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ABSTRACTWe introduce a family of preferential logics that are usdful handling informa-
tion with different levels of uncertainty. The correspamgiconsequence relations are non-
monotonic, paraconsistent, adaptive, and rational. Itlsoashown that the formalisms in this
family can be embedded in corresponding four-valued logiith at most three uncertainty
levels, and that reasoning with these logics can be simdlajealgorithms for processing cir-
cumscriptive theories, such as DLS and SCAN.
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1. Motivation

The ability to reason in a ‘rational’ way with incomplete oconsistent informa-
tion is a major challenge, and its significance should bealsilt is well-known that
classical logic is not suitable for this task, thus non-gilzed formalisms are usually
used for handling uncertaintySuch formalisms should be able to distinguish among
different types of inconsistent information and partialedeith different degrees of
uncertainty that may appear in the same theory, since eachdfiuncertainty may
require a different treatment and may have a different effache set of the conse-
quences of the theory. To see this, consider, e.g., thedimlgpwell-known example:

ExampLE 1 (TWEETY DILEMMA). — Given a knowledge-base with the following
set of assertions (specified in some appropriate formallage):

1) Flying ability is a default property of birds.

2) A wounded bird might not fly.

3) Animals with wings are birds.

4) Penguins are birds.

5) Penguins cannot fly.

1. See [BAT 00b, BEN 01, CAR 02a, NIE 03] for recent collectiafipapers on this topic.
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Suppose, further, that it is known that Tweety is a penguid,that Fred is a wounded
animal with wings. This knowledge-base contains conflggtnidence regarding the
flying abilities of Tweety and Fred: Tweety is a penguin, #fere it is a bird, and
since most of the birds can fly, one concludes that Tweetygingiilies. On the other
hand, since penguins cannot fly, and since Tweety is a pengaéhas also a good
reason to believe that Tweety cannot fly. Note that the labeclusion is stronger
than the former, since it is based on a strict ra@# the penguins cannot fly) rather
than a default assumption. Indeed, most of the formalismsifch theories conclude
(or indicate with high certainty) that Tweety can fly, despfie contradictory data.

The case of Fred is more problematic, as the evidence in tshaoncluding that
Fred flies and the evidence against this conclusion seem taobe ‘balanced’: nor-
mally, one would conclude that Fred can fly (since it has wiagd so it is a bird).
However, we also know that it is wounded, and so the injuryhijyevent this abil-
ity (as assertion (2) above suggests). It follows, thent there is a contradictory
evidence about whether Fred can fly. This contradiction stieom the partial infor-
mation about Fred’s injury and the consequences of thisyinju

As the example above shows, it is often natural and reasemalaittach different
levels of uncertainty to different assertions. This kindrdbrmation may be used,
for instance, by algorithms for consistency restoratiomges data with higher degree
of inconsistency may be treated (i.e., eliminated) firs¢(geg., [DUB 94, BEN 95]).
A proper method of ‘grading’ uncertain information w.raconsistent and/or incom-
plete theories is also vital for many paraconsistent foisma, in which the criteria
for drawing conclusions is the robustness of the premisesthe degree of certainty
that the premises indeed hold (see, e.g., [ARI 98b, BAT 98, BBa, ARI 02b]).

In this paper we consider a framework that supports thes#slohconsiderations,
and allows to reason with different levels of uncertain infation. We show that the
logics that are obtained are nonmonotonic, paraconsigi#p$ 74], adaptive in the
sense of Batens [BAT 98, BAT 00a, BAT 02], and rational in teese of Lehmann and
Magidor [LEH 92]. It is also shown that for each one of theserfalisms there is a
logically equivalent four-valued logic with at most thre#erent levels of uncertainty.
These logics can be simulated by algorithms for processnegroscriptive theories,
such as DLS [DOH 97] and SCAN [OHL 96].

The rest of this paper is organized as follows: in the nextigeeve introduce our
framework and define the corresponding family of consegeeelations for reason-
ing with graded uncertainty. In Section 3 we give a char&aéon theorem for this
family in terms of four-valued semantics. Then, in Sectiomelshow several proper-
ties of the underlying formalisms, and in Section 5 we cosisgbme computational
aspects of the corresponding reasoning process. In Sécti@nconcludé.

2. l.e., reasoning processes that do not become trivial irptesence of inconsistency. See
[CAR 02b] for a review of such systems.
3. This paper is a revised and extended version of [ARI 03a].
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2. Theframework
2.1. Logical lattices and their consequence relations

It is well-known that classical logic is not suitable for seaing with incomplete
and inconsistent data. For instance, classical logic ispaciconsistenfCOS 74],
that is: everything classically follows from an inconsigtéheory, and therefore it is
not possible to draw, in a non-trivial way, plausible cosatins from such theories.

In order to overcome these shortcomings of classical logit @roperly handle
uncertainty, we turn to multiple-valued logics. This is aragoon approach that is
the basis of many formal systems (see [AVR 02] for a recentesyr including sys-
tems that are based on fuzzy logic [HAJ 98], probabilistasaning [PEA 89], possi-
bilistic logics [DUB 94], annotated logics [SUB 90, KIF 92nd fixpoint semantics
for extended/disjunctive logic programs (see, e.g., [LUK ARI 02a], and a survey
in [DAM 98]). In most of the approaches mentioned above, aecktas well, the
truth-values are arranged in a lattice structure. In whédvis we shall denote by
L=(L, <) abounded lattice that has at least four elements:raaximal element and
a<-minimal element that correspond to the classical valuesdted, respectively, by
t andf), and two intermediate elements, denotedibgnd L, that may intuitively be
understood as representing two basic types of uncertaimtgnsistency and incom-
pleteness (respectively). As usual, the meet and the janadipns on’ are denoted
by A andV. In addition, we assume thathas an involution operatef (a ‘negation’)
suchthat-t=f,-f=t,-T =T, -1 =_1. We denote byD the set of thalesignated
valuesof L (i.e., the set of the truth values ih that represent true assertions). We
shall assume tha® is a prime filtef in £, s.t. T € D and L ¢ D. A pair (£, D) is
calledlogical lattice[ARI 99].

ExamMPLE 2. — The smallest logical lattice, denot&@U/R, is shown in Figure 2
(left). This is the algebraic structure behind Belnap’slselown four-valued logic
[BEL 77a, BEL 77b], and it will play an important role here aslir(see Section 3).
FOUR consists of the four basic elements of logical lattices, mgnwhich two are
designatedD = {¢, T}. The other structure shown in Figure 2A8ZNE; it may
be viewed as an extension GfOUR, which is useful, e.g., for default reasoning
(and sodt may be attached to formulae that are ‘true by defadit'may represent
belief that is ‘biased’ fot, etc.). This lattice depicts three main levels of uncetiain
incomplete data(), inconsistent datar ), and a middle level of uncertainfyn). The
latter kind of uncertainty may correspond to contradictbefault assumptions, so it
could be retracted when further information arrives. Theisien whether to viewn
as designated is one of the differences between the twodblgitices that\"ZN &
induces, namelyNZNE, {t,bt, T}) and(NINE, {t,dt, bt,bf,m, T}).

As logical lattices may be infinite, it is possible to consid&uctures with arbi-
trarily many different levels of inconsistency. Consideg., the logical latticéL, D),

4. In particulart e D and f ¢ D.
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Figurel. FOUR and NINE.

whereL = {(z,y)eR? | 0<2<1, 0<y<1},D={(1,y) |yeR, 0<y<1},and
the lattice operators are defined as follows:

(z1,91) V (72, 92) = (max(x1, z2), min(y1, y2)),
(z1,91) A (22, 92) = (min(z1, x2), max(y1, y2)).

In this caset = (1,0), f = (0,1), T = (1,1), L = (0,0), and(z1, y1) < (2, y2)
iff 1 <o andy; > 1.5 One way to intuitively understand the meaning of an element
(x,y) € L is such that: represents the amount of belief for the underlying assertio
andy represents the amount of belief against it. Following thtisition, every element
(z,z) € L may be associated with a different degree of inconsistency.

Given a logical lattice(£, D), the basic connectives are defined in the standard
way: negation corresponds to the lattice involution, canfion [respectively, disjunc-
tion] corresponds to the meet [respectively, join] oparatod the material implication
is defined by a combination of negation and disjunctipr» ¢ = —pVvg¢. Standard
semantic notions are natural generalizations of the daksnes: a (multiple-valued)
valuationv is a function that assigns an elementiofo each atomic formula. The set
of valuations ontd_ is denoted by’. Extension to complex formulae is done in the
usual way:v(—p) = —w(x), andv(y o ¢) = v () o v(¢) for everyo € {V, A, —}.

A valuation is anodelof a set of assertiors if it assigns a designated value to every
formula inT". The set of all the models @f is denoted bynod(T).

Note that there are no tautologies in the languagg-ofv, A, —}, since if all the
atomic formulae that appear in a formulaare assigned. by a valuationv, then
v(¢) = L as well. It follows that the definition of the material immionp — ¢ as

5. See [GIN 88, FIT 90, ARI 00a] for a further discussion on thttice, in the context of more
general structures, callélattices
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—pVq is not adequate for representing entailments in our sensaritistead, we use
another connective, which does function as an implicatioouir setting:

DEFINITION 3 ([AVR 91, ARI 96]). — Let(£, D) be a logical lattice. For every
z,y € L, define:z Dy =y if x € D, andx O y = t otherwise®

The language of -, vV, A, D} together with the propositional constantg, T and
L (which correspond to the four elements that appear in ewgyigal lattice), will be
denoted by2. Given a set of formula€ in X, we shall denote byA(T") the set of
the atomic formulae that appear in the formulad’ofNow, a natural definition of a
lattice-based consequence relation is the following:

DEFINITION 4. — Let (£,D) be a logical lattice,I" a set of formulae, and a
formula. Denotd™ =P ) if every model of is a model ofy.”

The relation=%7 of Definition 4 is a consequence relation in the standardesens
of Tarski [TAR 41]. In [ARI 96] it is shown that this relatiors imonotonic, com-
pact, paraconsistent [COS 74], and has a correspondinglsouhcomplete cut-free
Gentzen-style proof system. The major drawback$=¢f” are that it is strictly
weaker than classical logic even for consistent theories,(&~? —¢ Vv ¢), and
that it always invalidates some intuitively justified indece rules, such as the Dis-
junctive Syllogism ¢», =) v ¢ =P ¢). In the next section we consider a family of
logics that preserve the nice properties-of- > and overcome most of its drawbacks.

2.2. Preferential reasoning and the consequence relation =57

In order to recapture within our framework classical re@sgriwhere its use is
appropriate), as well as standard non-monotonic and pasétent methods, we in-
corporate a concept first introduced by McCarthy [MCC 80] kter considered by
Shoham [SHO 88], according to which inferences from a giheoty are made with
respectto a subset of the models of that theory (and notdiceptio every model of the
theory; see also [GAB 85, MAK 89, KRA 90, MAK 94, ARI 99, ARI 00BCH 00,
LEH 01]). This set opreferential modelss determined according to some conditions
that can be specified by a set of (usually second-order) gitipas [ARI 02b], or by
some order relation on the models of the theory [PRI 89, PRA&RI 96, ARI 98a,
ARI 98b, BES 03]. This relation should reflect some kind ofference criterion on
the models of the set of premises. In our case the idea is éopgacedence to those
valuations that minimize the amount of uncertain inform@atin the premises. The
truth values are therefore arranged according to an orthtiane that reflects differ-
ences in the amount of uncertainty that each one of them igxhibhen we choose
those valuations that minimize the amount of uncertaint wéspect to this order.
The intuition behind this approach is that incomplete ortramtictory data correspond

6. Note that on{¢, f} the material implication-) and the new implicationZ) are identical,
and both of them are generalizations of the classical irafi6o.
7. When referring taF OUR we shall abbreviate=="" by |=*.
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to inadequate information about the real world, and theesftould be minimized.
Next we formalize this idea.

DEFINITION 5. — A partial order< on a setS is calledmodularif y < x5 for every
1, T2, YyES St w1 £ a0, xo £ 11, aNdy < x7.

PROPOSITIONG ([LEH 92]). — Let < be a partial order onS. The following
conditions are equivalent:

a) < is modular.
b) for everyzy, xo,y €S, if 1 <z then eithery < zs or 1 <y.

c) there is a totally ordered s&@’ with a strict order< and a functiory: S — &’
S.t.xy <ag iff g(a1) < g(x2).

DEFINITION 7. — Aninconsistency ordex%-? on a logical lattice(£, D) is a well-
founded modular order o, with the following properties:

a) t and f are minimal andT is maximal w.r.t.<%7,
b) if {x, -z} CD while {y, —y} D, thenz £5 Py,
c) z and—z are either equal o4 P-incomparable.

Inconsistency orders are used here for grading uncertairggneral, and incon-
sistency in particular. The intuitive meaning of<%? y is that formulae that are
assigned: are more definite than formulae with a truth vajueviodularity is needed
for assuring a proper grading of the truth val@e€ondition (b) in Definition 7 as-
sures that truth values that intuitively represent incstesit data will not be consid-
ered as more consistent than those ones that corresponddistemt data. The last
condition makes sure that any truth value and its negatioe llee same degree of
(in)consistency.

ExamMPLE 8. — FOUR has four inconsistency orders:

a) The degenerated orderﬁo, in whicht, f, 1, T are all incomparable.
b) <2 , in which L is considered as minimally inconsistefit; f, L} <2 T.

cy!?
¢) <¢,. inwhich L is maximally inconsistent{t, f} <2 {T, L}.
d) <2, inwhich L is an intermediate level of inconsistendy; f} <2, L <2, T.
In the rest of the paper we shall continue to use the notatbiisxample 8 for
denoting the inconsistency ordersHOUR.

Given an inconsistency order*-” on a logical latticg £, D), it induces an equiv-
alence relation ot in which two elements il are equivalent iff they are equal or
<£P.incomparable. For every € £, we denote byjz] the equivalence class of
with respect to this equivalence relation. l.e.,

8. That is, to eliminate orders such &}, {f < L < T}}, in whichT and_L are not compa-
rable witht, while they are comparable witht.
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z] = {y | y==, or z andy are<*-P-incomparablg.
c p

The order relation on these classes is defined as usual lgsesyativesiz] <P [y]
iff either = <57y, or x andy are<4P-incomparablé. It is easy to verify that this
definition is proper, i.e., it does not depend on the choicthefrepresentatives. In
what follows we shall writdz] <4-P [y] to denote thafr] <P [y] and[x] # [y].

An inconsistency order of, D) induces the following pre-order oa":
DEFINITION 9. — Let<%P be an inconsistency order ¢, D), and letv;, v, € VE.

a) vy <5Pu, iff for every atony, [v1(p)] <5 [va(p)).
b) vy <5P vy if vy <5P 1y and there is an atom s.t. [v1(q)] <P [12(q))].

C
DEFINITION 10. — Let <4P be an inconsistency order on a logical latti¢g, D)

and letI” be a set of formulae ik. Thec-most consistent modetd I" (abbreviation:
thec-mcmsof I') are the<%:P-minimal models of', i.e.,

The lattice-based consequence relatisfv” (Definition 4) may be refined now
such that only the-most consistent models of the premises are taken into atému
drawing conclusions:

DEFINITION 11. — Let<%:? be an inconsistency order on a logical latticg, D).
Denote:T' =574 if everyc-mcm ofl” is a model ofp.

2.3. Examples

Below are some examples of reasoning with-?. In what follows we assume
that formulae with free variables are universally quardifi€onsequently, a set of
assertiond”, containing a non-grounded formula, is viewed as representing the
corresponding set of ground formulae, formed by substi¢gufor each variable that
appears in), every element in the relevant Herbrand universe.

ExamMpPLE 12. — Consider one direction of the barber paradox:
I' = {—shaves(x, x) Dshaves(Barber, x)}.

Denote byvy, v, andys the valuations that assign L, andT (respectively) to the
assertiorshaves(Barber, Barber). Using FOUR as the underlying logical lattice,
we have that(T',<?)) = (I, <)) = {»}, /T, <2) = {v1, 10}, and!(T', <2)) =
{vi,v2,v3}. Thus,I" }£! shaves(Barber,Barber) wheni = 0,1, while I' |=},
shaves(Barber, Barber) wheni=2, 3.

9. As usual, we use the same notation to denote the orderarlathong equivalence classes
and the order relation among their elements.
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ExAMPLE 13 (TWEETY DILEMMA, REVISITED). — Let's consider the following
version of Tweety dilemma, discussed in Example 1.

bird(x) — fly(x),

wounded(x) — —fly(x),
Rules = has_wings(x) D bird(x),
penguin(x) D bird(x),
penguin(x) D ~fly(x)

We are using here different implication connectives acicgrdo the strength of
each entailment: the first two rules state only default prigeeof birds and wounded
animals. The other three rules, on the other hand, spec#fyackeristic properties of
penguins and characterize animals with wings. As there arexoeptions to these
rules, they are expressed by a stronger implication coiveect

Consider, first, the following set of assertions:
'y = Rules U {bird(Tweety) }.

As shown in Table 1I"; has 240 four-valued models, among which six arencms,
and two are botl,-mcms and:s-mems?0

Table 1. The models and the-mcms of™;

Model No. bird fly penguin | has_wings wounded
My — Mg T T, f Tt f, L T,t, f, L Tt f, L
Mio9 — Migg T t, L fL T,t, f, L T, f
M161*M224 t T Tatvaj— Tvtafaj— Tatvaj—
Maas — Mayo t t fL Tt f L T, f
Type bird | fly | penguin | has_wings | wounded
c1-mcms t t f,L t, f, L f
c2-Mmcms t t f t, f f
c3-mcms t t f t, f f

It follows that with ng (1 <i < 3)one can infer fronT'; thatbird(Tweety),
fly(Tweety), and—wounded(Tweety) (the converse assertionsbird(Tweety),
—fly(Tweety), andwounded (Tweety), are, nevertheless, not deducible). This cor-
responds to the intuitive expectation that, as long as thedata concerning Tweety
is that it is a bird, we follow the default assumption thatéhdly, and we don’t have

10. Recall that we are using here the notations of Example 8 notdethe inconsistency or-
ders inFOUR. In what follows we shall also write=%, (instead of=7“*) to denote the
corresponding consequence relations.
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any reason to believe that it is wounded. On the other haraliyéixg the possibility
that Tweety is a penguin seems a more far reaching concltfsonthe previous two,
and indeed only=?, and|=? support this conclusion. Finally, as we do not know
anything about animals with wings, except the fact that teybirds, none op‘:‘éi,

0 <4 < 3, allows us to conclude or to rule out the possibility that &yehas wings.

Suppose now that a new information arrives, and we are irddrthat Tweety is
actually a penguin. Denote the new theorylhyi.e.,

Iy = Rules U {bird(Tweety), penguin(Tweety) }.

Clearly,I'; is no longer classically consistent, which implies thatrgthéng classi-
cally follows from it. On the other hand, as it is shown in $&tt4 below, conse-
quence relations of the forfa-%'? are paraconsistent, and so they do not have this
drawback. Indeed, consider the four-valued modelB0&nd itsc;-mcms, shown in
Table 2.

Table 2. The models and the-mcms of’'y

Model No. bird | fly | penguin | has_wings | wounded
MI*M32 T T T;t Tatvaj— Tvtafaj—
M33*M64 T f Tat Tatvaj— Tvtafaj—
Megs — Mog t T T,t T,t, f, L T,t, f, L
Type bird fly penguin | has_wings wounded
c1-mcms T f t t, f, L t, f, L
t T t t, f, L t, f, L
c2-Mmcms T f t t, f t, f
t T t t, f t, f
c3-mcms T f t t, f t, f
t T t t, f t, f

This time,bird(Tweety), penguin(Tweety), and—fly(Tweety) are all de-
ducible fromI'; with respect to=? for i = 1,2, 3, and the complements of these
assertions cannot be inferred by any one of these consegtedations, as indeed one
expects.

Consider, finally, the following set of assertions:
I's = Rules U {has_wings(Fred), wounded(Fred) }.
Again,T'; is not consistent, and indeed everdtsnost consistent mode{s=1, 2, 3)
assignT to at least one of its atomic formufde(see Table 3 for the;-mcms of

I's). However, as already noted in Example 1, the contradidtidhis case is more

11. Le., for everyl <i<3and for every € !(I's, <?) there is ap€ A(I's) s.t.v(p) = T.
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fundamental than that dfs, since it is not possible to judge from the information in
I'; whether Fred can still fly despite its injuty. Indeed, by Table 3 it follows that
none of the consequence relati¢a$ , i =1, 2, 3, allows to conclude thatly (Fred)

or that—fly (Fred).

Table 3. Thec;-mems of's

Type bird | fly | penguin | has_wings | wounded
c1-mcms T f t, f, L t t
t t fiL t T
t T t, f, L t t
c2-Mmcms T f t, f t t
t t f t T
t T t, f t t
c3-mcms T f t, f t t
t t f t T
t T t, f t t

NOTE 14. — By the last two examples one might get the wrong impoestiat the
set of thec;-mcms of a given theory always contains the set ofdhencms and the
set of thecs-mcms of the same theory. To see that this is not the caseidenagain
the last example with two additional (and somewhat morerowstsial) rules:

o has_wings(x) D fly(x),
Rules’ = Rules U { —has_wings(x) D —penguin(x) [’

Iy, =Ty U Rules’.

The (¢;-most consistent) models &Y, are given in Table 4. It follows, for instance,
that while with|=;, and}=?, there are indications that Tweety is not a ‘typical’ pen-
guin (aspenguin(Tweety) is assignedl by somecy-mcms andecz-mems ofT%),
the consequence relaticmf,1 rules out the possibility that Tweety is not a penguin:
I, =} penguin(Tweety) A (—penguin(Tweety) D f).

Note also that, unlike the examples above, the set otthmcms of a theory is
in general different than the set of the-mcms of the same theory. This is shown in
Proposition 25 below.

3. Embedding in four-valued logics

Four-valued reasoning may be traced back to the 1950’s,eniselnas been in-
vestigated by a number of people, including BialynickitBi [BIA 57a], Rasiowa

12. Note, however, the iis possible to conclude that Fred is a bird, although this factat
explicitly mentioned inl's.
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Table 4. The models and the-mcms ofl%,

Model No. bird | fly | penguin | has_wings | wounded
My — Mg T T T Tt f, L T,t, f, L
M17 - M24 T f T fv 1 ta f
M25*M40 t T T Tatvaj— Tvtafaj—
My — Myg T T t t, L T,t, f, L
Myg — Mso T f t 1 T,t, f, L
Ms3 — Mgo t T t t, L T,t, f, L
Type bird fly penguin | has_wings wounded
c1-mecms T f t 1 t, f, L
t T t t, L t, f, L
c2-MCcms T f t € t, f
T f T f t, f
t T t t t, f
c3-mcms T f t € t, f
T f T f t, f
t T t t t, f

[BIA57b], and Kalman [KAL 58]. Later, Belnap [BEL 77a, BEL By introduced
a corresponding four-valued algebraic structure (denbezd by FOUR) for para-
consistent reasoning. As the following theorem shows,dtriscture is canonical for
reasoning with graded uncertainty. Following [ARI 98a, ARb], this is another
evidence for the robustness of four-valued logics as reptés) common-sense rea-
soning.

THEOREM 15. — Let <4'P pe an inconsistency order dif, D). Then there is an
inconsistency ordex? (0<i<3)onFOUR, such thall =57 v iff T' =2 .13

In the rest of this section we prove Theorem 15. For this, wst fieed some
notations and definitions.

DEFINITION 16. — VI is stopperedv.r.t. <47 if for everyl’ and every € mod(T),
eitherv e |(T', <5P), orthere is an/ € |(T', <5P) s.t.v/ <5Pp 14

Note that if V% is well-founded w.r.t.<%? (i.e., V* does not have an infinitely
descending chain w.r.&£4-P), then it is in particular stoppered.

PROPOSITION17. — Let<4P be an inconsistency order on a logical latticé, D).
ThenV* is stoppered (w.r.t. the induced order on valuations).

13. This is a generalization of a similar result that is giverthie reduced version of this paper

[ARI 03a], in which stopperdness (Definition 16) was assumed
14. The notion “stopperdness” is due to Makinson [MAK 94]. InRK 90] the same property
is calledsmoothness
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PROOF. — Let (£, D) be a logical lattice ang4*? an inconsistency order on the
elements ofL. Consider the corresponding space of valuatibths and the order
relation on the elements of~, denoted also b4'P. In [ARI 96, Theorem 3.22] it
is shown that the consequence relatiefr  thatis induced by, D) (Definition 4) is
compact, and so in terms of [AVR 0D} is finitary!® By Corollary 5.5 of [AVR 01],
then, V! is stoppered w.r.t. any pointwise order that is defined oelasents® In
particular,V* is stoppered w.r.t<4P. n

DEFINITION 18. — Given a logical lattice( £, D), its elements may be divided into
the following four sets:

TP ={xeL|zeD,~xz¢D}, T/ " ={zeL|x¢D,~zeD},

TTL’D:{JCELM:GD,WUGD}, Tf’D:{m€L|m¢D,ﬁm¢D}.
Henceforth we shall usually omit the superscripts, andvuige 7;, 7y, 77, 7. .
DEeFINITION 19. — Let (£, D) be a logical lattice. Denote:

min_co T, = {y€Z, | -y €T, st y' <Py} (forze{t,f,T,1})

ng,D = mingf,v 7 U mingf,v T U mingf,v 7. U mingf,v Tr

DEFINITION 20. — Let (L4, D;) and (L2, D2) be two logical lattices. Suppose that
x; is some element ih; andy; is a valuation ontd.; (i=1, 2).

a) 1 andzx, aresimilarif z; € 7,21 implies thate, € 7,522 (ye{t, f, T, L}).

b) 11 andv, are similarif for every atonp, v1 (p) andv(p) are similar.
PrRoOPOSITION21. — Let(£q, D) and (L2, D2) be two logical lattices and suppose

thaty; andws are two similar valuations o, and L, (respectively). Then for every
formulas, v () andvs(¢) are similar.

PROOF. — By an induction on the structure gf*’ [
Now we can turn to the proof of Theorem 15.

PROOF(OF THEOREM15). — Inwhat follows we shall denote by, some element
in min_c.» TP (xe{t, f, T,L1}),and byw: L — {t, f, T, L} the ‘categorization’
function: w(y) = = iff y € 7,. Also, in the rest of this proof we shall abbreviate
[y] N Q co by [y] (so the equivalence classes consist only of elemertts ino).

LEMMA 22. — If M € (T, <5P) then for every atom, M(p)€Q_ zm.

15. That is, ifI' =" ¢ then there is a finite subsBt C I" such thal” =57 1.

16. A pre-order=< on VT is called pointwise if there is a pre-ordsron L such that for every
v1, v € VE, vy <y iff for every atomp, v1 (p) < v2(p).

17. Note that the fact thab is aprimefilter is crucial here.
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PROOF. — Suppose that there is some atpgrs.t. M(p())¢Q<§,D. Then, assuming

thatM (po) € 7., there is an element, € min_c.» 7, s.t.m, <EP M(po). Consider
the following valuation: B

my if p=po
N = { M) Wy

N is similar to M, and so, by Proposition 21y is also a model of’. Moreover,

N<£PM,thusM & \(T, <£P). .
Now, since <4P is well-founded and sincd, is nonempty for everyr €

{t, f, T,L}, min_z.» 7, is nonempty as well, and so there is at least one ele-

ment of the formm, for everyx e {t,f, T,L}. Also, itis clear that for every

My, m, €min_e.o Ty, [my] = [m],] (otherW|se eithem, <P m’ orm, >5Pm!,

and so eithern/, gmin_c.p 7, Or my min_c.» 7.). It follows, therefore, that there
are no more than the following three equivalence class@s ino:

1) min_z.» T U min_z.» Tr C[t],

2) minzf,p T, C [ml],

3) min;m: Tt C [mT],
wherem  is some element ahin_-.» 7., andm is some element afiin_c.» 77.
By Definition 7,[t] must be a minimal inconsistency class among thO§E<IHD, and

[m] must be a maximal one. It follows, then, that the inconsistetasses if)_c.»
are arranged in one of the following orders: B

If the order relation among the inconsistency class&3 ia.» corresponds to cage
above(0 < < 3) we say that the inconsistency ordef-? is of typei.'8

LEMMA 23. — If <57 is an inconsistency order of tyggthen for everym, m’ €
Q_co, [m] <EP [T iff [w(m)] <2, [w(m)].

PrROOF. — Immediate from the definition of inconsistency order gi¢y, and the
definition of <? . n

LEMMA 24. — If <%P is an inconsistency order of tygen (£, D), then=5"7 is
the same ag=? .

PROOF. — Suppose thal' =57 ¢ butT j£% . Then there is af-mem M*
of ' s.t. M*(vy) € {t, T}. Now, for every atonp let M*(p) be some element in

18. In particular, for every) <i < 3, the inconsistency orde;(;‘i in FOUR is of type:.
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min_z,» Tpsa(p). Thuswo M* =M*, andM* is similar toM*. By Proposition 21,
M* is a model off" and it is not a model ofy. To get a contradiction t&' =57 1,

it remains to show, then, that’~ is ac-mcm of T in (£, D). Indeed, otherwise by
stopperdness (Proposition 17) there ismcm N of I' s.t. N¥ <£P ML, So for
every atomp, [NZ(p)] <%P [M*(p)], and there is an atomy s.t. [N (pg)] <57
[ME(po)]. Let N* =wo NE. Again, N* is similar to N, therefore it is a (four-
valued) model of". Also, by the definition of\Z, for every atonp, M~ (p) € Qe
and by Lemma 22¢p N*(p) €Q_c.». Thus, by Lemma 23,

[N*(p)] = [woN"(p)] <¢, [woM*(p)] = [M*(p)].
Also, by the same lemma,

[N*(po)] = [woN"(po)] <i, [wo M (po)] = [M*(po)].

It follows that N* <2 M*, but this contradicts the assumption thdt is ac;-mcm
of I.

For the converse, suppose tidt? o, butl’ (5P . Then there is a-mcm M~
of I'in (£, D) s.t. ME(y) ¢ D. Define, for every atom, M*(p) =woM*(p). By the
definition ofw, M* is similar toM L and saM* is amodel of" in FOUR, butitis not
a model ofy. It remains to show, then, that* is ac}-mcm ofI'. Indeed, otherwise
there is a modelN* of I' s.t. N* <2 M?*, that is, for every atonp [N*(p)] <2,
[M*(p)], and there is an atomy for which this inequality is strict:{ N*(po)] <¢,
[M*(po)]. Now, for every atonp, let NX(p) be some element imin<£,p TN4(p)-
Thuswo N = N4, andN’ is similar toN*. By Proposition 21N is in particular a

model ofT" in (£, D). Moreover, for every atom,
woNE(p)] = [N*(p)] <2, [M*(p)] = [woM"(p)].

Now, by the definition ofV* we have that for every atom N (p) €Q_z.o, and by
Lemma 22 M*(p) € Q_c.» as well. Hence, by Lemma 28V" (p)] <ZP [M*(p)].
Similarly, B

[wo N (po)] = [N*(po)] <¢, [M*(po)] = [wo M*(po)]
and again this entails thav = (po)] <P [MT(po)]. It follows that N* <%P Mt
but this contradicts the assumption tAdt is ac-mcm of ' in (£, D). [

Now, by Lemma 24, Theorem 15 is obtained. ]

4. Reasoning with 5P

In this section we consider some basic properties-6f°. By Theorem 15, it is
sufficient to considefFOUR and the four corresponding consequence relaqi@ﬁrs
(1t =0,...,3). Note that the proof of Theorem 15 induces a simple algorithm
determining which one of the basic four-valued consequeslegions is the same as
a given consequence relation of the foey . See Figure 2 for the details.
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input: an inconsistency order <%P in (L, D)

choose some m € min_c» 7, and mT € min_c» 7T7.
<é <c

if ([mT]=[t]) then output 0 /¥ EEP = o/
else if ([m_]=[t]) then output 1 [x EED = =L x/
else if ([mt]=[m,]) then output 2 [x =L = =1 «/
else output 3 [x =L = =1 x/

Figure 2. Finding the equivalent four-valued consequence relatibg-6-".

4.1. Therelative strength of the basic logics

PrROPOSITION25. — LetI" be a set of formulae angd a formula inX.

a) The consequence relatiohéi, 0<i<3, are all different.
b) For everyl <i<3,if I'}=2 v thenl' =2 4.
c) Nooneot=% , =2 , and|=.,, is stronger than the other.

co!

PrRooOF. — For the first part, consider the following set:
I'={=g, (p>q)V(~¢>-p), (=pDq)V(~¢Dp)}
Thect-mcms ofl are given in Table 5.

Table 5. Thec}-mcms of”

p | q || cd-mems | ci-mems | c3-mcms | c3-mcms
M, 1 f + + + +
M2 T f + — + _
M || t | T + - + +
M4 f T + — + +
M5 1 T + - - —
Mg || T | T + - - -

It is easy to verify that for everg < < 3, the consequences bfw.r.t. |= are
different. LetTh;(T') ={v | T' =2 +}. Then from Table 5 it follows thafh,(I') C
Tho(T') C Ths(T') € Thy(I'). Moreover,g O p € Thy (') \ Ths(I), p D g € Tha(I) \
Tho(T"), andg D (pV —p) € Tho(T') \ Tho(T'), so the inclusions above are proper.

The second part of the claim is obvious. For the last parg tiwitp \V —p € Tho (D)
andp V —p € Th3(0), while p vV —p € Th, (#)). Thus, by what we have already shown
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in the first part of this proof, it remains to show thaf, is not stronger thah=2, . For
this, consider the following set:

I"={p, (-pDq) Dq gD —q, ~q¢Dq}.

The onlyci-mem of I is My (p) =t, M1 (q) =T, while thec3-mcms ofl areM; and
M;(p)=T, Ma(q)=L. Thus, e.g.I'" =2 ¢ while I [£2 ¢. In this case, therefore,
Ths(I") € Thy(I"). .

In contrast to the last proposition, in the classical lamga,;,*° the basic conse-
guence relationare comparable:

PrROPOSITION26. — LetI" be a set of formulae and a formula inX.;. Then:

Q)T =L, wiff DL v,

b) if =2 ¢ thenD' =2, v andT' [=2, 4.

c) If ¢ is a formula in a conjunctive normal form (CNF), none of itsigmcts is a
tautology, thel' =2 v iff D=2 ¢ iff D2 4.
PrRooOF. — For item (a), consider the following lemma:

LEMMA 27. — LetT be a set of formulae ix.;, M — ac3-mcm ofl’, and N — a
c3-mcm ofT". Then there is no formula s.t. M (/)= L or N(¢))= L.

PROOF(OF THE LEMMA). — Since{t, f, T} is closed under, Vv, A, it is sufficient
to show the lemma only for atomic formulae. We show it #dr, the proof forV is

similar. Define a transformation: FOUR — {t, f, T} as follows: g(L) =¢, and
g(x) =1z otherwise. As it is easily verified (by induction on the sture of formulae
in X.1), for every formulae) in X s.t. M (¢) is designatedgo M (¢)) is designated
as well. It follows thatyo M is also a model of'. Sincego M g‘é? M, necessarily
goM =M. [

Now, lemma 27 implies that the set of thEmcms ofl" are the same as the set of
thec3-mcms ofl, and so item (a) is obtained.

The first part of item (b) follows from the fact that i, everyci-mcm of I' is
also ac{-mcm ofT'. Indeed, suppose for a contradiction thétis acs-mcm of " and
itis not aci{-mcm ofT', i.e., there is another modal of I" s.t. N <2 M. Define for
every atony a valuation)M" as follows: M’ (p) =t if N(p) =L andM'(p) = N(p)
otherwise. Now, it is easy to verify, by induction on the stture of the formulae in
Ya, thatM'(y) € D wheneverN () € D, and soM’ is a model off". Also, as for
every atonyp, the equivalence class w.r&? of M’(p) is the same as that df (p),
andN < M, it follows thatM’ <2 M. By Lemma 27, then)!’ <} M as well, and
this is a contradiction to the assumption thét !(T", <?,).

The second part of item (b) (the one that is relateéi:ﬁg) follows from the first
part of item (b) together with item (a).

19. l.e., the language df—, A, vV, —, ¢, f}.



Reasoning with graded uncertainty 333

For item (c) it is sufficient to assume thatis a disjunction of literals that does
not contain an atomic formula and its negation. Assumelthaf . Then thereis a
ct-memM of I' s.t. M (v) ¢ {t, T}. Consider the valuation/’, defined as follows:

t if M(p)=_L andp does not appear it
M'(p)=<% f if M (p)=_L andp appears in
M(p)  otherwise

As in part (b), it is easy to verify that/’ is aci-mcm of " and M’ (y)) € { T, t}. Thus,
I 2 4. Again, the second part of item (c) follows from the first paifrthis item
together with item (a). [

4.2. Paraconsistency and relationsto classical logic

In what follows we shall writé=? for the classical consequence relation, &t
for any one of=% , 0<i <3.

PROPOSITION28. — =2 is paraconsistent.

PROOF. — It is easy to see that reasoning wit} does not reduce to triviality even
when the set of premises is not consistent. For instameep %+ ¢. To see that,
consider a valuation, for whichv(p)=T andv(q)=f. |

PROPOSITION29. — If T'[=24) thenT' =2 4.

PROOF. — Let M be a classical model df. Since the seft, f} is closed under the
operations inx, there is no difference between viewidg as a valuation itFOUR
and viewing it as a valuation ifit, f}. HenceM is also a model of" in FOUR.
Now, sinceM assigns only classical truth values to the atomic formuldenust be
ac-mcm of I in FOUR. Sincel =2 v, necessarilyM (1) € {t, T}. On the other
hand,M (v) € {t, f}, and soM (¢) =t. It follows thatM is a classical model af,
thusl' =2 [

The converse of Proposition 29 is not true in general. Fdaimte, excluded mid-
dle is not valid w.r.t. =2 and =} . However, with respect to the other basic four-
valued consequence relations, the converse of Propo&€8papplied on classically
consistent theories, does hold.

PropPOSITION30. — LetI be a classically consistent theory. Then for every formula
Yin D, T2y iff T =L, ¢ iff T=L .

PrROOF. — Immediately follows from the fact that the set of themcms and the
set of theci-mcms of a classically consistent thedhare the same as the set of the
classical models df. [ ]

By Propositions 28 and 30 it follows that with (any conseqerelation of the
form =57 thatis equivalentto)=!, andj=2 one can draw classical conclusions from
(classically) consistent theories, while the set of cosidns is not ‘exploded’ when
the theory becomes inconsistent. Batens [BAT 98, BAT 00atdkes this property
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as an ‘oscillation’ between some lower limit (paraconsigteogic and an upper limit
(classical) logic.

4.3. Monotonicity and transitivity

PROPOSITION31. — = is a monotonic consequence relation, whit¢ , i =
1,2, 3, are nonmonotonic relations.

PROOF. — For the first part, note that? is in fact the same gs-*, which is clearly
monotonic. For the other part, consides {p, -pVq}. SinceM (p)=t, M(q) =t is
the onlyc}-mcm ofI" for i =1, 2, 3, it follows thatI' =2 ¢ (i=1,2, 3). However, as
in the proof of Proposition 28, it is easy to see thatp b&‘cﬂ_ qfori=1,2,3.

For another example, consider again Example 13. As we hawersHor every
1<i<3,I'y =7, fly(Tweety), whileT';, penguin(Tweety) 42 fly(Tweety). m

The last proposition implies that unless the inconsistesrdgr under considera-
tion is degenerated=~-P is not monotonic, and so it is not a consequence relation in
the standard sense of Tarski [TAR 41]. In such cases it islusuaquire a weaker
condition (see, e.g., [GAB 85, KRA 90]):

PROPOSITION32. — =2 satisfies cautious (left) monotonicityTif=2 v andl" =2 ¢,

thenT', o =2 ¢.

PROOF. — Assume thal =2 ¢, andl =2 ¢. Let M be somec-mcm of T'U{¢}.
In particular,M is a model ofl". Moreover, it must be a-mcm of I" as well, since
otherwise there would have been soiie mod(T") s.t. N <2 M. Sincel =2 ¢, this
N would have been a model 6fU {1/} which is strictly<?-smaller than/. Hence
M cannot be a-mcm ofI"U {+}, with a contradiction to the choice af . Therefore,
M is ac-mcm of I". Now, sincel’ =% ¢, M is a model ofp. Hencel', ) =2 6. ]

A desirable property of non-monotonic consequence relati®the ability to pre-
serve any conclusion when learning about a new fact that baafluence on the
set of premises. Consequence relations that satisfy tbjsepty are calledational
[LEH 92]. The next proposition shows that? (i=0,...,3) are rational.

PROPOSITION33. — If T' =2 ¢ and A(T' U {¥}) N A(¢) = (), thenT', ¢ =420

Intuitively, the second condition in Proposition 33 gudess that is ‘irrelevant’
for I and+. The intuitive meaning of Proposition 33 is, therefore t tth& reasoner
does not have to retrag¢gtwhen learning thap holds.

PROOF. — Otherwisel', ¢ =21, so thereis a/ € (T U, <%) s.t. M(¢) € {t, T}.
Let m be some<2-minimal element. Consider the following valuation:

M(p) ifpe AT UY),
N(p) = { m otherwise.

20. Recall thatA(T") is the set of atomic formulae that appear in some formula. of
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Clearly, N is a model ofl" and N (y)) & {t, T}. Sincel =%+, N cannot be a-mcm
of I', and so there is a modal’ of ' s.t. N/ <2 N. By the definition ofN, there is
somepy € A(T' U ) s.t. N'(po) <2 N(po). Now, consider the following valuation:

, :

M (p) = { z@) fpe AT UY),
(p) otherwise.

Clearly, M’ < M, and sinceM’ is the same a8/’ on A(T"), M’ is also a model of

I'. Moreover, using the facts that(I" U ¢)) N A(¢) =0 and thatM is a model ofp,

it follows that M/’ is also a model of. HencelM’ is a model ofl’ U {¢}, which is

strictly <#-smaller thanM/, but this is a contradiction to the choice &f. [ |

NoOTE 34. — In order to assure rationality, Lehmann and MagidorHL9] intro-
duced the rule ofational monotonicity:

if T'~+ thenT', ¢ |~ ), unlessl |~ —g.

Rational monotonicity may be considered as too strong feuritsg rationality,
and there are many general patterns of nonmonotonic reastimat do not satisfy
this rule. For instance, althougif:‘g1 is rational (by Proposition 33), it does not satisfy
rational monotonicity. To see this consider, ely= {p, ¢ —p}, » = -pD—q, and
¢ =q.
PROPOSITION35. — =2 is a Tarskian cautious consequence relation in the sense of
[ARI 99, ARI 00b], i.e., it is reflexivél" =2 v for everyy € T'), and satisfies cautious
monotonicity(see Proposition 32and cautious cufif I' =2 «» andT', ¢ =2 ¢, then

L= e).

PrROOF. — Reflexivity easily follows from the definition d¢&2, and cautious mono-
tonicity is shown in Proposition 32. It remains to show caus cut (transitivity):
suppose thaF =2 ¢ andT, ¢ =% ¢. We shall show that this entails that evety-
mcm of I' is also a model ofy (and sol' =2 ¢). Indeed, letM € mod(T"). Since
I =24, M is a modekp, thusM € mod(T' U {1}). Now, M is also ac-mcm of
I U {¢}, otherwise there would have been soies mod(I' U {+}) s.t. N <% M.
In particular, thisN would be a model of* which is strictly<?-smaller tham/, and
this is a contradiction to the choice 8f as ac-mcm of". The fact that\/ is a model
of ¢ follows now from the assumption th&t v =2 ¢. ]

4.4. Inconsistency adaptation

We conclude this section by showing thaf, and|=;, are, in terms of Batens
[BAT 98, BAT 00a, BAT 02],adaptive if it is possible to distinguish between a con-
sistent part and an inconsistent part of a given theory, éveny assertion that clas-
sically follows from the consistent part, and is not relatedhe inconsistent part, is
also aj=} -consequencé; = 2,3) of the whole theory. Thus, whilg=?, and =,
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handle inconsistent theories in a nontrivial way (Proposi28), they presuppose a
consistency of all the assertions ‘unless and until provkarwise’.

PROPOSITION36. — LetI'=T" UT"” be a set of formulae i s.t. T” is classically
consistent andd(I'") N A(T"”) =0. Then for every) s.t. A(v)) N A(T") =), the fact
thatI” =2 ¢ entails thatl’ =7, ¢ andI" =2, 4.

PROOF. — We show here the case !, ; the proof forl=?, is similar. Suppose that
I'" =% 4. By Proposition 30" <. ¢, and by Proposition 33, sincé(I" U ) N
A(T")=0, we have that’ =2 v [

ExaMPLE 37. — Consider the s@t = {p, —p, ¢, -p V r, ¢ V s}. A plausible
inference system shouttapply here the Disjunctive Syllogism @ = {p, —pVr}

for concluding that follows fromI'. The reason for this is thatp is also true inl,
and so—p V r holds even in cases thatis false. On the other hand, applying the
Disjunctive Syllogism on the subs&t = {q, —¢ V s} (for concludings from T")
may be justified by the fact th@t’ should not be affected by the inconsistency'in
therefore inference rules that are classically valid caadpdied on its elements. Now,
sincel’ can be split-up to two separated subsets, @tgi$¢ consistent, and the other
(I') is inconsistent, it follows from Proposition 36 that=: s andl’ =%, s. Also,
L2 randl (4L, r, as indeed intuitively expected.

5. Computability

A general method for reducing questions of consequencesfanential structures
to computations of classical entailments is introducedRI[02b, ARI 03b]. This ap-
proach is based on a definition of appropriate circumsegmixioms to capture the
notion of minimality and for representing preferentialseaing. In this section we
incorporate this method in our framework, and show how nei@gpwith (graded) un-
certainty can be implemented using algorithms for proogssircumscriptive theories
(such as those of [OHL 96, DOH 97]). As the underlying langueithese algorithms
is the (propositional or first-order) classical one, our patational method is applied
on theories in the classical fragmentofnamely:X. = {—, A, V, —, f, t}.

Given a theoryl’, the first step according to the approach of [ARI 02b, ARI Q3Db]
is to apply on it the following transformation, that esseltyiserves as a separator of
negated atoms from affirmed ones:

DEFINITION 38 ([ARI 038]). — Let be a formula inX.;. Denote by the for-

mula that is obtained from) by substituting every positive occurrencenof an

atomic formulap by a new symbagi™, and replacing every negative occurrencein
of an atomic formula by —p~.?! The language that is obtained from, by introduc-

ing these new symbols is denotecﬁ@y Given a sef” of formulae in¥X.;, we denote
the set{+) | €T} byT.

21. An occurrence o in 1) is calledpositiveif it appears in the scope of an even number of
negation operators; otherwise, it iegativeoccurrence.
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ExAMPLE 39. — Lety) = —=(pV —q) V —q. The first appearance g¢fin v is positive,
and the second appearance;ah ¢ as well as the appearanceyoih +/ are negative.
Thus,y) = =(—=p~ V =q ") V =—q~.

Consider now the following transformation between fouluea valuations of for-
mulae inX,; and two-valued valuations of formulaeiifl:

DEFINITION 40 ([ARI 028, ARI 038B]). —
vip) =t <=7o@p")=1,0(p")=0, vip)=[f=7v@p")=07(p)=1,
vip) =T =70 =170 )=1, vp)=L=70p") =0 7p)=0.

A key result for the computational method is the following:

LEMMA 41 ([ARI 028, ARI 03B]). — v € mod(v) iff 7 € mod ().
Lemma 41 immediately entails the following result:
PROPOSITION42 ([ARI 028, ARI 03B]). — T'[=*v iff T =2 4.

Since, by its definition/=* is the same ag=2 , we actually have a method of
computing=;, by =2

COROLLARY 43. — I'[=2 o iff T' =24

Corollary 43 implies, in particular, that reasoning witf§, may be implemented
by two-valued theorem provers. Moreover, silide obtained fronT" in a polynomial

time, computing consequences in this cageolynomially reducibléo computations
of classical entailment.

We turn now to the other three basic types of logics of the fesfn?, namely:
. =, andl=2, . Recall that with respect to the language, =2, and|=?, are
actually the same relation (item (a) of Proposition 26).sIsufficient, therefore, to

consider only=: and|=?, .

In order to simulate reasoning with? andj=?, by classical entailment we should
first represent the inconsistency ordg‘g (=1, 2). Following [ARI 02b, ARI 03b],
this is accomplished by introducing a circumscription axiGirc; that expresseg‘gi
objectively, using a formul&;:

DEFINITION 44. — For a setp = {p1,p2,...,p,} Of atoms in¥,2? let g+ =

{pf,pl‘,pj,pi, ...,pt,p;y } be the corresponding set of atoms¥iy, andg* — a
renaming inSZ; of 5 £. Now,
n
GEEqE) = N\ ((pTApZ) - (qELAq{)),
=1
n
A (@ Ap) Vv (o AD)) = (@ AGD) V(g Amar)) ).

i=1

@)
[ V]
S
. H
_y
H_
I

22. In fact, for checking the entailmefit=;, v, it is sufficient to taker = [A(T' U {¢'})|.
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For a finite sefl” of formulae in.; depending o' *, andi = 1, 2, denote:

Circf (pF) = V(cji)( N\ 0@F) — (G5 7%) = GE* *i)))-

pel

Now we are ready to give a general characterization of réagavith =% in terms
of ‘formula circumscription’ [MCC 86] and two-valued enliaient:

THEOREM45. — LetI" be a finite set of formulae anpiaform_ula inY.. I__etCicm-F
(i=1,2) be the formula given in Definition 44. Thén=_ v iff T, Circ; =2¢

Theorem 45 immediately follows from the following propasit:

ProPOSITION46. — LetI Qe a finite set of formulae iR.. Thenv is ac;‘-mcm of
I (i=1,2)iff 7 is a model of” andCirc; .

PROOF. — By Lemma 41, is a model ofl" iff 7 is a model ofl". It remains to
show, then, that the fact thﬁtsatisfiesCirc is a necessary and sufficient condition
for assuring that is <2 -minimal among the models &. Indeed, le{p'*:7, ¢+ :7)

be the two-valued mterpretauon that interprets the sylsingy * accordmg t0/ and
the symbols inj* according tog. It is easy to see tha1<4 wiff (p%:7, ¢ :7)
satisfiesC; (5, 7%). It follows, therefore, thaw satisfiesCirc! iff for every valuation

1 that satisfied” and for whichu gﬁi v, itis also true that gﬁi 1. Thus,v satisfies

Circ} iff there is no modej: of I such tha <Z, v, iff ve I(I', <1). "
By Theorem 45 and Proposition 26(a) we also have the follgwésult:
COROLLARY 47. — LetI" be a finite set of formulae and a formula inX.;. Then
I'=2 4 iff T, Circh =24
Now, entailments of the form =P+ (where<%P is an inconsistency order in

(£,D), andl'U{¢} is a finite set of formulae i) can be reduced to questions of
classical entailments by the algorithm of Figure 3.

compute T and E
execute the algorithm of Figure 2 to determine the type of §§’D
let i be the type of <57 /* i.e., EEP = )Zé */
- if i =0, check if T2y
-if =1, compute Circ; and check if T, Circlf =24

- otherwise, compute Circo and check if f,Circg )ZQE

Figure 3. Algorithm for converting=~-P-entailments to classical entailments.

Next we consider the computational complexity of reasomiity =52. Again,
by Theorem 15 and the algorithm of Figure 2, the problem igmpamially reducible



Reasoning with graded uncertainty 339

to the four-valued case, so it is sufficient to consider onlyrfvalued logics. As the
following proposition shows, checking entailments witspect to such consequence
relations is on the second level of the polynomial hierarchy

PROPOSITION48. — LetI',¢) beinX. Then

1) Checking ifl" H‘O 1 is coNP-complete; ifl" is in CNF andy is an atom, the
same decision problem is

2) Checking il =2, ¥, wherel <i <3, isN5-complete (even if is in CNF and
1 is an atom).

NOTE 49. — The results in Proposition 48 remain the same also whand the
formulae ofT" are inX;.

The proof of Proposition 48 and Note 49 is a direct adaptata@ur framework of
the proof of Proposition 2 in [COS 02]; the interested redsleeferred to the appendix
of that paper. A computational analysis of the algorithm a@fuFfe 3 provides an
alternative proof for Note 49, as it shows that verifyhago-inferences is equivalentto
checking classical entailment, and decidkﬁg-consequences of a finite theorydiy,
is equivalent to validity checking of formulae with exactiye quantifier alternation
(known to bel15-complete, see [WRA 76]).

6. Summary and concluding remarks

We have introduced a family of preferential logics that aseful for reasoning
with different degrees of incomplete and inconsistentrimfation. It is shown that
these logics can be characterized in terms of four-valuedexuence relations, and
that they can be computed by algorithms that process sematat-circumscriptive
axioms.

As we have shown, the ‘basic’ non-degenerated consequetat®ns (i.e. =2
wherel < < 3) are all different, and none of them is strictly strongertiize other.
The decision which one should be used in practice depersteftire, on further con-
siderations. For instance, the fact thaf, and}=,, are the same ds? as long as the
set of premises is classically consistent (but they areridaltw.r.t. inconsistent set
of premises), may be considered as an advantage for apptisahat need to draw
classical conclusions from (classically) consistent theeo For other languages, the
relative strength of the consequence relations may be #ymssiterion for choosing
the most appropriate formalism (see, e.g., Propositioro2@ tomparison of conse-
quence relations with respect to the classical language).

It is worth noting that the logics that are defined here gdizeraome other for-
malisms, considered elsewhere in the literature for sirgiteals. The next proposition
shows some examples of this.
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PROPOSITION50., — 23

— [=2, coincides with Belnap’s four-valued logiBEL 77a, BEL 77b] and it can
be used for implementing KleendKLE 50] and Priest's[PRI 89, PRI 91]three-
valued logics (denoted, respectivelys,, and=;,): for AT U{y'}) = {p1,p2,...},

D g o iff T, (puA-p1)Df, (p2A-p2) D f, ... b ¥

L dp o iff T, prVopy, paVops ... = ¥

- =2 and|=;, are, respectively, the same as the logies, and=7, of [ARI 98a,
ARI 98b].2* It follows, therefore, that these logics capture the nagiohinclusion of
inconsistency sets afdmcms, introduced ifARI 98a, ARI 98b]

— =2 (i=1,2,3) can be used for implementing Priest’s three-valued pretéae
logic LPm(=}5,.) [PRI 89, PRI 91] for reasoning with minimal inconsistenéyif
A(F U {"l/)}) = {pl,pg, .. .}, thenl’ lziPm "LZ) iff F,pl \/"pl,pg\/_'pg e LCLI ’(/)

PROOF(OUTLINE). — The consequence relatida?, and Belnap’s four-valued
logic are the same simply because in both cases conclusiehssed on all the four-
valued models of the premises. The relationkef to the three-valued logig=3,
(respectively=3 ) follows from the fact that thét, f, L }-models (respectively, the
{t, f, T}-models) ofl" are the same as the four-valued model§ aof {p; A —p; D
f, p2 A —p2 D f,...} (respectively, the four-valued modelsfU {p; V —p1, p2 V

P2, .. } )

For the second item, consider an inconsistencyZsgh the sense of [ARI 98a,
ARI 98Db]) in a logical lattice( £, D). It induces an inconsistency ord€r. in (£, D),
wherer <.y iff yeZ andz ¢Z. In FOUR, there are two inconsistency s&is={T }
andZ, = {T, L}, so the corresponding inconsistency orders in this case grand
g‘;, respectively. Also, it is easy to verify that a four-valueduationM! is anZ;-
mcm of a theory" iff it is a c;*—mcm of " (j =1, 2), and so for every in ¥ and for
j = 1,2, we have thal' =7 ¢ iff T'|=¢, 1.

The last item immediately follows from the previous item dvposition 69 of
[ARI 98Db], which states a similar property as in our proposit but for the conse-
quence relation&%, G =1,2). n

A major goal for future work is to carry on the ideas of Secttolso thapractical
reasoning with=%7 will become more feasible. As making decisions in the presen
of (different types and levels of) uncertainty is a mattegewdgryday life, this challenge
is certainly worthy.

23. In what follows we shall assume that the reader is familidn the relevant formalisms, and
so we shall omit the corresponding definitions. For moreildetane may check the references
that appear in the proposition.

24. Note, however, that there is no equivalent in [ARI 98a, ABbPto |:j§3.

25. Also known as the logi¢=,,, of Besnard et al., see [BES 03].
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