuition that while one expects negation to invert the notion of truth, it should
keep the amount of information: we know no more and no less about —p than we know
about p (see [Gi88, p.269] and [Fi90b, p.239] for further discussion).

Notation 2.2 Following Fitting, we shall use A and V for the meet and join which corre-
spond to <;, and ®, @ for the meet and join under <. He suggested to intuitively under-
stand ® and @ as representing the “consensus” and “accept all” operations, respectively.?

ZThese operators would not play a central role in what follows, since we will be most interested in the
“classical” operators A and V. However, since our method allows the usage of these operators without any
further effort (and without increasing the complexity of the methods below — see Proposition 2.22 and its
proof), we shall refer to them as well.



f and t will denote, respectively, the least and the greatest element w.r.t. <;, while | and
T — the least and the greatest element w.r.t. <z. While £ and f may have their usual
intuitive meaning, | and T could be thought of as representing no information and incon-
sistent knowledge, respectively. Obviously, f,¢, L and T are all different (see also Lemma
2.5 below). Finally, unlike in [AA94, AA96], ¥ — ¢ is here just an abbreviation for —¢V ¢.

Definition 2.3

a) [Gi88] A distributive bilattice is a bilattice in which all the (twelve) possible distributive
laws concerning A, V, ®, and @ hold. (i.e.: aA(bVc) = (aAb)V(alc) for every A,V €
{AV,®,8), A#V).

b) [Fi90b] An interlaced bilattice is a bilattice in which each one of A, V, ®, and & is
monotonic with respect to both <; and <g; i.e.:

if a<;b, then a®c<;b®c, and a®c<;bPec.

if a<gb, then anc<gbAc,and avVe<gbVe.

Lemma 2.4 [Fi90b] Every distributive bilattice is also interlaced.

Lemma 2.5 Let B = (B, <, <k, ) be a bilattice, and let a, b be arbitrary elements of B.
a) [Gi88] —|(a/\b) = —|a\/—|b; —|(a\/b) = —|a/\—|b; —|(a®b) = —|a®—|b; —|(a69b) = —a®-b.
b) [Gi88] —f=t;, ~t=f; -L=1; =-T=T.

c) [Fi90b] If B is interlaced, then LAT=f; LVT=t; ft=1; fdt=T.

Definition 2.6 [AA94] Let B = (B, <t, <g, ) be a bilattice.
a) A bifilter is a nonempty set F C B, such that:

aANbeF iff ac F and be F

a®@beF iff ac F and be F
b) A bifilter F is called prime, if it satisfies also:

avbeF iff acF or be F

a@beFiffacForbe F

The notion of a (prime) bifilter is a natural generalization to bilattices of the notion of
a (prime) filter, which is a basic tool in algebraic treatments of logic. The set of designated
values in a multiple-valued semantics of a logic is almost always required to be a filter,
because the algebraic properties of a filter reflect the properties of a consequence relation.
Moreover, the meet operator behaves like conjunction relative to filters. In most cases the
filter which is used for defining a logic is further required to be prime, because only relative
to prime filters the join operator behaves like a disjunction. Relative to bifilters both meet
operators of a bilattice behave like conjunctions, while relative to prime bifilters the join
operators, in addition, behave like disjunctions.

Lemma 2.7 Let F be a bifilter of B. Then:
a) F is upward-closed w.r.t both <; and <.
b) ¢, T € F, while f, 1 ¢ F.

Proof: Claim (a) follows immediately from the definition of F; the first part of (b) follows
from (a), and from the maximality of ¢t and T; the fact that the minimal elements are not



in F follows also from (a), since F#B. O

The following sets are contained in every bifilter:

Definition 2.8
o Di(B)={beB | b>,t} (the designated values w.r.t. < of B).?
e D,(B)={beB | b> T} (the designated values w.r.t. <; of B).

In [AA94] it is shown that in every interlaced bilattice B, Dy (B) = D:(B), and that this

entails that D;(B) itself is a bifilter, and it is the smallest one. This fact makes it a very

natural choice, but it is not the only possible or useful one.*

A property of Dy(B) that will be used later is the following:
Lemma 2.9 Let B=(B, <, <k, ) be a bilattice. For every b€ B, {b, b} CD:(B) iff b=T.
Proof: {b,—b} CD:(B) iff 6>, T and =b>; T, iff 6>, T and b<,—~T=T,iff b=T. O

Definition 2.10 [AA94] A logical bilattice is a pair (B, F), where B is a bilattice, and F
is a prime bifilter. The elements of F are called the designated elements of the bilattice.

Example 2.11 FOUR and NINE (Figure 1) are distributive bilattices (hence also inter-
laced). Each of FOUR, NINE and DEFAULT (Figure 2) is a logical bilattice B with F =
Dg(B). NINE forms also another logical bilattice if we take F =Dy (NINE) U {of,dT,dt}.

k T k T
of ot
f ¢ f”t
df dt
L L
t t

Figure 1: FOUR and NINE

3These elements may be viewed as those that are “at least true” (see [Be77b, p.36]).
“Note that unless otherwise stated, what we do below is independent of the choice of the bifilter.



df dt

Figure 2: DEFAULT

2.2 The logic

Denote by BL the standard propositional language over {A,V, 1, ®, ®,t, f}, and let KB be
a set of formulae over BL. A(KB) denotes the set of all atomic formulae that appear in
some formula of KB, and £L(KB) denotes the set of all literals that appear in some formula

of KB.

Definition 2.12 Let (B, F) be a logical bilattice.

a) A wvaluation v in B is a function that assigns a truth value from B to each atomic
formula, and it maps each constant to its corresponding value in B. Any valuation is
extended to complex formulas in the standard way: v(—v¢) = —w(¢), v(¢¥ * ¢) = v(¢) xv(¢)
for: x € {A,V,®,®}, and v(¢y — ¢) = —w(¢) V v(¢p). We shall sometimes write p:b € v
instead of v(¢) = b.

b) We say that v satisfies ¢ (v =), iff v(¢) € F. ¢ is said to be valid iff every valuation
satisfies it.

¢) A valuation that satisfies every formula in a given set of formulas, KB, is said to be a
model of KB. The set of the models of KB will be denoted mod(KB).

Given KB we shall use the letters M and N (with or without subscripts) to denote models
of KB.

The next notion describes the truth values of B that represent inconsistent beliefs:

Definition 2.13 [AA94, AA96] Let (B, F) be a logical bilattice. A subset Z of B is called
an inconsistency set, if it has the following properties:

a)beTiff -bel.

b)be FNTiffbe Fand -beF

Note that by (b) of Definition 2.13 it must follow that T €Z and t¢ZZ. Hence, by (a), f¢ZT.

Example 2.14 7, ={b | b € F A—b € F} is the minimal inconsistency set in every logical
bilattice. Zo = {b | b = —b} is an inconsistency set in the case that B is interlaced and



F = Dr(B). Note that L ¢ Z; while L € T. Indeed, one of the major considerations
when choosing an inconsistency set is whether to include | in 7 or not. Although in every
bilattice =L = L (see Lemma 2.5), L intuitively reflects no information whatsoever about
the assertion it represents; in particular one might not take such assertions as inconsistent.

In the following discussion we fix some logical bilattice (B, F) as well as an inconsistency
set T.

Notation 2.15 Let M be a valuation on KB. The set of atomic formulae in A(KB)
that are assigned under M values from Z is denoted Incpr(KB), i.e.: Incy(KB) = {p €
A(KB) | M(p)eZ}.

Definition 2.16 Let M, N be two models of a set of formulae, KB.

a) M is more consistent than N (M >.on N) iff Incpr(KB) C Incy(KB).

b) M is a most consistent model of KB (mcm, in short) if there is no other model of KB
which is more consistent than M. The set of the most consistent models of KB will be
denoted con(KB).

c) M is smaller than N with respect to < (M < N) if for any pe A(KB), M(p) < N (p),
and that there is at least one g€ A(KB) s.t. M(q) <x N(q).

d) M is a minimal model of KB, if there is no other model of KB which is smaller than
M. The set of all the minimal models of KB will be denoted min(KB).

Definition 2.17 Let KB be a set of formulae and ¥ a formula. Let S be any set of
valuations. We denote KB =g if each model of KB which is in S, is also a model of .

Some particularly interesting instances of Definition 2.17 are the following;:
e KB ):mod(KB) ¥ if every model of KB is a model of .
e KB ):con(KB) 9 if every mcm of KB is a model of .
e KB ):min(KB) 1 if every minimal model of KB is a model of 9.
We shall abbreviate the above cases by KB =1, KB Econ ¥, and KB =, ¥, respectively.

Example 2.18 Consider the knowledge-base KB={s, —s, r1, r1 ——ra, 79— 1} discussed
in the introduction. Let B=FOUR and F={t, T}. The models of KB are listed in Figure
3.

Model No. | s | 7y | 7o i Model No. | s | Py | 7o i
M, Tt | f gl Mg T|T| L t
M, Tt | f t Mg T|T| L T
M, Tt | f T Mial Mg | T|T | f|LtfT
Ms L Mg | T |t | T | Lt,f,T || MzgL Mo |T|T|T|LtST

Figure 3: The models of KB (Example 2.18)

It follows that con(KB)={M;i, My, M3} provided that | ¢7, and if 1 €Z, then con(KB)=
{M>, M3}. Also, min(KB)={M;, My}, thus KB |=on —72, while KB}~ -7y and KB [Emin

—T9.



2.3 The knowledge-bases

In this subsection we define the kind of knowledge-bases that we are dealing with:

Definition 2.19 A formula v is an extended clause if:
1 is a literal (an atom or a negated atom), or

¥ = ¢V o, where ¢ and ¢ are extended clauses, or

P = ¢ P p, where ¢ and ¢ are extended clauses.

Definition 2.20 A formula % is said to be normalized if it has no subformula of the forms

¢V¢, ¢/\¢7 ¢@¢7 ¢®¢7 or _'_'¢'5
The following lemma is clearly valid in every logical bilattice (B, F):

Lemma 2.21 For every formula 1) there is an equivalent normalized formula 7' such that
for every valuation v, v(¢) € F iff v(¢') € F.

From now on, unless otherwise stated, the knowledge-bases that we shall consider would
be sets of normalized extended-clauses. As the following proposition shows, representing
the formulae in a (normalized) extended clause form does not reduce the generality:

Proposition 2.22 For every formula ) there is a finite set S of normalized extended clauses
such that for every valuation v, v =9 iff v |=S.

Proof: First, translate ¢ into its extended negation normal form, v’, where the negation
operator precedes atomic formulae only. This can be done in every bilattice. The rest of
the proof is by an induction on the structure of %'

If ¢/ =9 AY) or ¥ =] ®), then by induction hypothesis, there exists S; s.t. v = S; iff
vEY! (i=1,2). Take: S=51US,, then: vES iff v =51 and v =Sy, iff v =9,

If ' =4 Vepy or i = 91 @y, then again, there exist Sy = {¢;}7-; and Sy = {p;}71, s.t.
vEY it vES; (i=1,2). Take: S={¢;Vp; | 1<i<n, 1<j<m}. Now, since F is a prime
bifilter, we have:

o If v =19/, then v =19 or v=1). Suppose that v =1v¢]. Then v =¢; for i=1...n. So, for
every 1<i<n and for every 1<j<m: v|=¢;V;, hence v=S5.

o If v £/, then v |41 and v (=), ie. v~ ¢; and v £ ; for some 1< i< n and some
1<j<m. Then, for those ¢ and j, v~ ¢;V;, hence v}£S. O

Here is another useful property of extended clauses over logical bilattices. It will be
used several times in the sequel:

Lemma 2.23 Let 9 be an extended clause over BL, I; (i = 1...n) its literals, and v a
valuation on A(1). Then v =19 iff there is an 1<i<n s.t. v[=L.

Proof: By an induction on the structure of . O

A basic notion in every paraconsistent system is that of consistency. Next, we expand
this notion to the multi-valued case.

5We could define stronger notions of normalized formulae, but this one is sufficient for our needs.



Definition 2.24 Suppose that 7 is an inconsistency set of (B, F).

a) A model M of KB is consistent if Incpr(KB)=0, i.e.: M assigns a consistent truth value
to every member of A(KB).®

b) KB is consistent if it has a consistent model.

Lemma 2.25 KB is consistent (in the sense of Definition 2.24b) iff it is classically consistent
(i.e: has a classical model).

Proof: One direction is obvious. For the other, assume that M is a consistent model of KB.
Then there is no pc A(KB) s.t. both M(p) € F and =M (p) € . Consider the valuation M’
defined for every I € L(KB) as follows: M'(l)=¢ if M(l) € F, and M'(l)= f otherwise. The
consistency assumption entails that whenever M (I) € F for some [ € L(KB), M'(l) € F also.
By Lemma 2.23 it follows that M’ is a (classical) model of KB as well. O

A fundamental property of the knowledge-bases that we consider here is that for every
model there is an mcm which is at least as consistent. In finite knowledge-bases this is triv-
ially the case. The following proposition assures, nevertheless, that in every propositional
knowledge-base this property holds:

Proposition 2.26 (Lin’s Lemma, [Pr91]) Let KB be a (possibly infinite) set of extended
clauses. For every model M of KB there is an mcm M’ of KB s.t. M'>.,, M.

Proof: For the reader’s convenience we repeat the proof given in [Pr91], adjusted to our
framework: Suppose that M is some model of KB, and Syr={N | N € mod(KB), N >.on
M}. Let C C Sy be a chain w.r.t. <.,. We shall show that C is bounded, so by Zorn’s
Lemma, C has a maximal element, which is the required mcm. Indeed, if C is finite we are
done. Otherwise, consider the following sets:

C' =) {Imen(KB) | NeC}

KB'={¢y € KB | A(¥)nC' =0}

Let KB" be a finite subset of KB'. Since KB" is finite and C is a chain, there exists some
N eC st. A(p)NIneny(KB) =0 for every ¢ € KB". Since N is a model of KB and the
reduction of N to A(KB") is a consistent model of KB", it follows that every finite subset
of KB’ is consistent. Hence, by Lemma 2.25 and the classical compactness theorem, KB’
is consistent, and so it has a consistent model, N’. Now, consider the following valuation
defined for every pe A(KB):

R ifpeC’
M'(p) = { N'(p) otherwise.

Clearly, M' >.on N for every N € C. It remains to show that M’ € mod(KB), but this is
obvious, since for every ¥ € KB’ and for every p € A(¢)), p¢ C' hence M'(p) = N'(p), and
so M'(¢)=N'(¢) € F. Also, for every ¢ € KB\ KB’ there is a p € A(¢) s.t. pe C’, thus
M'(p)=T, and by Lemma 2.23, M'(¢) € F. O

6Note that every consistent model of KB is trivially an mcm of KB.
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3 Classification of the atomic formulae

The first step to recover inconsistent situations is to identify the atomic formulae that are
involved in the conflicts. In order to do so, we shall divide the atomic formulae that appear
in the clauses of the knowledge-base into four subsets as follows:

Definition 3.1 Let € £(KB) and denote by [ its complement.

a) If KB=con! and KB =oy, [, then [ is said to be spoiled.

b) If KB conl and KB -.on [, then [ is said to be recoverable.

c) If KBWconl and KB -conl, then [ is said to be incomplete.”

Obviously, for each I € L(KB), either [ is spoiled, or [ is recoverable, or [ is incomplete, or [
is recoverable.

Example 3.2 In the knowledge-base of Example 2.18, s is spoiled, r; and —r, are recov-
erable, and ¢ is incomplete.

3.1 The spoiled literals

We treat first those literals that form, as their name suggests, the “core” of the inconsistency
in KB. As it is shown in the following theorem, those literals are very easy to detect:

Theorem 3.3 The following conditions are equivalent:
a) lis a spoiled literal of KB.

b) M(l) € TN F for every model M of KB.

c) M'(l) € INF for every mem M’ of KB.

d) {I,I} C KB.

e

Proof: Without loss of generality, suppose [ = p, where p € A(KB). The case [ = —p is
proved similarly.

(a) — (¢): If p is spoiled, i.e. KB |.on p and KB .on —p, then for every mecm M’ of
KB, M'(p) € F, and also ~M'(p) = M'(—p) € F. Hence (property (b) in Definition 2.13),
MeInF.

(¢) — (d): Suppose that for every mem M’ of KB, M'(l)eZI N F. By Proposition 2.26 [ is
assigned some inconsistent truth value in every model of KB. Assume that [ € {p, —p}, and
consider the following valuations: vy = {q: T | ¢€ A(KB), ¢ #p}U{p:t}, vy ={q:T | q€
A(KB), q # p} U{p: f}. Since »; is not a model of KB (because p has a consistent value
under v;), 7p€ KB (otherwise, every formula ¢ € KB contains a literal I’ s.t. »(I') € F, and
so ;=1 by Lemma 2.23). Similarly, since v is not a model of KB, pe KB.

(d) — (b): If {I,I} C KB, then obviously, for every model M of KB, M(l) € F, and
—M(l) € F. From property (b) in Definition 2.13, then, M(l)eZ N F.

(b) — (a): If for every model M of KB M(l) € TN F, then M(I{) € F and M(l) € F. Hence
KB}=1 and KB =l which implies that KB |=con! and KB |=con . Thus [ is spoiled. O

"In [KL92] literals of this kind are called “damaged”. We feel that this terminology is somewhat too
strong.
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Corollary 3.4 If 7 =D.(B) then every model of KB assigns T to the spoiled literals of
KB.

Proof: Immediate from (d) of Theorem 3.3, and Lemma 2.9. O
Corollary 3.5 It takes O(|KB|) running time to discover the spoiled literals of KB.

Proof: Immediate from (d) of Theorem 3.3. O

3.2 The recoverable literals and their support sets

The recoverable literals are those that may be viewed as the “robust” part of a given incon-
sistent knowledge-base, since all the mcms “agree” on their validity. As we shall see, each
recoverable literal [ can be associated with a consistent subset, which preserves the informa-
tion about [. In fact, one can view this as a mechanism that “bypasses” the inconsistency,
and generates a reduced supporting knowledge-base for every recoverable literal. In such a
support set the information is consistent with that of the original knowledge-base.

Definition 3.6 A subset KB’ C KB is consistent in KB if KB’ has a consistent model M’,
and there is a (not necessarily consistent) model M of KB s.t. M(p) = M'(p) for every
pc A(KB').

Example 3.7 KB'={q} is a consistent set, which is not consistent in KB ={gq, —¢q}, since
there is no consistent model M’ of KB’ and a model M of KB s.t. M'(q)=M(q).

Definition 3.8 A nonempty subset SS(I) of KB is a support set of a literal [ (or: SS(I)
supports 1), if it is consistent in KB and [ is recoverable in SS(!).

Definition 3.9 If SS(I) supports [ and there is no support set SS’() s.t. SS(I) C SS'(l), then
SS(1) is said to be a mazimal support set of [, or a recovered subset of KB. A knowledge-base
that has a recovered subset is called recoverable.

Example 3.10 Consider again the example given in 2.18 and 3.2: KB={s, —s, 71, P11 —
-7y, o —i}. Here KB is a recoverable knowledge-base, since S={ry, r; — -y, ro—i} is
a maximal support set of both 7; and —ry. Note that S does not support i, since S [~con .

Support sets are our candidates to be the recovered knowledge-base. Hence, our system
recovers knowledge-bases only if there is at least one recoverable literal. This is not a major
drawback, since most knowledge-bases contain some atomic facts, which are recoverable
literals unless they are spoiled. Hence, the case that there are no recoverable literals is not
likely to happen.

In Examples 3.2 and 3.10 every recoverable literal of the knowledge-base has a support
set, as the following theorem shows.

Theorem 3.11 Every recoverable literal has a support set.
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Proof: Without loss of generality, suppose that [ =p, where p€ . A(KB) is recoverable; The
case [ = —p is proved similarly. Let M be an mcm of KB such that M(p) € F\ Z. Let M’
be the reduction of M to A(KB) \ Incp(KB) only. Define:

SS'(p) = {# € KB | A(y) C A(KB) \ Incyr(KB)}

We will show that SS’(p) is a support set of p:

a) Obviously, SS’(p) C KB. Assume for contradiction that SS’(p) is empty. Then every
1 € KB contains some element of Incpr(KB) or its negation. Define: N={r:f | r¢€
A(KB) \ Incpr(KB)} U {s: T € Incpr(KB)}. By Lemma 2.23, N is a model of KB. More-
over, N is an mem of KB since Incy(KB)=Incpy(KB). But pe A(KB) \ Incpyr(KB), hence
N(p)=f; a contradiction to KB F=con p.

b) SS’(p) is a consistent set in KB, since M’ is a consistent model of SS’(p) that is expand-
able to the model M of KB (i.e. Vg€ A(SS'(p)) M'(¢q)=M(q)).

c) S5'(p) Fconp: Suppose that N’ is an mem of SS'(p) and N'(p) ¢ F. Notice that N’ must
be consistent, otherwise N’ <.on, M', and N’ cannot be an mcm of SS’(p). Let N be the
following expansion of N’ to KB: {N'(q) | g€ A(KB)\ Incps(KB)}U{q:T | g€ Incps(KB)}.
Clearly, N is a model of KB (Indeed, if ¢ € SS’(p) then N(¢) = N'(¢) € F, and if
¥ € KB\ SS’(p), then Incpyr(KB) N A(¢) #0, and since N(s)=T for every s € Incp(KB),
then by Lemma 2.23, N (1) € F again). Furthermore, N is an mcm of KB, since Incy(KB) =
Incpr(KB), and M is an mcm of KB. But N(p)=N'(p) ¢ F, so KB {f-con p; a contradiction.
d) SS'(p) Fcon —p: Otherwise, for every mem N of SS'(p), -N(p) = N(—p) € F, and since
we have shown that SS'(p) Fcon p, N(p) € F as well. Thus N(p) € Z for every mem N of
SS'(p), and so SS'(p) cannot be a consistent set. O

As a matter of fact, the relation between recoverable literals and support sets is even
stronger, as the following theorem shows:

Theorem 3.12 If [ is a recoverable literal in KB, then there is no subset in KB that
supports its complement, l.

Proof: Without loss of generality, suppose that [ =p. Assume that there exists SS’' C KB
which is non empty, consistent in KB, and SS’}=,.,, —p. Since SS’ is consistent in KB, it has
a consistent model, M’, which is expandable to a model M of KB (i.e. Vg€.A(SS") M'(q)=
M(q)). M preserves the valuations of M’ on A(SS’), so M(q) = M'(q) ¢ T for every
g€ A(SS"). Let N be an mcm of KB s.t. N >..n M (see Proposition 2.26). Since N > o, M,
N(q) €T for every g € A(SS'). Also, N is an mcm of KB, and p is a recoverable atom of
KB, hence N(p) € F. Let N' be the reduction of N to A(SS’). Since N'is identical to N
on A(SS’), and since N is a model of KB, then: (a) N’ is a model of SS’, (b) N'(q)¢Z for
every g € A(SS’), and (c) N'(p) € F. Form (a) and (b), then, N’ is a consistent model of
SS’, and so from (c), N'(—p) ¢ F (otherwise, N'(p) € F and N'(-p) € F, hence N'(p) €T
and so N’ cannot be consistent). Thus SS’~.on —p; a contradiction. O

The converse of the combination of Theorems 3.11 and 3.12 does not necessarily hold.

In KB={p, -pVgq, —-pV-r, ~qVr} and B= FOUR, for instance, {p, —pV ¢} supports ¢,
and there is no support set for —gq, although ¢ is incomplete. However, there are certain
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important cases in which the converse of 3.11 is true. The following propositions specify
such cases:

Proposition 3.13 Let [ be a literal s.t. KB =, !. [ is recoverable iff it has a support set.

Proof: The “only if” direction was proved in Theorem 3.11. For the “if” direction note
that since [ has a support set, it cannot be spoiled. [ cannot be incomplete either, since
KB =¢on l. This is also the reason why [ cannot be recoverable. The only possibility left,
then, is that [ is recoverable. O

As a corollary of the last proposition we can specify another condition that guarantees
that a given literal is recoverable. This time, however, instead of considering models of the
whole knowledge-base, it is sufficient to check only the models of a subset that supports [:

Corollary 3.14 If a literal [ has a support set SS(I), and SS(I) =1, then [ is recoverable.

Proof: Since |= is monotonic, the assumption that SS(I) =1 implies that KB =1 as well,
and so KB ¢ l. From Proposition 3.13, then, [ is recoverable. O

Note: Demanding that SS(I) =1 in the definition of a support set would have been too
restrictive. By doing so, not every recoverable literal would have been guaranteed to be
associated with a support set. In this case, for instance, p would have been a recoverable
atom in KB = {q, —qVp}. This is actually the only support set of p. But M(q) =T,
M(p)=_1 is a model of KB in which p is not assigned a designated truth value, hence there
is no support set SS(p) C KB s.t. SS(p) =p.

From the last corollary one can deduce another way of assuring that a given literal is
recoverable:

Corollary 3.15 Every literal [ such that {€ KB and [¢ KB is recoverable.

Proof: It is easy to see that if /¢ KB then SS(I)={l} is a support set of [ (not necessarily
maximal). Since SS(I) =1, [ is recoverable by Corollary 3.14. O

Note: The converse of Corollary 3.15 is, of course, not true. To see that, consider, e.g.
KBy ={p, p— q}, or KBy ={p—q, —-p— q}. In these knowledge-bases ¢ is recoverable
although ¢ KB; (i=1,2). Moreover, KB, is an example of a knowledge-base that contains
a recoverable literal although there is no [ € L(KB) s.t. € KB.

Another refinement of Proposition 3.13 is considering only the reductions of the mcms of
KB to the support sets: Suppose that KB’ C KB. Denote by con(KB)| KB’ the reductions
of the mcms of KB to the language of KB’. Then:

Proposition 3.16 [ is recoverable iff it has a support set SS(I) s.t. SS(I) Fcon(xB)yss() !
(see also Definition 2.17).
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Proof: If [ is recoverable, then by Theorem 3.11 it must have a support set SS(I). Also, since
[ is recoverable, it is assigned a designated truth value by every mcm. These values remain
the same when reducing the mcms to the language of SS(I), hence SS(I) Fcon(kB)yss() !-
For the converse, let SS(I) be a support set of I. [ cannot be recoverable because of Theorem
3.12 (since SS(I) supports its complement). [ cannot be spoiled either, since spoiled literals
obviously have no support sets. It remains to show that [ cannot be incomplete, but this
follows from the fact that if [ is incomplete, there would have been an mem M of KB (and
so a model of SS(I)) s.t. M(I)¢ F. In the reduction of M to the language of SS(I), [ is
assigned the same truth value, hence SS(I) con(xB)yss) I O

We have already seen that every recoverable literal is guaranteed to have at least one
support set. Sometimes, however, it might have several support sets. In such a case it
seems reasonable to prefer those that are maximal (w.r.t. containment relation). We next
consider such sets:

Definition 3.17 Let I be a recoverable literal, and suppose that M is an mcm such that
M(l) e F and M(l) ¢Z. The support set of [ that is associated with M is: SSy(l) = {¢ €
KB | A(¢) N Incpr(KB)=0}.8

Proposition 3.18 Every maximal support set of a recoverable literal [ is associated with
some mem M s.t. M(I)¢T.

Proof: Again, we shall prove the claim just for the case {=p, where p€ A(KB). Suppose
that SS’(p) is an arbitrary support set of p. Let N’ be a consistent model of SS’(p), and
N its expansion to the whole KB. Consider any mcm M that satisfies N <.,, M. Since
A(SS'(p)) CA(KB)\Incn(KB) CA(KB)\Incpy(KB), then every formula 3 € SS’(p) consists
only of literals that are assigned consistent truth values by M. Hence SS'(p) C SSum(p).
Since SSum(p) is also a support set, SS’(p) =SSum(p) in case SS’(p) is maximal. O

One can rephrase the last proposition as follows:
Corollary 3.19 A knowledge-base is recoverable iff it has a recoverable literal.

Proof: By Definition 3.9, a recoverable knowledge-base KB must have a maximal support
set, and by Proposition 3.18, such a set is of the form SSps(l) where [ is a recoverable
literal of KB. In the converse direction, let [ be a recoverable literal of KB. In the proof of
Theorem 3.11 we have shown that there is an mem M of KB such that SSp(!) is a support
set of [. By the proof of Proposition 3.18 this support set is contained in some maximal
support set of [ (which is also associated with some mcm of KB), and so KB is a recoverable
knowledge-base. O

The converse of the Proposition 3.18 is not true; not every support set that is associated
with some mcm is necessarily maximal. There may be another mcm whose associated
support set is bigger. To see that, consider KB = {p, p > r, r — s, » — —s}. Both

8This is indeed a support set of I. See the proof of Theorem 3.11.
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M, ={p:t, r:T, s:t} and My={p:t, r:t, s: T} are mcms of KB, but SSy;, (p)={p} C
{p, p—r}=5Sm,(p). In Subsection 3.4 we shall see that SSa, (p) is not only bigger than
SSu, (p), but also preferable according to some other criteria.

Corollary 3.20 For every recoverable literal [ there exists an mecm M of KB in which
M (l)=t, and for which SSp(I) is a maximal support set.

Proof: Suppose that { = p. Consider an mem N of KB s.t. N(p) € F\ Z, and whose
associated support set SSy(p) is maximal (from Proposition 3.18, such an mcm exists). Let
M be the valuation that assigns ¢ to p, and which is identical to N on every element of
A(KB) \ {p}. Suppose that ¢ is an extended clause of KB. If p is a disjunct of 9, then
since M (p) =t, necessarily M () € F by Lemma 2.23. If not, then by Lemma 2.23 again,
there must be some literal of ¢ other than p or —p that is assigned a designated truth value
in N. Such a literal is assigned a designated truth value in M as well, hence M(¢) € F in
this case also. It follows that M is a model of KB. Moreover, since Incyr(KB)=Incy(KB),
M is also an mcm of KB, and SSp(p) = SSn(p). Hence, M and SSps(p) are the required
mcm and support set, respectively. O

3.3 Computing mcms and support sets for stratified knowledge-bases

In general, computing mcms for a given knowledge-base and discovering its recoverable
literals might not be an easy task. Even in the simplest cases, where the bilattice is FOUR
with Z={T, L} and the knowledge-base is consistent, finding the recoverable literals reduces
to the problem of logical entailment. Therefore, in this subsection we confine ourselves to a
special (nevertheless common) family of knowledge-bases, for which we provide an efficient
algorithm that computes their maximal recoverable subsets.

Definition 3.21 Let (B, F) be a finite logical bilattice with an inconsistency set 7.

a) Denote: Tr={b|be FNI}, Te={b|be F\I}, T;={b|-be F\I}.

b) Let b, b:, and by denote the k-meet of all the elements of 7T, 7Tz, and T, respectively.
(Ie.: b,=Q{b | b€ T,} for z€{T, f,t}). We also denote by b, an arbitrary element which
is k-minimal among the consistent elements of B.

Intuitively, bt,b;, by and b, are four elements of B which strongly resemble in their
properties to the four elements of FOUR. They adequately represent the main four types
of the elements of (B, F).

Example 3.22 If B=FOUR and T ={T}, then bv+=T, by=¢, by=f, and b, = L. If
B=DEFAULT and IT={b | b#—b}, then bt =T, b;=t, by=f, and b, is an element of the
set {dt,df}. f B=NINE, F={b | b>rdt}, and ZT={b | b>dT}, then b+ =dT, b, =dt,
bf=df, and b, = 1.

Lemmma 3.23 For every finite logical bilattice (B, F), bt € TT, b € T¢, and by € Ty. Also,

br=®{b| b, beF}, b,={b|beF}, by=®{b| "bcF}, and by=—b;. Also, b =L iff
1¢T.
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Proof: Let by =®{b | bc F}. We show that b; =bx, leaving the other parts to the reader.
Obviously, b € F. We show that bx ¢Z. Assume otherwise. Then —bx € F as well. Since
te F then t >, br. Thus f=-t >} -br € F, and so f € F, contradicting Lemma 2.7b. It
follows that br € 7;. Hence bx >} b;. Since obviously bx <g b, then br—25;. O

Definition 3.24 KB, — the dilution of KB w.r.t. a partial valuation v — is constructed
from KB by the following transformations:

1. Deleting every ¢ € KB s.t. v(¢) € F (in other words, 9 is deleted if it has a literal
that is assigned a designated value by v),

2. Removing from what is left every occurrence of a literal [ s.t. v(I) is defined and

v(l)gF.

Definition 3.25 A knowledge-base KB is called stratified, if there is a set of “stratifica-
tions” KBy= KB, KBy, ..., KB, =10, so that for every 0<¢<n.l1 there is a p€ A(KB;)
s.t.:

a) Either p€ KB; (and then p is called a positive fact), or —p € KB; (and then p is a negative
fact of KB;).

b) KB,y is a dilution of KB; w.r.t. the partial valuation p:b; if p is a positive fact of KB;,
p:bs if p is a negative fact of KB;, and p: b if p is both a positive and a negative fact of
KB;. ®

Example 3.26 Consider again the knowledge-base KB of Examples 2.18, 3.2 and 3.10. A
possible stratification for KB is KBy = {s, —s, 71, 71 — =P, 7a — i}, KBy ={r1, 11 —
72, Tg—)i}, KBZZ{_!TZ, 79 —)’I,}, and KB;:,:@

Note: In all the examples given here (see especially those of Section 6), as well as in most
of the known examples of the literature, the knowledge-bases involved are stratified.

The algorithm given in Figure 4 can be applied for checking whether a knowledge-base
is stratified, and for recovering stratified knowledge-bases (see Corollary 3.29).

Notes:

1. The process of Figure 4 may produce several valuations for KB, each of which is deter-
mined by a sequence of the picked atomic formulae {po, p1, ..., pn}. For abbreviation
we shall just write & when referring to arbitrary valuation produced by the algorithm,
instead of ®(po, p1,--.,Pn)-

2. By Theorem 3.3, if ®;(I)=b+ then [ is a spoiled literal of KB;. Similarly, by Corollary
3.15 if ®;(I) = b; then [ is a recoverable literal of KB;, and if ®;(I) = b; then [ is
recoverable in KB;. By Theorem 3.28 below, if ®;(I)=b then [ is incomplete in KB,;.

®Note that while B, F, and T affect the particular values of b, b, and bs, they do not determine whether
KB is stratified.
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i=0; KBy=KB;
while (KB; #0) {
if (Gpe A(KB;) s.t. p€ KB; and —p€ KB;) then ®;(p)=b;
else if (Ip€ A(KB;) s.t. p€ KB;) then ®;(p)=b;;
else if (Ip€ A(KB;) s.t. -p€ KB;) then ®;(p)=by;
else print “KB is not stratified” and exit;
KB;11=(KB;)s;; /*** dilution ***/
Vpe A(KB;)\ A(KBj;1) s.t. p wasn’t picked in KB;, ®;(p)=b,; /*** filling ***/
t++;
}

output: ¢ = U ®;;
0<; <ill

Figure 4: An algorithm for recovering stratified knowledge-bases

3. It is possible to assign any other truth value to the atoms that are assigned b, (during
the “filling” process, see line 8 of Figure 4), but if this value is inconsistent, then &
cannot be an mem of KB (see the proof of Theorem 3.28). Also, if this value is not
1, then ® cannot be minimal w.r.t. <j (see Proposition 3.32). The value b, assures
that ® would be a <p-minimal mcm (see Section 4).

Example 3.27 Consider the set KB={p, pVgq, —pVr, =pV-r, =pV-u, -pV-v, uVv}
where B=FOUR and Z={T}. Then bt =T, b;=t, by =f, and b, = L. Our algorithm
produces two mcms of KB, denoted ®, and ®:

®,(p)=t, Bu(q)=1L, Bu(r)=T, B(u)=f, B(v)=T,

@b(p):t, <I>b(q):J_, <I>b(r):T, <I>b(u):T, <I>b('v):f.

Note that in this case there are other mcms of KB (such as {p: T,q:L,r: L ju:t,v:1}),
but neither of the other mcms can be used for constructing (maximal) support sets in KB,

since each one of them assigns an inconsistent truth value to p, which is the only recoverable
literal of KB. Theorems 3.28 and 3.30 show that this holds in general.

Figure 5 illustrates the processing of the algorithm for KB and its recoverable literal, p.

Theorem 3.28 The process of Figure 4 checks whether a given knowledge-base KB is
stratified. If KB is not stratified it exits; Otherwise it halts and produces an mcm of KB.

Proof: To see the first part of the theorem, note that if a knowledge-base is stratified then
any order in which the facts are chosen determines a stratification. This is so since dilution
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KBo={p, pVq, -pVr, =pV-r, =pV-u, —-pV-w, uVuv}
Step 0: pick p. set ®o(p)=t and ®o(g)=_L.

KBy ={r, -r, ~u, -, uVv}
Step 1: pick r. set ®;(r)=T.

KBy={-u, —wv, uVv}

/\

Step 2: pick u. set ®y,(u)=f. pick v. set ®qp(v)=7f.
KB3,={-w, v} KBgpy={—u, u}
Step 3: pick v. set ®3,(v)=T pick u. set ®gp(u)=T
Step 4: KBu4,=0 KB4y, =0
SSa(p)={p, PVq, "pV-u} SSy(p)={p, pVq, ~pPV-}

Figure 5: Construction of recovered subsets for KB (Example 3.27)
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does not change facts; A fact (positive, negative, or both) of a certain stratification level
remains a fact in the successive levels unless it is used for the next dilution. Therefore, if
there are two facts p; and p, in some KB;, there is a stratification KB;, KB; 1= (KB;)p,,,
..., KB, =0 iff there is a stratification KB;, KB;y1 = (KB;)pyby, - - -1 KBm =0. Therefore,
the algorithm fails in constructing a stratification for KB iff there is no possible way of
providing such a stratification, and so the algorithm halts without a valuation for A(KB)
iff KB is not stratified. O

Suppose, next, that KB is stratified.
Lemma 3.28a: The algorithm constructs well defined valuations.

Proof: We have to show that the process terminates after a finite number of steps (the
minimal n, s.t. KB, =0), and the result is a valuation ® for KB. Indeed, a picked atom
p € A(KB;) does not appear in any one of KB; for j >1i. Also, there may be other atoms
that are eliminated in the dilutions of KB;. Every one of these atomic formulae is assigned
its (unique) truth value at the ¢-th step, and so |A(KB;41)| < |A(KB;)| L 1. On the other
hand, an atomic formula does not appear in A(KB;;1) only if it is assigned a value of
{bT,b:,bs,b1} in the i-th step. Therefore, the process terminates after |A(KB)| steps at
the most and assigns a unique truth value to every member of A(KB).

Lemma 3.28b: Every valuation ® produced by the algorithm is a model of KB.

Proof: Let ¢ be an extended clause that appears in KB. By Definition 3.24 and the algo-
rithm of Figure 4 it is obvious that 1 is eliminated from KB;.; during the transformation
from KB; to KB; iff (at least) one of its literals [ is assigned a designated truth value by ®;
(note that a formula cannot be eliminated by sequentially removing every literal according
to (2) of Definition 3.24, since the last literal left must be assigned a designated value).
Since ®(I) = ®;(I), ® assigns a designated truth value to at least one of the literals that
appear in ¢¥. By Lemma 2.23, then, ®(¢) € F.

Lemma 3.28c: Every valuation ¢ produced by the algorithm is a most consistent model

of KB.

Proof: The proof is by an induction on the number of steps (n) that are required to create
®. If n=0 then KB; =10, so there is only the initial step in which &, might assign a value
from 7 only to a spoiled literal, so & must be most consistent. Suppose now that it takes
n>1 steps to create ®. Then:

(1):  Incg(KB) = |J Incs,(KB;) = Incg,(KB) U Incg!(KB;)
0<i<n
where &' = U ®;. Now, let M be any mcm of KB.
1<i<n
(2):  Incy(KB) = {pe A(KB)\A(KB,) | M(p) eI} U {pc A(KB,) | M(p) eI}
= {pe A(KB)\A(KB:) | M(p) €T} U Incs;(KB,)
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By its definition, ®¢ may assign an inconsistent truth value only to a spoiled literal of KB.
By Theorem 3.3b this literal is assigned an inconsistent value in every mcm of KB, espe-
cially M, therefore:

(3):  Incs,(KB) C {pc A(KB)\A(KB,) | M(p)eT}

e Suppose first that M is a model of KB;. Since the creation of ®' requires only n_l1 steps,
then by the induction hypothesis &' is an mem of KB;. In particular, either Incg:(KBi)
and Incpr(KBi) are incomparable w.r.t. containment relation, or else:

(4):  Ince/(KB1) C Incyr(KBs)

By (1) — (4), either Incs(KB) and Incpyr(KB) are incomparable, or Incg (KB) C Incar(KB).
Hence @ is an mcm of KB.

e If M is not a model of KBy, then there is a 9; € KBy s.t. M(¢1) ¢ F. Since M is a
model of KB, then by Lemma 2.23, there is a ¢ € KB and [ € L(¢) s.t. M(l) € F, and
{1} U L(¢1) C L(9). Obviously, I € A(KB)\ . A(KB;). But then ®¢(I) ¢ F (otherwise 9 is
eliminated in the dilution, and so v¢; ¢ KB;). Moreover, ®q() € F, since if ®¢(I)  F then
necessarily ®o(l)=b_, and this happens only if there is a literal I’ € L(%) s.t. ®o(l') € F, and
in this case 9 is eliminated in the dilution, i.e. 9 ¢ KB;. Therefore, ®o(I) € F, ®o(l) ¢ F,
and by the definition of &g, [ was picked by ®¢. Since ®¢(I) € F, [ cannot be spoiled. Also,
KB is stratified, thus I € KBy, and so it must be a recoverable literal of KBy, i.e.: it is
recoverable literal of KB. Now, since M is an mem of KB, M(I) € F. But we have shown
that M(l) € F as well, hence M(l) € T while by Lemma 3.23 ®¢(l) =b; ¢ Z. Therefore
Incpy(KB) € Incg (KB), and we are done.

This proves Theorem 3.28. O

Corollary 3.29 Suppose that KB is stratified. Then the algorithm above provides a sup-
port set for every recoverable literal of KB that is not assigned the value b7.

Proof: By Theorem 3.28, every valuation & that is generated by the algorithm is an mcm
of KB. If a recoverable literal  of KB was not assigned the value b, then ®(I) ¢Z. Hence,
by the proof of Theorem 3.11, SSg(!) is a support set of [. O

Theorem 3.30 Let ® be a valuation produced by the algorithm for stratified KB, and let
[ be a recoverable literal of KB that is not assigned the value b1 by ®. Then SSg(!) is a
maximal support set of [.

Proof: By Corollary 3.29, SSg(!) is a support set of [. It remains to show that SSg({) is
also a mazimal set with this property. Suppose otherwise. Then by Proposition 3.18 there
is an mem M of KB s.t. SS¢(l) CSSm(l). Hence Incy (KB)# Incpr(KB). Since by Theorem
3.28 & is also an mcm of KB, there is a pc A(KB) s.t. ®(p)#bt while M(p)€Z. Consider
some 9 € KB s.t. p€ A(¢). Since M (p) €T then 9 is not an element of SSps(I). Now, since
Y& SSm(l), ¥ ¢ SSa (1) either. Therefore there is a ¢ € A(¢) s.t. ®(q)=>br1. By the definition
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of ® this is possible only if there is a stratification Sy,...,S, of S and an index 1<i<mn
s.t. ¢,—¢€S;. Therefore ®(p)#b, (Otherwise, p as well as all the other elements of A(%))
are diluted from S; for some j <, and so ¢ ¢ A(S;)). It follows that either ®(p)=b; or
®(p)=by, and therefore either p or —p (but not both) is a (positive or negative) fact of some
stratification level Sy of S. Hence there is some ¢ € S s.t. p€.A(¢) and A($) NInce (KB)=0
(Otherwise, if there is some r € A(¢) s.t. ®(r) =br, then ¢ and its atoms are diluted in
some stage before stage k, and so p cannot be a fact of Si). Therefore ¢ € SSg () while
¢SS (l) — a contradiction. O

Example 3.31 Consider again Figure 5. SS,(p) and SSi(p) are the recovered support sets
produced by the algorithm for the recoverable literal p of KB. Both are maximal.

Next we consider another important property of ® (see Corollary 3.33 below):

Proposition 3.32 Let KB be stratified. In every logical bilattice where b, = 1, & is
k-minimal (® € min(KB); Recall Definition 2.16(d)).

Proof: The proof is by an induction on the number of steps required to create ®:

n=0: ®g may assign to a spoiled literal of KB the value bt, which is the only k-minimal
possible value (see Theorem 3.3b). The same is true for any recoverable literal that is
assigned b;, and for a complement of recoverable literal that is assigned b;. It is also
obviously true for all the literals that are assigned L.

n>1: Let M be a model of KB, and suppose for a contradiction that M <z ®. By the
induction hypothesis, ®; is a k-minimal model of KB;. If M is a model of KB; then there
is a ¢ € A(KB;) s.t. M(q) £r ®1(q) and so M £ ®. The other possibility is that M is
not a model of KB;. In this case there must be a 9, € KB; s.t. M(¢1) ¢ F. Since M is
a model of KB, then by Lemma 2.23 there is a ¥ € KB and an [ € L(¢) s.t. M(l) € F,
and {I} U L(¢1) CL(%). But then &(I) ¢ F (Otherwise, ¢ is eliminated in the dilution of
KB and so ¢ ¢ KBy), while M(l) € . Since F is upward closed w.r.t. <g it follows that
M(1) £, ®(1), therefore M £1 ® — a contradiction again. O

Corollary 3.33 Let KB be stratified. In every logical bilattice for which b, = 1, ® is
k-minimal among the mcms of KB (see Section 4 for the importance of this).

Proof: By Theorem 3.28, ® € con(KB). Since b; = L then by Proposition 3.32, & €
min(KB). Therefore ® is a <z-minimal model among the mcms of KB. O

Next we consider the complexity of the algorithm. As it is shown below, this is a
particularly efficient mechanism for recovering stratified knowledge-bases:

Proposition 3.34 It takes O(|KB| - |A(KB)|) running time to check whether a given
knowledge-base is stratified, and if so, this is also the time required to recover it (i.e.,
to provide a recoverable subset of KB).

Proof: Computing stage ¢ of the algorithm requires only O(|KB;|) running time. Since
there are O(]A(KB)|) stages at the most, the complexity of the whole process is no more
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than O(|KB| - |A(KB)|). Now, since we have already shown that for stratified knowledge-
bases the algorithm generates mcms, this is also the time required to recover KB. O

Another method of recovering inconsistent knowledge-bases is mentioned at the end of
section 6.2.

3.4 Choosing the preferred support sets

As we have already noted, the support sets may be viewed as representing possible consis-
tent interpretations (states) of the world that is inconsistently described in KB. Since in
general there are several support sets that can be produced from a polluted knowledge-base,
one has to develop means that would guide one to an interpretation that is most likely to
be the accurate description. In this section we suggest some heuristics for choosing the
preferred support set.

A first observation is that when there are two support sets SS; and SS; s.t. SS; CSSs, it
seems reasonable to prefer the latter, i.e. to choose the maximal support w.r.t. containment
relation (cf. Propositions 3.18 and 4.5). Still, in many cases there are several such sets.
Here are some other criteria that might be useful for a proper choice of the preferred set:

A. Maximal information considerations
A possible approach for taking precedences among the support sets is to define some
quantitative estimation on the plausibility of each set. Lozinskii [Lo94], for example,
takes the quantity of semantic information to be the criteria for such estimations.'® The
quantity of information in a set S of classical formulae is defined there to be I(S) =
|A(S)| L logy |mod(MCS(S))| where mod(MCS(S)) is the set of all the models of the maxi-
mal consistent subsets of S (see [Lo94] for a detailed discussion and justifications for taking
this formula as representing information). A possible analogue in the case of a logical bilat-
tice (B, F) may be I1(S)=|A(S)| L logy | [mod(MCS(S))|. Since we consider the mcms as
the most relevant interpretations for the recovery process, we here use a different definition:
I,(S) = |A(S)| L log, |con(MCS(S))|, where: c=|{be B | be F\IV -be F\TI} (see
Proposition 3.35 below for some justifications for taking this particular ¢ as the base of the
logarithm). Since ¢ > 2 (always {t, f} C {be F\I V -beF \1}), I5(S) is well defined.

A possible strategy, then, would prefer support sets with maximal information. Since
support sets are consistent, MCS(S) is just {S}, so I;(S) and I5(S) reduce to |A(S)| L
logy| | |mod(S)| and |A(S)| L log, [con(S)|, respectively.

The next proposition shows that both I;(S) and I(S) accord with Lozinskii’s intuition
regarding the notion of information (cf. [Lo94, Theorem 3.1]):

Proposition 3.35
a) An empty set contains no information; I (0) =I5 (0) =0.
b) A set S consisting of complementary literals p, —p for every p € A(S) contains no semantic

19As a matter of fact,the quantitative approach is used in [Lo94] for a slightly different goal: giving
semantics to inconsistent systems.
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information.

c¢) If S is a consistent set of formulae, and 9 is a formulas.t. A(¢) C.A(S) and S =19, then
Ii(S)=1(SU{y}) and I(S)=L(SU{¥}).

d) If S is a consistent set of formulae, and v is a consistent formula s.t. A(¢) C.A(S) and
SU{¢} is inconsistent, then I3(S) > I,(SU{¥}).

e) If S has only one model, then I;(S)=0; If S is consistent and has one mcm, then I5(S5)

is maximal. 1!

Proof:

a) M={p:T | pe A(S)} is a model of every set S, hence |mod(MCS(S))|>1. On the other
hand, if S =0 then S itself is the only most consistent subset, hence: |mod(MCS(S))|=
|mod(S)| < |B|AS) = 1. Thus, |mod(MCS(S))| = |mod(S)| = 1, and so, by the defini-
tion of I;, I;(S) = 0. Regarding I, since the set of the mcms of S consists of minimal
elements of a nonempty set (that of the models of S), then |con(S)| > 1. On the other
hand, we have shown that whenever S =0, we have that |con(S)| < |mod(S)|=1. Thus
|con(MCS(S))|=|con(S)|=1, and so I,=0.

b) Consider S ={p;, -p; | 1 <i<n}. This particular S has 2" maximal consistent subsets,
each one has |F|™ models, and ()™ mcms (since there is no b€ B such that both b€ 7\ T
and b€ F \ T, every p; in a possible subset can be assigned exactly § different values from
F\I). Hence, I1(S)=n L logy s 2"|F|"=0, and I5(S)=n L log.2"(5)"=0.

c) Since A(¢) C A(S), then A(SU{9})=A(S). Also, the assumptions that S is consis-
tent and that S =19 easily imply that mod(MCS(S))=mod(MCS(SU{¢})) and con(S) =
con(SU{y}). Thus, I;(S)=1(SU{y}) and I,(S)=L(SU{y}).

d) The proof in [Lo94, Theorem 3.1, part (v)] is suitable for the present case as well. We
repeat the proof adjusted to our notations: S is a maximal consistent subset of S U {¢},
and since ¥ ¢ S (S U {9} is inconsistent, while S is not), there must be another maximal
consistent subset S'C S U {9} s.t. ¥ €S5’. S and S’ have no mcm in common, since such
a model would have been a consistent model (as a model of S), which is also a model of

the inconsistent set S U {¢}. Hence con(MCS(S))=con(S) C con(MCS(SU{})), and so
1,(8)> L (SU{¢}).

e) If S has only one model, this model must assign T to every element of A(S) (this is a
model of every S). Hence, using parts (b) and (d) of Theorem 3.3, S must be of the form
{p,—p | p€.A(S)}. Thus, by part (b), I;(S)=0. On the other hand, if S is consistent and
has exactly one mcm, then I5(S)=|.A(S)|, which is the maximal possible value of I5(S) for
every set 5. O

B. Largest size approach

"1n this particular case I1(S) and Lozinskii’s I(S) do not behave in the same way (cf. [Lo94, Theorem
3.1, part vi]). The difference is due to the nature of logical bilattices as multiple-valued: If S has only one
(degenerate) model in a logical bilattice, this single model is {p : T | p€ A(S)}. This model actually tells us
nothing, hence S contains no meaningful information. However, this is certainly not the case for consistent
sets that have one mcm. In this case the mcm is meaningful, and the fact that there are no other possible
models just increases the validity of that single model as well as its respective semantic information about

S.
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Another reasonable approach is to prefer those support sets with the largest size. Accord-
ing to this method some prioritization formula f is defined s.t. f(S1) > f(S2) whenever
|S1] > |S2|. The intuition behind this is that the larger the size of the support set, the
stronger similarity it has with the original knowledge-base. An example of the use of this
approach is the heuristic of weighted maximal consistent subsets in [Lo94].

C. Maximal support consideration

Since support sets should support recoverable literals, and since the truth values of the re-
coverable literals are the ones which are most likely to be recovered truthfully (i.e., as they
were before polluting the data in KB), then a plausible system may prefer those support
sets that simultaneously support as much recoverable literals as possible.

D. Prioritizations on the domain of discourse

There might be cases in which the reasoner has reasons to believe that some assertions are
more trustable than others (for example, when there are different resources with different
reliability, or when one receives several news about something that has happened, and one
tends to believe that the latter news are more accurate). In such situations the reasoner
might prioritize the atomic formulae, and choose the support set whose literal consequences
are the greatest with respect to his ordering. For example, suppose that a, b, ¢,d and e are
the prioritizations of some reasoner in a descending order, and that in this order every atom
is considered equal to its negation. Then a subset that entails a, —¢, and d is preferable to
a subset that entails, say, a,d and e.!?

We shall return to the above methods of choosing the best support set in section 6,
when we demonstrate these considerations on some examples.

3.5 The “absolutely recoverable” formulae

Although there must be a maximal support set for every recoverable literal, there is no
guarantee that all the recoverable literals would be part of the same recovered subset of KB
(that is, they may not all be simultaneously recovered). In particular, not every recoverable
literal must be a part of every recovered knowledge-base. In this subsection we consider
some conditions that assure that a formula 1 would be a member of every recovered subset

of KB.

Definition 3.36 A formula ¢ € KB is said to be absolutely recoverable if ¢ is a member of
every possible recovered subset of KB.

Proposition 3.37 Let 3 be a formula of a recoverable knowledge-base KB. If for every
mcm M of KB, and for every p€ A(v), M(p) ¢, then 9 is absolutely recoverable.

Proof: If for every mem M and for every pe A(¢), M(p) ¢Z, then in particular ¥ € SSpr(l)
for every mem M and for every recoverable literal [ s.t. M (I) T (such a literal exists, since

12This approach has often been considered in the literature. One should note, however, that the use of
this criterion for making precedences among sets is highly arguable. In the example considered above, for
instance, it is not clear which of the two sets {a,d} and {b, c} should be preferred.
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KB is recoverable; see Corollary 3.19). By Proposition 3.18, every recovered knowledge-base
is of the form SSpr(1), hence 4 is absolutely recoverable. O

Corollary 3.38 Every element of the set {¢) € KB | V(1€ L(¢)) [¢ L(KB)} is an absolutely
recoverable formula.

Proof: Suppose that ¢'c {vy€ KB | V(I L(v)) I¢ L(KB)}. By the previous proposition it
is sufficient to show that every mcm M assigns to every p € A(¢') consistent truth values.
Suppose otherwise. Then there is an mem M’ and a p' € A(¢') s.t. M'(p’) € Z. Consider
the valuation N', defined as follows:

M'(q)  if q#p
N'(g =St if g=p', p'€ L(KB), and —p' ¢ L(KB)
f if g=p', p’¢ L(KB), and —p' € L(KB)

It is easy to verify that for every ¥ € KB, N'(¢) € F whenever M'(¢) € F, thus N' is a
model of KB. But Incy:(KB)=Incp(KB)U{p'}, thus N’ is more consistent than M’ — a
contradiction. O

Corollary 3.39 Let KB; and KB; be two subsets of KB, s.t. KB = KB; U KBy, and
A(KB1) N A(KB3)=0 (in such a case we say that KB; and KB, form a partition of KB).
If KB; for i=1 or i=2 is consistent, than every 1 € KB; is absolutely recoverable.

Proof: Suppose that KB is consistent, and 1) € KB;. Let C be a consistent model of KB;.
Again, in order to prove that 1 is absolutely recoverable, it is sufficient to show that for
every mcm M of KB, and for every p€ A(¢), M(p) ¢Z. Otherwise, let M’ be an mcm of
KB and let p' € A(¢¥) s.t. M'(p') € Z. Consider the following valuation, defined for every
g€ A(KB) as follows:
N(g) = { C(q) if g A(KB)
M'(q) if g€ A(KBy)

N is a model of KB, since by using the fact that KB; (i=1,2) form a partition on KB, it
is easy to see that for every formula ¢ € KB, N(¢)=C(¢) if ¢ € KBy, and N(¢)=M'(¢) if
¢ € KBy. Moreover, Incy(KB) = Incpyr/(KBs) C {p'} U Incpp(KB3) C Incpyp(KB), thus N
is more consistent than M’ — a contradiction. O

Example 3.40 Consider again the example given in Examples 2.18, 3.2, 3.10, and 3.26.
Here, KBy ={s, —s} and KBy ={r1, r1 — —ry,ry — i} form a partition of KB, and KB,
is consistent. Hence, by Corollary 3.39, every 9 € KBy is absolutely recoverable (ry — ¢ is
absolutely recoverable by Corollary 3.38 as well).

3.6 The incomplete literals

The last class of literals according to the =..,-categorization consists of those literals that
a consistent truth value cannot be reliably attached to them (at least, not according to
the most consistent models of the knowledge-base). The following theorem strengthens this
intuition:

26



Theorem 3.41 [ is an incomplete literal in KB iff there exist mcms M; and M; such that
Ml(l) = f and Mz(l) =1t.

Proof: The “if” direction follows directly from the definition of incomplete literals. For
the other direction, suppose that p is the atomic part of [. Since [ is incomplete iff p is
incomplete, it suffices to prove the claim for p. Now, p is incomplete, so KB (.., p and
KB Wcon —p. Thus, there are mems N; and Ny s.t. Ni(p) ¢ F and Na(—p) ¢ F. Suppose
that M; is a valuation that assigns f to p and is equal to N; for all the other elements
of A(KB). Let M, be a valuation that assigns ¢ to p and is equal to Ny for all the other
members of A(KB). Like in the proof of Corollary 3.20, one can easily show that since Ny
and N, are mcms of KB, M; and M, are also mcms of KB. O

We conclude this subsection with some observations related to incomplete literals:

e The existence of a support set for an incomplete literal is not assured. Consider for
example KB = {p, —p, pVq}. Here ¢ is incomplete without any support set. For
another example, consider again Example 3.10. The incomplete literal ¢ is a member
of a support set (S), but this set, and any other support set in KB, do not support 3.

e Even if there are support sets for an incomplete literal, there can be other subsets that
support its negation: For example, in KB={p, —pVq, r, -rV—q} with B=FOUR, q
is incomplete. It has a support set: SS(q)={p, —pVq}, but there is a support set for
—q as well: SS(—g)={r, -rV—g}.

e Consider KB = {pVgq, —pV—q}. Here both p and ¢ are incomplete although KB is
a consistent set. Intuitively, this is so because there isn’t enough data in KB about
either p or ¢. Indeed, this knowledge-base has two classical models ({p} and {¢}), both
of which are minimal. Without further information there is no way to choose between
the two, and so the truth values of the atoms cannot be recovered safely. Until such
new information arrives, the two atoms should therefore be considered problematic
because of a lack of information. These particular two models, and the fact that we
cannot choose between them, exactly reflect the information which is contained in
this KB.

4 The minimal mems of KB

In this section we show that if one is interested only in recovering a finite inconsistent
knowledge-base (that is, discovering the spoiled, incomplete, and recoverable literals of
KB, as well as the corresponding support sets), then it is sufficient to consider only the
<g-minimal models among the most consistent models of KB (minimal mcms of KB, in
short).

Notation 4.1
a) The set of the minimal mcms of KB will be denoted henceforth by Q(KB), or just .
b) Denote KB =q ¢ if every minimal mcm of KB is a model of 9 (see Definition 2.17).
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Abstractly, we can view the construction of € as a composition of the two consequence
relations “F..,” and “Fp,i,” . First, we confine ourselves to the mcms of KB by using Fcon,
then we minimize the valuations that we have by using }=,,;,. This process is a special case
of what is called “stratification” in [BS88].13

Lemma 4.2 Let KB be a finite knowledge-base. For every mecm M of KB there is an
NeQ(KB) s.t. N<;pM and Incy(KB)=Incpy(KB).

Proof: Suppose that M is an mcm of KB. Since KB is finite, there is an N € Q(KB) s.t.
N < M. Suppose that Incy(KB) # Incpr(KB). Since both M and N are mcms of KB, there
are q1, g2 € A(KB) s.t. ¢1 € Incy(KB) \ Incayr(KB) and ¢z € Incpr(KB) \ Incy (KB). Assume
that N(q1) € F. Then since N(q1) € Z, N(—q1) € F as well. Thus M(q1) > N(q1) € F
and M(—q1) >k N(—q1) € F, so M(q1) € T — a contradiction. Hence N(g;) ¢ F. Similarly,
N(—¢1)¢F. Now, consider the valuation N’ defined for every p€ A(KB) as follows:

/ . t if p=q
N(p) = { N(p) otherwise.

By an induction on the structure of a formula ¢ € KB is it easy to verify (using Lemma
2.23) that N'(¢) € F whenever N (1) € F, and so N’ is a model of KB. But Incy(KB) =
Incy(KB)U{q1}, therefore N’ >.., N, and so N cannot be an mem of KB, and in particular
N ¢Q(KB) — a contradiction. O

Theorem 4.3 Let KB be a finite knowledge-base and 1 an extended clause. Then KB =,
Y iff KBEq.

Proof: One direction is immediate. For the other, suppose that KB [~.,, ¥. Then there
is an mem M of KB s.t. M(¢) ¢ F. By Lemma 2.23, Vi€ L(¢) M(I) ¢ F. By Lemma 4.2
AN € Q(KB) s.t. N <p M. Since F is upward-closed w.r.t. <g, Vl€ L(¢)) N(I)¢F as well.
Therefore KB l-q 9. O

Corollary 4.4 Let KB be a finite set of normalized extended clauses in BL. Then:

a) [ is a spoiled literal in KB iff for every model M € Q(KB), M(l)€F and M(l)€ F.

b) [ is a recoverable literal in KB iff for every M € Q(KB), M(l) € F, and there exists an
NeQ(KB)st. N)eF\T.

c) [ is an incomplete literal in KB iff there are My, M, € Q(KB) s.t. M;(l) ¢ F and
M) ¢ F.

Proof: Immediate from Definition 3.1 and Theorem 4.4 O

Another result related to minimal mcms is the following refinement of Theorem 3.18.
The outcome is a characterization of the maximal support sets in terms of minimal mcms:

Proposition 4.5 Every maximal support set of a recoverable literal [ in a finite knowledge-
base is associated with some minimal mem M eQ s.t. M(I)¢T.

13Which is, of course, a completely different notion than that of Definition 3.25.
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Proof: Follows easily from Proposition 3.18 and Lemma 4.2. O

The next result, which is the analogue of Proposition 3.37 for minimal mcms, shows
that €2 might as well be used in order to discover the absolutely recoverable formulae of

KB:

Corollary 4.6 Let 1 be a formula of a finite recoverable KB. If for every M € Q(KB), and
for every pc A(v), M(p) ¢Z, then 9 is absolutely recoverable.

Proof: Immediate from Proposition 4.5 and Corollary 3.19. O

The results of this section show the advantage of using bilattices and not just lattices:
While the partial order <; is used to determine the semantics of the classical connectives,
< can be used to considerably reduce the number of the models that should be taken into
account!

5 Extensions to first-order logic

So far we have considered only propositional knowledge-bases. However, it is possible to di-
rectly expand the present discussion to any first-order knowledge-bases provided that there
are no quantifiers within the clauses; Each extended clause that contains variables is con-
sidered as universally quantified. Consequently, a knowledge-base containing non-grounded
formula, 1, will be viewed as representing the corresponding set of ground formulae formed
by substituting each variable that appears in 9’ with every possible member of the Herbrand
universe, U.1* Formally:

KBY = {p(¢) | ¢ € KB, p: var(y) — U}

where p is a ground substitution of variables to the individuals of U. KBV is called the
Herbrand expansion of KB w.r.t. Herbrand universe U.

6 Examples and applications

Let’s summarize the major steps in the process of turning an inconsistent knowledge-base
into a consistent one: Given an inconsistent set S of assertions in BL, perform the following
actions:

1. Translate every formula 9 € S to an equivalent set NEC(¢) of normalized extended
clauses (cf. Proposition 2.22). Let KB={J{NEC(¢¥) | v €S}.

2. Compute con(KB) [alternatively, compute (KB)]. From con(KB) [Q(KB)] compute
all the recoverable literals of KB (cf. Corollary 3.20) [(cf. Proposition 4.4b)].

#In fact, the limitations imposed on BL guarantee that we stay, essentially, on a propositional level.
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3. Generate the support sets for the recoverable literals of KB as follows: For every
M € con(KB) [M € Q(KB)] and for every literal [ such that M (l) ¢ T compute the
associated support set SSps(l) (cf. Proposition 3.18) [(cf. Proposition 4.5)]. If KB is
stratified, the algorithm given in Subsection 3.3 might be useful for this purpose.

4. Use the heuristics mentioned in subsection 3.4 to choose the best support set among
those that were produced in the previous step. This is the recovered knowledge-base
of the original inconsistent set S. Definition 3.8 and Theorem 3.12 guarantee that the
recovered knowledge-base is consistent and semantically corresponds to the data of S.

In the rest of this section we give some examples for illustrating the process described
above. Then we consider an important type of problems in AI (that of model-based diag-
noses) for which the methods developed in this paper are particularly useful.

6.1 Nonmonotonic aspects of the recovering process

In this subsection we gather some benchmark problems which are given in [Li88] (under
category A — default reasoning) for evaluating nonmonotonic formalisms. All the examples
are considered in B=FOUR with F={t, T} and T={T}. As it is shown below, our system
manages to keep the results very close to those suggested in [Li88].

Consider the following block world description, KB1:

heavy(Block_A)
heavy(Block_B)

heavy(z) — on_the_table(x)
—on_the_table(Block_A)

Obviously, KB1 is inconsistent, and the problem is with the information about block A. In
order to recover consistent data, we have to calculate the mcms of KB1, which are given in
the table of Figure 6. 1°

mcm | heavy(A) | heavy(B) | on_the_table(A) | on_the_table(B)
Mla t t T t
M1b T t f t

Figure 6: The (minimal) mcms of KB1

The respective support sets, which correspond to these mcms, are the following;:

KBla={heavy(A), heavy(B), heavy(B) — on_the_table(B)},
KB1b={—on_the_table(A), heavy(B), heavy(B) — on_the_table(B)}.

'5From now on we shall use X instead of Block_X; X =A, B.
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KB1la supports the recoverable literals heavy(A), heavy(B) and on_the_table(B); KB1b
supports the recoverable literals heavy(B), on_the_table(B), and —on_the_table(A). Thus,
the data about block B is absolutely recoverable. Particularly, in either support sets block
B is on the table, as suggested in [Li88, Problem Al].

Suppose a new data is introduced that is unrelated to existing information. For exam-
ple, assume that KB2 = KB1 U {—red(B)}. It is easy to verify that the literals that were
recoverable in KB1 still have the same status in KB2 (the new assertion, —red(B), is also
recoverable, of course. In fact, by Corollary 3.38, it is absolutely recoverable), and the same
support sets can be constructed in a similar manner as before when adding to them the
new data. Thus, on_the_table(B) is still supported by every support set in KB2, and the
recovered knowledge-bases are KB2a=KBla U {—red(B)} and KB2b=KB1bU {—red(B)}
(cf. [Li88, Problem A2]).

Suppose that we are informed that every heavy block must be painted red. Let KB3
denote the knowledge base that contains all the information we have so far:

heavy(A)
heavy(B)
heavy(z) — on_the_table(x)
heavy(z) — red(z)
—on_the_table(A)

—red(B)

The minimal mcms of KB3 are given in Figure 7.1® Their associated support sets are listed
below:

mcm | heavy(A) | heavy(B) | red(A) | red(B) | on_the_table(A) | on_the_table(B)
M3a t t t T T t
M3b t T t f T L
M3e T t L T i ¢
M3d T T L f f L

Figure 7: The minimal mcms of KB3

KB3a = {heavy(A), heavy(B), heavy(A) — red(A), heavy(B) — on_the_table(B)}
KB3b = {heavy(4A), —red(B), heavy(A) — red(A)}
KB3c = {—on_the_table(A), heavy(B), heavy(B) — on_the_table(B)}

18 KB3 has 16 mcms. We omit the other 12, which are not <z-minimal. As was shown in Section 4, by
doing so we are not losing any meaningful data.
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KB3d = {—on_the_table(A), —red(B)}

The “conservative” (or “skeptical”) nature of the system is emphasized here: each suggested
solution ignores the information it considers as contradictory, and leaves all the other data
unchanged.

Note that KB3a is the preferable support sets according to many criteria that were men-
tioned through Subsection 3.4: It is the largest set, it supports more literals than any
other support set, and it contains maximal information. To see the last claim, note that
|A(KB3a)| =4, |A(KB3b)| = |A(KB3c)| = 3, |A(KB3d)| =2, |con(KB3a)| =1, (the only
mcm is the reduction of M3a in Figure 7 to the language of KB3a) and |con(KB3b)| =
|con(KB3c)|=|con(KB3d)| =1 as well. Hence: I3(KB3a)=4, while I,(KB3b)=I,(KB3c)=
3, and I,(KB3d)=2.

So, it seems that the most reasonable set to recover KB3 is indeed KB3a. KB3a implies
that on_the_table(B) and red(A). These are also the conclusions in [Li88, Problem A3].

Note: The last example nicely demonstrates also the practical importance of having the
truth value 1. One can reach, in fact, the same conclusions using only the other three
values (see Subsection 7.3 below). In that case, however, nine mcms should be considered
instead of the four of Figure 7. The reason is that had we used only ¢, f, and T, then every
occurrence of | in Figure 7 should have been replaced by a classical truth value, and both of
the two possibilities would have produced models that should have been taken into account.

For a last example of the block world, consider the following knowledge-base, KB4:
heavy(A)

heavy(B)

heavy(C)

heavy(z) — on_the_table(x)

—on_the_table(A) V —on_the_table(B)

Note that the last assertion in KB4 states that there is an unknown exception in the
information. The mcms of KB4 are given in Figure 8.

mcm | heavy(A) | heavy(B) | heavy(C) | on_table(A) | on_table(B) | on_table(C)
Ma T t t f t t
Mab t T t t f t
M4c t t t T t t
Mad t t t t T t

Figure 8: The (minimal) mcms of KB4

Hence, heavy(X) for X = A, B, C and on_the_table(C') are all recoverable, while on_the_table(A)
and on_the_table(B) are incomplete. The support sets of KB4 are listed bellow:
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KB4a = {heavy(B), heavy(C), heavy(B) — on_the_table(B),
heavy(C) — on_the_table(C), —on_the_table(A) V —on_the_table(B)}

KB4b = {heavy(A), heavy(C), heavy(A) — on_the_table(A),
heavy(C) — on_the_table(C), —on_the_table(A) V —on_the_table(B)}

KB4c = {heavy(A), heavy(B), heavy(C), heavy(B) — on_the_table(B),
heavy(C) — on_the_table(C)}

(©)
KB4d = {heavy(A), heavy(B), heavy(C), heavy(A) — on_the_table(A),
(C) — on_the_table(C)}

Note that no matter which set the reasoner chooses as the recovered knowledge-base, all of
them preserve the intuitive conclusions of KB4, i.e.: in every recovered knowledge-base (a)
block C' is on the table, and (b) either block A or block B is on the table, but there is no
evidence that both are on the table. Again, these conclusions are similar to those of [Li88].

Suppose now that the reasoner prioritize the atomic formulae of KB4 in the following
descending order: heavy(A), on_the_table(A), heavy(B), on_the_table(B), heavy(C), and
on_the_table(C) (the reasoner might know, for example, that block A is the heaviest while
block C' is the lightest, or the information about block A is known to be more reliable,
etc.). As a result, the possible recoverable knowledge-bases are prioritized in the following
descending order: KB4d, KB4b, KB4c, and KB4a,'” thus KB4d is the preferred set in this
case.

Due to the lack of space we have not considered here all the benchmarks of [Li88]. We
confined ourselves with most of the examples under category A (default reasoning). How-
ever, it might be interesting to check which of the other test criteria mentioned there are
met in our system (Most notable: the inheritance features and the autoepistemic charac-
terizations), and to what degree the conclusions reached by our method resemble those of

[Li88].

6.2 Model-based diagnosis

Suppose that one is given a description of some system (physical device, for example)
together with an observation of its behavior. Suppose further that this observation conflicts
with the way the system is meant to behave. The obvious goal is to identify the components
of the system that behave abnormally, so that the discrepancy between the observed and the
correct system behavior would be explained. In such cases it seems reasonable to assume
that some minimal components are faulty. Therefore, the most consistent models and their
corresponding support sets are good candidates to provide accurate diagnoses, especially
since they minimize the set of components that are assumed to behave differently than
expected (those that cause the conflicts).

1"For example, the support set KB4d is preferable to KB4b, since its atomic consequences are heavy(A),
on_the_table(A), heavy(B), heavy(C), and on_the_table(C). This is greater w.r.t. the reasoner prioritiza-
tion than the consequences of KB4b, which are heavy(A), on_the_table(A), on_the_table(B), heavy(C) and
on_the_table(C).
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Example 6.1 Figure 9 depicts a binary full adder, examined extensively in the literature
of diagnostic systems (See, e.g., [Ge84, Re87, Gi88, Ra92] and many others). It consists of
five components: two and-gates A; and A,, two xor-gates X; and X5, and an or-gate O;.

rl—— ) )

Ay

) 1)

Figure 9: A full adder

For the sake of the current example only we use the symbol @ to denote the binary operation
xor (instead of using this symbol for denoting <j-meet operations of bilattices). The full
adder’s description is then given by the following system, FA:

e The expected behavior of the components of the system:

andGate(z) A ok(z) — (out(z) < (inl(z) Ain2(z))),
zorGate(z) A ok(z) — (out(z) <> (inl(z) ® in2(z))),
orGate(z) A ok(z) — (out(z) + (inl(z) V in2(z))),

The gates of the system:
andGate(A;), andGate(Ay), zorGate(X,), zorGate(Xs), orGate(O,),

Each gate is assumed to function correctly:

ok(A1), ok(Az), ok(X1), ok(X3), ok(O:),

Integrity constraints:

andGate(z) — (—orGate(z) A ~zorGate(z)),
zorGate(z) — (—andGate(z) A —orGate(z)),
orGate(z) — (—andGate(z) A ~zorGate(z)),

Description of the circuits of the system:

inl(X1) <> inl(A4;), in2(X;) <> in2(A4,),
out(X1) < in2(4z), out(X;) < inl(X,)
inl(Az) < in2(X3), out(A4z) <> inl(0,)
out(A) <+ in2(0y),



e The set of observations:
inl(X1), —in2(X1), inl(A4z), out(X;), —out(O;)

Notice that the observation indicates that the physical circuit is faulty; Both circuit outputs
are wrong for the given inputs. Notice also, that by Corollary 3.15, ok(z) is recoverable for
every component z, therefore the mcms of FA and their corresponding recovered subsets
would indicate which gates are faulty and which ones behave correctly.

The predicates inl(z), in2(z), and out(z) are assigned values that correspond to binary
values of the wires of the system. Therefore they should have only classical values (e.g.,
in(G) =T for a gate G is a meaningless value). Also, it seems natural to restrict the values
of the predicates andGate, orGate, and zorGate to be only ¢ or f. This is because we
know in advance what is the kind of each gate G in the system, and so the only open
question about G (that might have inconsistent answers according to the actual behavior
of the system) is whether it behaves as expected (i.e., whether ok(G)).

Let’s denote by Ezact(KB) the predicates of KB that are assumed to have only classical
values. We are interested only in those models in which every instance of a predicate of
Ezact(KB) has a classical value. If D denotes the domain of discourse, the set of relevant
models is the following:

mod(KB, Ezact) = {M € mod(KB) | Vp€ Ezact Ve; € D M(p(z1,...,2,)) €{t, f}}

Where in our case, Ezact={inl,in2, out, andGate, orGate, zorGate}.

Notes:

1. This restriction on the relevant models means that our basic consequence relation
is now not ):mod(KB) but rather ):mod(KB,Emact)a which is a particular case of the
consequence relations defined at 2.17. The various concepts defined above, like that
of an mcm, should be relativised accordingly. We note also that this approach of
restricting some of the predicates to have only classical values is quite common (see,
e.g., [Wa94]). There are certain theories in which this meta-level is used also for
adding integrity constraints for the specific problem. This can easily be done in our
systems as well. See [AA97] for a more detailed study of these considerations in case

that B=FOUR and T={T}.

2. It is not any longer true that v+ = {p: T | p € A(KB)} must be an acceptable
model of KB. In fact, there might be cases in which mod(KB, Ezact) ={. However,
although mod(KB, Ezact) is treated here as the set of the accepted valuations instead
of mod(KB), all the propositions that were proved above, except those of Subsection
3.4-A, remain valid under the obvious reformulations.

3. A natural generalization to what we are doing here is to consider not only ¢, f, but
any subset of truth values in B. That is, if Val C B, and Pred C A(KB), then
mod(KB, Pred,Val) = {M € mod(KB) | Vp € Pred Ve € D M(p(z)) € Val}. For
instance, the set of the all the consistent models of KB (w.r.t. an inconsistent set Z;
see Definition 2.24a) may now be formulated as mod(KB, A(KB), B\T).
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The table of Figure 10 lists the models of mod(FA, Ezact). We have omitted from
the table predicates (like sn1(X;)) that have the same (obvious) value in every model in
mod(FA, Ezact), and predicates that have the same values as other predicates (like in2(A4,),
which is identical to in1(X3)).

Model No. inl | inl | in2 | ok ok ok ok ok
X201 |01 | A1 | A2 | X1 | X2 |O1
M1-M16 | f f f t, T ¢, T | T L, T |t T
M17 - M20 | f t f t, T | T T L, T | T
M21 - M24 | f f t T L, T | T L, T | T
M25 - M26 | f t t T T T L, T | T
M27 - M34 |t f f t, T | T L, T | T t, T
M35 - M42 |t t f LT | 6T e, T | T T
M43 — M44 |t f t T T L, T | T T
MA45 — M48 | ¢t t t T LT |6, T | T T

Figure 10: The models in mod(FA, Ezact)

The corresponding (minimal) mcms are given in Figure 11.

Model | inl | inl | in2 | ok | ok | ok | ok | ok
No. X2 101 |01 | A1 | A2 | X1 | X2 | O1
M1 |f | f |f [t |t [T |t |t
M27 |t f f t T |t T t
M35 |t |t |f |t |t |t |T |T

Figure 11: The mcms of mod(FA, Ezact)

The mcms among the elements of mod(FA, Ezact), and the support sets that are as-
sociated with them preserves what Reiter [Re87] calls the principle of parsimony; they
represent the conjecture that some minimal set of components are faulty. For example,
according to M1, which is one of the mcms of FA, the only component that is known
to behave incorrectly is the xor gate X;. The associated support set of M1 reflects this
indication:

SSy1 = FA\ {ok(X1), zorGate(X1) A ok(X1)— (out(X1) <> (inl(X1) ®in2(X41)))}

In particular, SSpy, is a support set of ok(z) for z € {41, Az, X»,01}, and SSu, Fcon 0k(X1).
Similarly, the other two most consistent models M 27 and M35, as well as their associated
support sets represent respective situations, in which gates {X5, A»} and gates {X,, O}
are faulties. These are the generally accepted diagnoses of this specific case (see, e.g. [Re87,
Example 2.2], [Gi88, Sections 15,16], and [Ra92, Examples 1,4]).

According to the heuristics mentioned in Subsection 3.4, 5Sps; is preferable than SSpro7
and SSarss, since it is bigger, and supports more recoverable literals than the other two sets.
In this particular case one have additional reasons to prefer SSp71, since it claims that only
a single component is faulty, and one normally expects components to fail independently of
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each other. This kind of diagnosis is known as a single fault diagnosis. We see, then, that
in some cases the particular nature of the situation impose preference criteria — maybe
other than those mentioned in Subsection 3.4 — so that a particular recovered set is judged
as more likely to be correct than other solutions.

Next we show that the correspondence between the fault diagnoses and the inconsistent
assignments of the mcms in the previous example is not accidental. For that we first present
two basic notions from the literature on model-based diagnosis:

Definition 6.2 [Re87] A system is a triple (Sd, Comps, Obs), where:
a) Sd, the system description, is a set of first-order sentences.

b) Comps, the system components, is a finite set of constants.

c) Obs, a set of observations, is a finite set of sentences.

Definition 6.3 [Re87] A diagnosis is a minimal set A CComps s.t. SdU ObsU {ok(c) | c€
Comps \ A} U {—-ok(c) | c€ A} is classically consistent.

In the example above we assumed that the devices normally behave as expected. We
now formalize this assumption:

Definition 6.4 A correct behavior assumption for a given set of components A C Comps is

the set CBA(A) = {ok(c) | c€ A}.

Notation 6.5 For a given system (Sd, Comps, Obs), and a set of components A C Comps,
denote KB(A) = SdU0ObsUCBA(A). Whenever A = Comps we shall write just KB instead
of KB(Comps). Also, in the sequel we will continue to assume that the KB(A)’s are sets of
normalized extended clauses. Recall that by Proposition 2.22 this assumption can be taken
without any loss of generality.

Here are some useful properties of diagnoses:

Proposition 6.6 Denote by =, the consequence relation of the first-order classical logic.
a) [Re87, Proposition 3.4] A C Comps is a diagnosis for (Sd, Comps, Obs) iff A is a minimal
set such that KB(Comps \ A) is classically consistent.

b) [Re87, Proposition 3.3] If A is a diagnosis for (Sd, Comps, Obs) then KB(Comps\ A) =
—0k(c) for each c€ A.

We present now a treatment of diagnostic systems in the multi-valued framework of
bilattices, where only a subset of the atomic formulae necessarily have classical values.

Definition 6.7

a) An extended diagnostic system (e-system for short) is a pair (KB, Ezact), where KB =
SdUObsUCBA(Comps), and Ezact is a set of the predicates in the language of KB that are
assumed to have only classical values.

b) Let (KB, Ezact) be an e-system. An ezact model of KB (w.r.t. Ezact) is an element of
mod(KB, Ezact)={M e mod(KB) | Vpe Ezact Ve;€ D M(p(z1,..., %)) €{t, f}}

c) A most consistent exact model of KB (mcem) is an mcm of mod(KB, Ezact).

Theorem 6.8 Let (KB, Fract) be an e-system, and suppose the Herbrand base H of KB
is {p(z1,.. . ,) | p€ Ezact, z; € Comps} U CBA(Comps).'® An exact model M of KB is an

18Note that this requirement is met Example 6.1.
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mcem of KB iff Incpr(KB)=CBA(A) for some diagnosis A of KB.

Proof: (<) Assume that M is an exact model of KB and that A is a diagnostic of KB
s.t. Incy(KB)=CBA(A). If M is not an mcem of KB then there is an exact model M’
s.t. Incy(KB) C Incpyr(KB) = CBA(A), i.e.: thereis a cg € A s.t. M'(ok(co)) ¢ Z. But:
(a) M' is a model of KB and ok(co) € KB thus M'(ok(co)) € F, and: (b) by Proposition
6.6(b), KB(Comps \ A) =, —0k(co) and by Lemma 4.11 of [AA96] 1% KB(Comps\A) Econ
—0k(cg). Since M is a (most) consistent model of KB(Comps \ A) then so is M’, therefore
M'(—0k(co)) € F. By (a) and (b), M'(0ok(co)) €EZ — a contradiction.

(=) From the condition on Herbrand base of KB it follows that for every model M of
KB, Incp(KB) C CBA(Comps). Suppose, then, that M is a most consistent model of KB
and that Incpyr(KB)=CBA(A) for some A C Comp. By Proposition 6.6, in order to prove
that A is a diagnosis for KB it is sufficient to show that A is a minimal set such that
KB(Comps\A) is classically consistent. Suppose not. Then there is a proper subset A’C A
s.t. KB(Comps\A') is classically consistent. In particular, KB(Comps\A') is a consistent
set in the sense of Definition 2.24(b), and so it has a consistent model N. Let M’ be the
following valuation:

v\ ) N(p) if pe A(KB(Comps\ A')).
M(p) = { T otherwise.

It is easy to verify (using Lemma 2.23) that M’ is a model of KB. Therefore, since

Ezact(KB) C A(KB(Comps\ A')), M' is in mod(KB, Ezact). Moreover, Incp/(KB) =

CBA(A'), and A’ C A, thus Incy(KB) =CBA(A') C CBA(A) = Incpy(KB). 1t follows that

M cannot be a mcem of KB. O

Corollary 6.9 Under the assumption of Theorem 6.8, if A is a diagnosis of KB then there
exists an mcem M of KB s.t. Incy(KB)=CBA(A).

Proof: Let A be a diagnosis for KB. If A={} then CBA(A)={}, and by Proposition 6.6(a)
KB is classically consistent. Hence every mcem M of KB is a consistent model (in the sense
of Definition 2.24(a)), and so Incar(KB)={} as well. If A#{} then KB is not (classically)
consistent, since by Proposition 6.6(b) and by the monotonicity of =, KB = —0k(c) for
every ¢ € A, and by reflexivity, KB = ok(c). On the other hand, by Proposition 6.6(a),
KB(Comps\ A) is classically consistent, therefore there is a model M of KB that assigns
consistent truth values to every atomic formulae in A(KB(Comps\A)), and assigns T to

CBA(A), i.e.: Incpyr(KB)=CBA(A). This M is an mcem of KB by Theorem 6.8. O

Corollary 6.10 Let (KB, Ezact) be an e-system as described in Theorem 6.8. Then ok(c)
is absolutely recoverable in KB iff ¢ cannot be faulty in KB.

Proof: Obviously follows from Proposition 3.37 and Theorem 6.8. O

19 According to that lemma, if KB is a classically consistent knowledge-base, ¢ is a clause that does not
contain any pair of an atomic formula and its negation, and ¢ follows classically from KB, then KB =con .
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Whenever the condition of Theorem 6.8 is met and KB is stratified, one can use the
algorithm of Subsection 3.3 for finding diagnoses and constructing recovered knowledge-
bases of KB. Alternatively, one can use any other algorithm for finding diagnoses, and then
use the results for recovering KB. The process is as follows: First, such an algorithm is
executed (this algorithm can be, for example, Reiter’s DIAGNOSE [Re87]); Suppose that A
is returned as a diagnosis. Like in Section 5, given Herbrand universe U of KB, we denote
KBU\A = {p(¢) | ¥ € KB, p : var(p) — (U\A)}. By Theorem 6.8, CBA(A) corresponds
to the inconsistent assignments of some mem M, so by the proof of Theorem 3.11, KBU\A
is a recoverable subset of KB.

7 A comparison with other formalisms

In this section we compare the present approach of recovering consistent data with some
other formalisms for dealing with inconsistency. Since there are many such formalisms, we
consider only those with a close relationship to ours.

7.1 Maximal consistent subsets

A common method to “recover” inconsistent knowledge-bases is to search for its maximal
consistent subsets. The main drawback of this method is that none of these subsets nec-
essarily corresponds to the intended semantics of the original knowledge-base. Consider,
for instance, KB of Example 2.18 (also considered in Examples 3.2, 3.10, 3.26, and 3.40).
Every maximal consistent subset of KB must contain either s or —s. Hence, either s or its
complement, but not both, must be a consequence of every such a subset, but this conse-
quence contradicts another assertion that explicitly stated in the original knowledge-base.
For another example, consider KB = {p, —~pV ¢, —q}. This time, there is no spoiled literal
in KB, but still every maximal consistent subset of KB entails (both classically and w.r.t.
Feon) an assertion that contradicts an explicit data of KB. The support sets {p} and
{—¢} of this KB, as well as any support set of other knowledge-bases, do not have such
a drawback. The requirement that every support set would be consistent ¢n the original
knowledge-base assures that their conclusions would not contradict any data entailed by
the original knowledge-base.2’ The last example also shows that two-valued semantics is
not sufficient even in cases where there are no spoiled literals.

7.2 Annotated logics; Kifer and Lozinskii’s treatment

Annotated logics were introduced by Subrahmanian [Su90a, Su90b], and further developed
by him and others (see, e.g., [CSHL, KL92, KS92, Su94|). They also use multi-valued
algebraic structures in order to provide a semantics for rule-based systems with uncertainty.
As we have already noted, [KL92] use annotated logic for similar purposes as ours. However,
the present treatment of inconsistency in knowledge-bases is free of some of the drawbacks
of [KL92]. There, for example, just ordinary (semi)lattices were used, in which the partial
order relation corresponds, intuitively, to <. Hence, no direct interpretation of the standard

2%In particular, support sets cannot contradict any ezplicit data of the knowledge-base, as it is the case
with the knowledge-bases and their maximal subsets considered above.
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logical connectives (which correspond, in fact, to the <; partial order) was available to the
authors. They were forced, therefore, to use a language, in which the atomic formulae
are of the form p : b (where p is an atomic formula of the basic language, and b — a
value from a semilattice). 1 : b is meaningless, however, for nonatomic ¢. Our treatment
needs no such a restriction; The use of bilattices enables assignments of truth values to any
formula. Moreover, the present definitions follow the common method of logic systems, in
which syntax and semantics are separated, while in the logic of [KL92] (and in annotated
logics in general) semantic notions interfere with the syntax. In particular, the present
treatment does not require any syntactic embedding of first-order formulae into the multi-
valued language (like the ones denoted E,; and Z,,; in [KL92]); the syntactic structure of
each assertion remains the same.

7.3 Priest’s minimally consistent LPm

In [Pr89, Pr91] Priest considers the logic LP — Kleene’s strong three-valued logic with
middle element (T) designated.?! According to Priest, the basic drawback of LP is that it
invalidates Disjunctive Syllogism (i.e., ¥, =%V ¢ l/Lp ¢, where Fp denotes the consequence
relation of LP).%? Priest resolves this drawback by reducing the relevant models only to those
that are minimally inconsistent: For a given propositional LP-valuation v, Priest defines
a corresponding set ¥!={p | p A —p is true under v} that “measures” the inconsistency of
v. The minimal inconsistent models of a set of formulae ? are those models v such that if
p! C v! then p is not a model of 7. The consequence relation |=yp,, of the obtained logic,
LPm, is then defined as follows: ? =rpy ¢ iff every minimally inconsistent model of 7 is a
model of .

Obviously, Priest’s main idea is very similar to ours, and the consequence relation =ypp,
is very close to FEcon. The difference is that Priest is using the {-,V, A}-closed subset
{t, f, T} of the special bilattice FOUR, with the same F, and with Z={T}. As we have
seen in Section 6.1 (see the note there), the cost of using only this subset of FOUR might
be an exponential growth in the number of models that should be examined. This is due
to the fact that every mem M in FOUR (with T={T}) s.t. M(p)=_L for some p induces
two LP-minimal models, which are identical to M, except that one assigns ¢ to p, while the
other assigns f to it.23

It is not difficult to see that if we take B=FOUR and T = {T}, then KB Erpm ¢ iff
KB, piV—p1, ..., PnV—Pn Econ ¥ where A(KB)={p1,...,pn}. We conjecture that if, on the
other hand, we take Z={T, L} (and B=FOUR) then [=Lpmn is identical to =con.

Our conclusion is that one can do with FOUR everything one can do with LPm, if so
one wishes (and usually more efficiently), but with FOUR one can do other things as well.
The exact relation between FOUR and LPm deserves, however, further investigations.

21This logic is also known as RMa in the relevance literature ([AB75]) and Js in the literature about
paraconsistency — see, e.g., chapter IX of [Ep90] as well as [OdC70, Ot85, Av86, Ro89].

221n a sense, Disjunctive Syllogism is the only classically valid inference which fails, since its addition to
LP yields classical logic.

230ne should note, however, that the converse is not true: The existence of two LP-minimal models M;
and M; s.t. My(p)=t, Mz(p)=f and M:(q)=M:(q) for every g#p does not necessarily imply the existence
of a corresponding mem M in FOUR s.t. M(p)=_1. The clause pV—p provides a counterexample.
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8 Conclusion and further work

The consequence relation |=.., was considered in [KL92] as an epistemic entailment for
annotated logics. In [AA94, AA96] this relation was further examined and used in order
to develop bilattice-based proof systems. In this paper we demonstrate another aspect
of implementing f=con together with (logical) bilattices, namely: a model-theoretic tech-
nique for extending the semantics (without changing the syntax) of classical first-order
knowledge-bases, in order to deal with contradictions in a nontrivial way. The outcome is
a nonmonotonic mechanism for finding inconsistent parts of a given knowledge-base, and a
paraconsistent approach for recovering consistent data from it. This approach is shown to
be efficient in several important cases, and particularly useful whenever conflicts are inher-
ent parts of the situations, such as diagnostic problems.

One issue we haven’t dealt with so far is the choice of the particular bilattice to use. In
all our examples above we have used the simplest bilattice FOUR. We suspect that for the
language that we use here FOUR might indeed be sufficient, although we don’t have yet a
formal proof to this conjecture. Still, even if this conjecture is true, keeping the discussion
on an abstract level (as we have done here) has obvious advantages:

1. We do not intend our proposal to be an isolated method for dealing with inconsistent
data. Rather, we believe that it should be a part of a general framework for dealing
with knowledge-bases. Now, for other aspects of the subject, other bilattices might
be useful. DEFAULT, for example, is usually taken to be suitable for default reason-
ing. Bilattices like [0,1]®[0, 1] (see [Fi90b] for the exact definition) may be used for
statistical reasoning, etc. The choice of the bifilter also depends, of course, on the
application. For example, the use of the bifilter {T,¢} of DEFAULT means taking as
“true” only propositions that convey some truth. It is quite possible, however, that
for certain application we would like to accept also a default “truth”, represented
(say) by dT or dt as standing for some extended notions of truth. We might use then
NINFE rather than DEFAULT and choose NINE’s second bifilter for our application
(DEFAULT itself does not have a bifilter containing dt or dT).

2. The fact that from the point of view of classical logic we can confine ourselves to the
two-valued Boolean algebra does not mean that other Boolean algebras are useless in
applications of classical logic. Similarly, the fact that in principle we can always use
FOUR (if this indeed is the case), does not exclude the potential usefulness of other
logical bilattices (This point, of course, is not unrelated to the first one).

3. The framework of bilattices opens the door for various nonclassical connectives (like
Fitting’s conflation and guard connectives [Fi94], or the nonmonotonic implications of
[AA96]). It is doubtful that with these extra connectives FOUR will still be sufficient
for defining f=con.-

The discussions in this section and in the previous ones leads to several directions of
research:

e Determine the exact role of FOUR with respect to the consequence relation f=,o,.
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e Extend the approach to richer languages.

e Improve the algorithm of Section 3.3 and enlarge its range of applicability.

e Examine the applicability of the methods with more practical examples (especially

those of [Li88]).
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