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ABSTRACT.We introduce a family of preferential logics that are usefulfor handling informa-
tion with different levels of uncertainty. The corresponding consequence relations are non-
monotonic, paraconsistent, adaptive, and rational. It is also shown that the formalisms in this
family can be embedded in corresponding four-valued logicswith at most three uncertainty
levels, and that reasoning with these logics can be simulated by algorithms for processing cir-
cumscriptive theories, such as DLS and SCAN.
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1. Motivation

The ability to reason in a ‘rational’ way with incomplete or inconsistent informa-
tion is a major challenge, and its significance should be obvious. It is well-known that
classical logic is not suitable for this task, thus non-classical formalisms are usually
used for handling uncertainty.1 Such formalisms should be able to distinguish among
different types of inconsistent information and partial data with different degrees of
uncertainty that may appear in the same theory, since each kind of uncertainty may
require a different treatment and may have a different effect on the set of the conse-
quences of the theory. To see this, consider, e.g., the following well-known example:

EXAMPLE 1 (TWEETY DILEMMA ). — Given a knowledge-base with the following
set of assertions (specified in some appropriate formal language):

1) Flying ability is a default property of birds.

2) A wounded bird might not fly.

3) Animals with wings are birds.

4) Penguins are birds.

5) Penguins cannot fly.

1. See [BAT 00b, BEN 01, CAR 02a, NIE 03] for recent collectionsof papers on this topic.
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Suppose, further, that it is known that Tweety is a penguin, and that Fred is a wounded
animal with wings. This knowledge-base contains conflicting evidence regarding the
flying abilities of Tweety and Fred: Tweety is a penguin, therefore it is a bird, and
since most of the birds can fly, one concludes that Tweety probably flies. On the other
hand, since penguins cannot fly, and since Tweety is a penguin, one has also a good
reason to believe that Tweety cannot fly. Note that the latterconclusion is stronger
than the former, since it is based on a strict rule (all the penguins cannot fly) rather
than a default assumption. Indeed, most of the formalisms for such theories conclude
(or indicate with high certainty) that Tweety can fly, despite the contradictory data.

The case of Fred is more problematic, as the evidence in favorof concluding that
Fred flies and the evidence against this conclusion seem to bemore ‘balanced’: nor-
mally, one would conclude that Fred can fly (since it has wingsand so it is a bird).
However, we also know that it is wounded, and so the injury might prevent this abil-
ity (as assertion (2) above suggests). It follows, then, that there is a contradictory
evidence about whether Fred can fly. This contradiction stems from the partial infor-
mation about Fred’s injury and the consequences of this injury.

As the example above shows, it is often natural and reasonable to attach different
levels of uncertainty to different assertions. This kind ofinformation may be used,
for instance, by algorithms for consistency restoration, since data with higher degree
of inconsistency may be treated (i.e., eliminated) first (see, e.g., [DUB 94, BEN 95]).
A proper method of ‘grading’ uncertain information w.r.t. inconsistent and/or incom-
plete theories is also vital for many paraconsistent formalisms2, in which the criteria
for drawing conclusions is the robustness of the premises, i.e., the degree of certainty
that the premises indeed hold (see, e.g., [ARI 98b, BAT 98, BAT 00a, ARI 02b]).

In this paper we consider a framework that supports these kinds of considerations,
and allows to reason with different levels of uncertain information. We show that the
logics that are obtained are nonmonotonic, paraconsistent[COS 74], adaptive in the
sense of Batens [BAT 98, BAT 00a, BAT 02], and rational in the sense of Lehmann and
Magidor [LEH 92]. It is also shown that for each one of these formalisms there is a
logically equivalent four-valued logic with at most three different levels of uncertainty.
These logics can be simulated by algorithms for processing circumscriptive theories,
such as DLS [DOH 97] and SCAN [OHL 96].

The rest of this paper is organized as follows: in the next section we introduce our
framework and define the corresponding family of consequence relations for reason-
ing with graded uncertainty. In Section 3 we give a characterization theorem for this
family in terms of four-valued semantics. Then, in Section 4we show several proper-
ties of the underlying formalisms, and in Section 5 we consider some computational
aspects of the corresponding reasoning process. In Section6 we conclude.3

2. I.e., reasoning processes that do not become trivial in thepresence of inconsistency. See
[CAR 02b] for a review of such systems.
3. This paper is a revised and extended version of [ARI 03a].
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2. The framework

2.1. Logical lattices and their consequence relations

It is well-known that classical logic is not suitable for reasoning with incomplete
and inconsistent data. For instance, classical logic is notparaconsistent[COS 74],
that is: everything classically follows from an inconsistent theory, and therefore it is
not possible to draw, in a non-trivial way, plausible conclusions from such theories.

In order to overcome these shortcomings of classical logic and properly handle
uncertainty, we turn to multiple-valued logics. This is a common approach that is
the basis of many formal systems (see [AVR 02] for a recent survey), including sys-
tems that are based on fuzzy logic [HÁJ 98], probabilistic reasoning [PEA 89], possi-
bilistic logics [DUB 94], annotated logics [SUB 90, KIF 92],and fixpoint semantics
for extended/disjunctive logic programs (see, e.g., [LUK 01, ARI 02a], and a survey
in [DAM 98]). In most of the approaches mentioned above, and here as well, the
truth-values are arranged in a lattice structure. In what follows we shall denote by
L=(L,≤) a bounded lattice that has at least four elements: a≤-maximal element and
a≤-minimal element that correspond to the classical values (denoted, respectively, by
t andf ), and two intermediate elements, denoted by⊤ and⊥, that may intuitively be
understood as representing two basic types of uncertainty:inconsistency and incom-
pleteness (respectively). As usual, the meet and the join operations onL are denoted
by∧ and∨. In addition, we assume thatL has an involution operator¬ (a ‘negation’)
such that¬t=f , ¬f= t, ¬⊤=⊤, ¬⊥=⊥. We denote byD the set of thedesignated
valuesof L (i.e., the set of the truth values inL that represent true assertions). We
shall assume thatD is a prime filter4 in L, s.t. ⊤ ∈ D and⊥ 6∈ D. A pair (L,D) is
calledlogical lattice[ARI 99].

EXAMPLE 2. — The smallest logical lattice, denotedFOUR, is shown in Figure 2
(left). This is the algebraic structure behind Belnap’s well-known four-valued logic
[BEL 77a, BEL 77b], and it will play an important role here as well (see Section 3).
FOUR consists of the four basic elements of logical lattices, among which two are
designated:D = {t,⊤}. The other structure shown in Figure 2 isNINE ; it may
be viewed as an extension ofFOUR, which is useful, e.g., for default reasoning
(and sodt may be attached to formulae that are ‘true by default’,bt may represent
belief that is ‘biased’ fort, etc.). This lattice depicts three main levels of uncertainty:
incomplete data (⊥), inconsistent data(⊤), and a middle level of uncertainty(m). The
latter kind of uncertainty may correspond to contradictorydefault assumptions, so it
could be retracted when further information arrives. The decision whether to viewm
as designated is one of the differences between the two logical lattices thatNINE
induces, namely(NINE , {t, bt,⊤}) and(NINE , {t, dt, bt, bf,m,⊤}).

As logical lattices may be infinite, it is possible to consider structures with arbi-
trarily many different levels of inconsistency. Consider,e.g., the logical lattice(L,D),

4. In particular,t∈D andf 6∈D.
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Figure 1. FOUR andNINE .

whereL = {(x, y)∈R
2 | 0≤x≤1, 0≤y≤1}, D = {(1, y) | y∈R, 0≤y≤1}, and

the lattice operators are defined as follows:

(x1, y1) ∨ (x2, y2) = (max(x1, x2),min(y1, y2)),

(x1, y1) ∧ (x2, y2) = (min(x1, x2),max(y1, y2)).

In this case,t = (1, 0), f = (0, 1), ⊤ = (1, 1), ⊥ = (0, 0), and(x1, y1)≤(x2, y2)
iff x1≤x2 andy1≥y2.5 One way to intuitively understand the meaning of an element
(x, y)∈L is such thatx represents the amount of belief for the underlying assertion,
andy represents the amount of belief against it. Following this intuition, every element
(x, x)∈L may be associated with a different degree of inconsistency.

Given a logical lattice(L,D), the basic connectives are defined in the standard
way: negation corresponds to the lattice involution, conjunction [respectively, disjunc-
tion] corresponds to the meet [respectively, join] operator, and the material implication
is defined by a combination of negation and disjunction:p→ q = ¬p∨q. Standard
semantic notions are natural generalizations of the classical ones: a (multiple-valued)
valuationν is a function that assigns an element ofL to each atomic formula. The set
of valuations ontoL is denoted byVL. Extension to complex formulae is done in the
usual way:ν(¬ψ) = ¬ν(ψ), andν(ψ ◦ φ) = ν(ψ) ◦ ν(φ) for every◦ ∈ {∨,∧,→}.
A valuation is amodelof a set of assertionsΓ if it assigns a designated value to every
formula inΓ. The set of all the models ofΓ is denoted bymod(Γ).

Note that there are no tautologies in the language of{¬,∨,∧,→}, since if all the
atomic formulae that appear in a formulaψ are assigned⊥ by a valuationν, then
ν(ψ) = ⊥ as well. It follows that the definition of the material implicationp→ q as

5. See [GIN 88, FIT 90, ARI 00a] for a further discussion on thislattice, in the context of more
general structures, calledbilattices.
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¬p∨q is not adequate for representing entailments in our semantics. Instead, we use
another connective, which does function as an implication in our setting:

DEFINITION 3 ([AVR 91, ARI 96]). — Let (L,D) be a logical lattice. For every
x, y ∈ L, define:x ⊃ y = y if x ∈ D, andx ⊃ y = t otherwise.6

The language of{¬,∨,∧,⊃} together with the propositional constantst, f,⊤ and
⊥ (which correspond to the four elements that appear in every logical lattice), will be
denoted byΣ. Given a set of formulaeΓ in Σ, we shall denote byA(Γ) the set of
the atomic formulae that appear in the formulae ofΓ. Now, a natural definition of a
lattice-based consequence relation is the following:

DEFINITION 4. — Let (L,D) be a logical lattice,Γ a set of formulae, andψ a
formula. DenoteΓ |=L,Dψ if every model ofΓ is a model ofψ.7

The relation|=L,D of Definition 4 is a consequence relation in the standard sense
of Tarski [TAR 41]. In [ARI 96] it is shown that this relation is monotonic, com-
pact, paraconsistent [COS 74], and has a corresponding sound and complete cut-free
Gentzen-style proof system. The major drawbacks of|=L,D are that it is strictly
weaker than classical logic even for consistent theories (e.g., 6|=L,D ¬ψ ∨ ψ), and
that it always invalidates some intuitively justified inference rules, such as the Dis-
junctive Syllogism (ψ, ¬ψ ∨ φ 6|=L,D φ). In the next section we consider a family of
logics that preserve the nice properties of|=L,D and overcome most of its drawbacks.

2.2. Preferential reasoning and the consequence relation |=L,D
c

In order to recapture within our framework classical reasoning (where its use is
appropriate), as well as standard non-monotonic and paraconsistent methods, we in-
corporate a concept first introduced by McCarthy [MCC 80] andlater considered by
Shoham [SHO 88], according to which inferences from a given theory are made with
respect to a subset of the models of that theory (and not according to every model of the
theory; see also [GAB 85, MAK 89, KRA 90, MAK 94, ARI 99, ARI 00b, SCH 00,
LEH 01]). This set ofpreferential modelsis determined according to some conditions
that can be specified by a set of (usually second-order) propositions [ARI 02b], or by
some order relation on the models of the theory [PRI 89, PRI 91, ARI 96, ARI 98a,
ARI 98b, BES 03]. This relation should reflect some kind of preference criterion on
the models of the set of premises. In our case the idea is to give precedence to those
valuations that minimize the amount of uncertain information in the premises. The
truth values are therefore arranged according to an order relation that reflects differ-
ences in the amount of uncertainty that each one of them exhibits. Then we choose
those valuations that minimize the amount of uncertainty with respect to this order.
The intuition behind this approach is that incomplete or contradictory data correspond

6. Note that on{t, f} the material implication (→) and the new implication (⊃) are identical,
and both of them are generalizations of the classical implication.
7. When referring toFOUR we shall abbreviate|=L,D by |=4.
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to inadequate information about the real world, and therefore should be minimized.
Next we formalize this idea.

DEFINITION 5. — A partial order< on a setS is calledmodularif y<x2 for every
x1, x2, y∈S s.t.x1 6<x2, x2 6<x1, andy<x1.

PROPOSITION 6 ([LEH 92]). — Let < be a partial order onS. The following
conditions are equivalent:

a)< is modular.

b) for everyx1, x2, y∈S, if x1<x2 then eithery<x2 or x1<y.

c) there is a totally ordered setS′ with a strict order≺ and a functiong :S → S′

s.t.x1<x2 iff g(x1)≺g(x2).

DEFINITION 7. — An inconsistency order<L,D
c on a logical lattice(L,D) is a well-

founded modular order onL, with the following properties:

a) t andf are minimal and⊤ is maximal w.r.t.<L,D
c ,

b) if {x,¬x}⊆D while{y,¬y} 6⊆D, thenx 6<L,D
c y,

c) x and¬x are either equal or<L,D
c -incomparable.

Inconsistency orders are used here for grading uncertaintyin general, and incon-
sistency in particular. The intuitive meaning ofx <L,D

c y is that formulae that are
assignedx are more definite than formulae with a truth valuey. Modularity is needed
for assuring a proper grading of the truth values.8 Condition (b) in Definition 7 as-
sures that truth values that intuitively represent inconsistent data will not be consid-
ered as more consistent than those ones that correspond to consistent data. The last
condition makes sure that any truth value and its negation have the same degree of
(in)consistency.

EXAMPLE 8. — FOUR has four inconsistency orders:

a) The degenerated order,<4
c0

, in whicht, f,⊥,⊤ are all incomparable.

b)<4
c1

, in which⊥ is considered as minimally inconsistent:{t, f,⊥}<4
c1
⊤.

c)<4
c2

, in which⊥ is maximally inconsistent:{t, f}<4
c2
{⊤,⊥}.

d)<4
c3

, in which⊥ is an intermediate level of inconsistency:{t, f}<4
c3
⊥<4

c3
⊤.

In the rest of the paper we shall continue to use the notationsof Example 8 for
denoting the inconsistency orders inFOUR.

Given an inconsistency order<L,D
c on a logical lattice(L,D), it induces an equiv-

alence relation onL, in which two elements inL are equivalent iff they are equal or
<L,D
c -incomparable. For everyx ∈ L, we denote by[x] the equivalence class ofx

with respect to this equivalence relation. I.e.,

8. That is, to eliminate orders such as{{t}, {f <⊥<⊤}}, in which⊤ and⊥ are not compa-
rable witht, while they are comparable with¬t.
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[x] = {y | y=x, or x andy are<L,D
c -incomparable}.

The order relation on these classes is defined as usual by representatives:[x]≤L,D
c [y]

iff either x<L,D
c y, or x andy are<L,D

c -incomparable.9 It is easy to verify that this
definition is proper, i.e., it does not depend on the choice ofthe representatives. In
what follows we shall write[x]<L,D

c [y] to denote that[x]≤L,D
c [y] and[x] 6=[y].

An inconsistency order on(L,D) induces the following pre-order onVL:

DEFINITION 9. — Let<L,D
c be an inconsistency order on(L,D), and letν1, ν2∈VL.

a) ν1≤L,D
c ν2 iff for every atomp, [ν1(p)]≤L,D

c [ν2(p)].

b) ν1<L,D
c ν2 if ν1≤L,D

c ν2 and there is an atomq s.t. [ν1(q)]<L,D
c [ν2(q)].

DEFINITION 10. — Let<L,D
c be an inconsistency order on a logical lattice(L,D)

and letΓ be a set of formulae inΣ. Thec-most consistent modelsof Γ (abbreviation:
thec-mcmsof Γ) are the≤L,D

c -minimal models ofΓ, i.e.,

!(Γ,≤L,D
c ) = {ν∈mod(Γ) | ¬∃µ∈mod(Γ) s.t.µ<L,D

c ν}.

The lattice-based consequence relation|=L,D (Definition 4) may be refined now
such that only thec-most consistent models of the premises are taken into account for
drawing conclusions:

DEFINITION 11. — Let<L,D
c be an inconsistency order on a logical lattice(L,D).

Denote:Γ |=L,D
c ψ if everyc-mcm ofΓ is a model ofψ.

2.3. Examples

Below are some examples of reasoning with|=L,D
c . In what follows we assume

that formulae with free variables are universally quantified. Consequently, a set of
assertionsΓ, containing a non-grounded formula,ψ, is viewed as representing the
corresponding set of ground formulae, formed by substituting for each variable that
appears inψ, every element in the relevant Herbrand universe.

EXAMPLE 12. — Consider one direction of the barber paradox:

Γ = {¬shaves(x, x)⊃shaves(Barber, x)}.

Denote byν1, ν2, andν3 the valuations that assignt, ⊥, and⊤ (respectively) to the
assertionshaves(Barber, Barber). UsingFOUR as the underlying logical lattice,
we have that!(Γ,≤4

c2
) = !(Γ,≤4

c3
) = {ν1}, !(Γ,≤4

c1
) = {ν1, ν2}, and!(Γ,≤4

c0
) =

{ν1, ν2, ν3}. Thus,Γ 6|=4
ci

shaves(Barber, Barber) when i = 0, 1, while Γ |=4
ci

shaves(Barber, Barber) wheni=2, 3.

9. As usual, we use the same notation to denote the order relation among equivalence classes
and the order relation among their elements.
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EXAMPLE 13 (TWEETY DILEMMA , REVISITED). — Let’s consider the following
version of Tweety dilemma, discussed in Example 1.

Rules =































bird(x) → fly(x),

wounded(x) → ¬fly(x),

has_wings(x) ⊃ bird(x),

penguin(x) ⊃ bird(x),

penguin(x) ⊃ ¬fly(x)































We are using here different implication connectives according to the strength of
each entailment: the first two rules state only default properties of birds and wounded
animals. The other three rules, on the other hand, specify characteristic properties of
penguins and characterize animals with wings. As there are no exceptions to these
rules, they are expressed by a stronger implication connective.

Consider, first, the following set of assertions:

Γ1 = Rules

⋃

{ bird(Tweety) }.

As shown in Table 1,Γ1 has 240 four-valued models, among which six arec1-mcms,
and two are bothc2-mcms andc3-mcms.10

Table 1. The models and theci-mcms ofΓ1

Model No. bird fly penguin has_wings wounded

M1 −M128 ⊤ ⊤, f ⊤, t, f,⊥ ⊤, t, f,⊥ ⊤, t, f,⊥
M129 −M160 ⊤ t,⊥ f,⊥ ⊤, t, f,⊥ ⊤, f
M161 −M224 t ⊤ ⊤, t, f,⊥ ⊤, t, f,⊥ ⊤, t, f,⊥
M225 −M240 t t f,⊥ ⊤, t, f,⊥ ⊤, f

Type bird fly penguin has_wings wounded

c1-mcms t t f,⊥ t, f,⊥ f
c2-mcms t t f t, f f
c3-mcms t t f t, f f

It follows that with |=4
ci

(1 ≤ i ≤ 3) one can infer fromΓ1 thatbird(Tweety),
fly(Tweety), and¬wounded(Tweety) (the converse assertions,¬bird(Tweety),
¬fly(Tweety), andwounded(Tweety), are, nevertheless, not deducible). This cor-
responds to the intuitive expectation that, as long as the only data concerning Tweety
is that it is a bird, we follow the default assumption that it can fly, and we don’t have

10. Recall that we are using here the notations of Example 8 to denote the inconsistency or-
ders inFOUR. In what follows we shall also write|=4

ci
(instead of|=FOUR

ci
) to denote the

corresponding consequence relations.
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any reason to believe that it is wounded. On the other hand, excluding the possibility
that Tweety is a penguin seems a more far reaching conclusionthan the previous two,
and indeed only|=4

c2
and |=4

c3
support this conclusion. Finally, as we do not know

anything about animals with wings, except the fact that theyare birds, none of|=4
ci

,
0 ≤ i ≤ 3, allows us to conclude or to rule out the possibility that Tweety has wings.

Suppose now that a new information arrives, and we are informed that Tweety is
actually a penguin. Denote the new theory byΓ2, i.e.,

Γ2 = Rules

⋃

{ bird(Tweety), penguin(Tweety) }.

Clearly,Γ2 is no longer classically consistent, which implies that everything classi-
cally follows from it. On the other hand, as it is shown in Section 4 below, conse-
quence relations of the form|=L,D

c are paraconsistent, and so they do not have this
drawback. Indeed, consider the four-valued models ofΓ2 and itsci-mcms, shown in
Table 2.

Table 2. The models and theci-mcms ofΓ2

Model No. bird fly penguin has_wings wounded

M1 −M32 ⊤ ⊤ ⊤, t ⊤, t, f,⊥ ⊤, t, f,⊥
M33 −M64 ⊤ f ⊤, t ⊤, t, f,⊥ ⊤, t, f,⊥
M65 −M96 t ⊤ ⊤, t ⊤, t, f,⊥ ⊤, t, f,⊥

Type bird fly penguin has_wings wounded

c1-mcms ⊤ f t t, f,⊥ t, f,⊥
t ⊤ t t, f,⊥ t, f,⊥

c2-mcms ⊤ f t t, f t, f
t ⊤ t t, f t, f

c3-mcms ⊤ f t t, f t, f
t ⊤ t t, f t, f

This time,bird(Tweety), penguin(Tweety), and¬fly(Tweety) are all de-
ducible fromΓ2 with respect to|=4

ci
for i = 1, 2, 3, and the complements of these

assertions cannot be inferred by any one of these consequence relations, as indeed one
expects.

Consider, finally, the following set of assertions:

Γ3 = Rules

⋃

{ has_wings(Fred), wounded(Fred) }.

Again,Γ3 is not consistent, and indeed even itsci-most consistent models(i=1, 2, 3)
assign⊤ to at least one of its atomic formulae11 (see Table 3 for theci-mcms of
Γ3). However, as already noted in Example 1, the contradictionin this case is more

11. I.e., for every1≤ i≤3 and for everyν∈ !(Γ3,≤
4

ci
) there is ap∈A(Γ3) s.t.ν(p) = ⊤.
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fundamental than that ofΓ2, since it is not possible to judge from the information in
Γ3 whether Fred can still fly despite its injury.12 Indeed, by Table 3 it follows that
none of the consequence relations|=4

ci
, i=1, 2, 3, allows to conclude thatfly(Fred)

or that¬fly(Fred).

Table 3. Theci-mcms ofΓ3

Type bird fly penguin has_wings wounded

c1-mcms ⊤ f t, f,⊥ t t
t t f,⊥ t ⊤
t ⊤ t, f,⊥ t t

c2-mcms ⊤ f t, f t t
t t f t ⊤
t ⊤ t, f t t

c3-mcms ⊤ f t, f t t
t t f t ⊤
t ⊤ t, f t t

NOTE 14. — By the last two examples one might get the wrong impression that the
set of thec1-mcms of a given theory always contains the set of thec2-mcms and the
set of thec3-mcms of the same theory. To see that this is not the case, consider again
the last example with two additional (and somewhat more controversial) rules:

Rules
′ = Rules

⋃

{

has_wings(x) ⊃ fly(x),
¬has_wings(x) ⊃ ¬penguin(x)

}

,

Γ′
2 = Γ2

⋃

Rules
′.

The (ci-most consistent) models ofΓ′
2 are given in Table 4. It follows, for instance,

that while with|=4
c2

and|=4
c3

there are indications that Tweety is not a ‘typical’ pen-
guin (aspenguin(Tweety) is assigned⊤ by somec2-mcms andc3-mcms ofΓ′

2),
the consequence relation|=4

c1
rules out the possibility that Tweety is not a penguin:

Γ′
2 |=4

c1
penguin(Tweety)∧ (¬penguin(Tweety) ⊃ f).

Note also that, unlike the examples above, the set of thec2-mcms of a theory is
in general different than the set of thec3-mcms of the same theory. This is shown in
Proposition 25 below.

3. Embedding in four-valued logics

Four-valued reasoning may be traced back to the 1950’s, where is has been in-
vestigated by a number of people, including Bialynicki-Birula [BIA 57a], Rasiowa

12. Note, however, the itis possible to conclude that Fred is a bird, although this fact is not
explicitly mentioned inΓ3.
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Table 4. The models and theci-mcms ofΓ′
2

Model No. bird fly penguin has_wings wounded

M1 −M16 ⊤ ⊤ ⊤ ⊤, t, f,⊥ ⊤, t, f,⊥
M17 −M24 ⊤ f ⊤ f,⊥ t, f
M25 −M40 t ⊤ ⊤ ⊤, t, f,⊥ ⊤, t, f,⊥
M41 −M48 ⊤ ⊤ t t,⊥ ⊤, t, f,⊥
M49 −M52 ⊤ f t ⊥ ⊤, t, f,⊥
M53 −M60 t ⊤ t t,⊥ ⊤, t, f,⊥

Type bird fly penguin has_wings wounded

c1-mcms ⊤ f t ⊥ t, f,⊥
t ⊤ t t,⊥ t, f,⊥

c2-mcms ⊤ f t ⊥ t, f
⊤ f ⊤ f t, f
t ⊤ t t t, f

c3-mcms ⊤ f t ⊥ t, f
⊤ f ⊤ f t, f
t ⊤ t t t, f

[BIA 57b], and Kalman [KAL 58]. Later, Belnap [BEL 77a, BEL 77b] introduced
a corresponding four-valued algebraic structure (denotedhere byFOUR) for para-
consistent reasoning. As the following theorem shows, thisstructure is canonical for
reasoning with graded uncertainty. Following [ARI 98a, ARI98b], this is another
evidence for the robustness of four-valued logics as representing common-sense rea-
soning.

THEOREM 15. — Let≤L,D
c be an inconsistency order on(L,D). Then there is an

inconsistency order≤4
ci

(0≤ i≤3) onFOUR, such thatΓ |=L,D
c ψ iff Γ |=4

ci
ψ.13

In the rest of this section we prove Theorem 15. For this, we first need some
notations and definitions.

DEFINITION 16. — VL is stopperedw.r.t. ≤L,D
c if for everyΓ and everyν∈mod(Γ),

eitherν∈ !(Γ,≤L,D
c ), or there is anν′∈ !(Γ,≤L,D

c ) s.t.ν′<L,D
c ν.14

Note that ifVL is well-founded w.r.t.≤L,D
c (i.e.,VL does not have an infinitely

descending chain w.r.t.≤L,D
c ), then it is in particular stoppered.

PROPOSITION17. — Let≤L,D
c be an inconsistency order on a logical lattice(L,D).

ThenVL is stoppered (w.r.t. the induced order on valuations).

13. This is a generalization of a similar result that is given inthe reduced version of this paper
[ARI 03a], in which stopperdness (Definition 16) was assumed.
14. The notion “stopperdness” is due to Makinson [MAK 94]. In [KRA 90] the same property
is calledsmoothness.
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PROOF. — Let (L,D) be a logical lattice and≤L,D
c an inconsistency order on the

elements ofL. Consider the corresponding space of valuationsVL, and the order
relation on the elements ofVL, denoted also by≤L,D

c . In [ARI 96, Theorem 3.22] it
is shown that the consequence relation|=L,D that is induced by(L,D) (Definition 4) is
compact, and so in terms of [AVR 01],VL is finitary.15 By Corollary 5.5 of [AVR 01],
then,VL is stoppered w.r.t. any pointwise order that is defined on itselements.16 In
particular,VL is stoppered w.r.t.≤L,D

c . ■

DEFINITION 18. — Given a logical lattice(L,D), its elements may be divided into
the following four sets:

T L,D
t ={x∈L | x∈D,¬x 6∈D}, T L,D

f ={x∈L | x 6∈D,¬x∈D},

T L,D
⊤ ={x∈L | x∈D,¬x∈D}, T L,D

⊥ ={x∈L | x 6∈D,¬x 6∈D}.

Henceforth we shall usually omit the superscripts, and justwrite Tt, Tf , T⊤, T⊥.

DEFINITION 19. — Let (L,D) be a logical lattice. Denote:

min
≤

L,D
c

Tx = {y∈Tx | ¬∃y′∈Tx s.t. y′<L,D
c y} (for x∈{t, f,⊤,⊥})

Ω
≤

L,D
c

= min
≤

L,D
c

Tt ∪ min
≤

L,D
c

Tf ∪ min
≤

L,D
c

T⊥ ∪ min
≤

L,D
c

T⊤

DEFINITION 20. — Let (L1,D1) and(L2,D2) be two logical lattices. Suppose that
xi is some element inLi andνi is a valuation ontoLi (i=1, 2).

a) x1 andx2 aresimilar if x1∈T L1,D1

y implies thatx2∈T L2,D2

y (y∈{t, f,⊤,⊥}).

b) ν1 andν2 aresimilar if for every atomp, ν1(p) andν2(p) are similar.

PROPOSITION21. — Let (L1,D1) and(L2,D2) be two logical lattices and suppose
thatν1 andν2 are two similar valuations onL1 andL2 (respectively). Then for every
formulaψ, ν1(ψ) andν2(ψ) are similar.

PROOF. — By an induction on the structure ofψ.17 ■

Now we can turn to the proof of Theorem 15.

PROOF (OF THEOREM15). — In what follows we shall denote bymx some element
in min

≤
L,D
c

T L,D
x (x∈{t, f,⊤,⊥}), and byω :L→{t, f,⊤,⊥} the ‘categorization’

function: ω(y) = x iff y ∈ Tx. Also, in the rest of this proof we shall abbreviate
[y] ∩ Ω

≤
L,D
c

by [y] (so the equivalence classes consist only of elements inΩ
≤

L,D
c

).

LEMMA 22. — If M ∈ !(Γ,≤L,D
c ) then for every atomp,M(p)∈Ω

≤
L,D
c

.

15. That is, ifΓ |=L,Dψ then there is a finite subsetΓ′ ⊆ Γ such thatΓ′ |=L,Dψ.
16. A pre-order� onVL is called pointwise if there is a pre-order≤ onL such that for every
ν1, ν2 ∈ VL, ν1�ν2 iff for every atomp, ν1(p) ≤ ν2(p).
17. Note that the fact thatD is aprimefilter is crucial here.
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PROOF. — Suppose that there is some atomp0 s.t.M(p0) 6∈Ω
≤

L,D
c

. Then, assuming

thatM(p0)∈Tx, there is an elementmx∈min
≤

L,D
c

Tx s.t.mx<
L,D
c M(p0). Consider

the following valuation:

N(p) =

{

mx if p = p0

M(p) if p 6= p0

N is similar toM , and so, by Proposition 21,N is also a model ofΓ. Moreover,
N<L,D

c M , thusM 6∈ !(Γ,≤L,D
c ). ■

Now, since≤L,D
c is well-founded and sinceTx is nonempty for everyx ∈

{t, f,⊤,⊥}, min
≤

L,D
c

Tx is nonempty as well, and so there is at least one ele-
ment of the formmx for everyx ∈ {t, f,⊤,⊥}. Also, it is clear that for every
mx,m

′
x∈min

≤
L,D
c

Tx, [mx]= [m′
x] (otherwise eithermx<

L,D
c m′

x ormx>
L,D
c m′

x,
and so eitherm′

x 6∈min
≤

L,D
c

Tx ormx 6∈min
≤

L,D
c

Tx). It follows, therefore, that there
are no more than the following three equivalence classes inΩ

≤
L,D
c

:

1) min
≤

L,D
c

Tt ∪ min
≤

L,D
c

Tf ⊆ [t],

2) min
≤

L,D
c

T⊥ ⊆ [m⊥],

3) min
≤

L,D
c

T⊤ ⊆ [m⊤],

wherem⊥ is some element ofmin
≤

L,D
c

T⊥, andm⊤ is some element ofmin
≤

L,D
c

T⊤.
By Definition 7,[t] must be a minimal inconsistency class among those inΩ

≤
L,D
c

, and
[m⊤] must be a maximal one. It follows, then, that the inconsistency classes inΩ

≤
L,D
c

are arranged in one of the following orders:

0) [t] = [m⊥] = [m⊤],

1) [t] = [m⊥] <L,D
c [m⊤],

2) [t] <L,D
c [m⊥] = [m⊤],

3) [t] <L,D
c [m⊥] <L,D

c [m⊤].

If the order relation among the inconsistency classes inΩ
≤

L,D
c

corresponds to casei

above(0≤ i≤3) we say that the inconsistency order≤L,D
c is of typei.18

LEMMA 23. — If ≤L,D
c is an inconsistency order of typei, then for everym,m′ ∈

Ω
≤

L,D
c

, [m]<L,D
c [m′] iff [ω(m)]<4

ci
[ω(m′)].

PROOF. — Immediate from the definition of inconsistency order of type i, and the
definition of≤4

ci
. ■

LEMMA 24. — If ≤L,D
c is an inconsistency order of typei in (L,D), then|=L,D

c is
the same as|=4

ci
.

PROOF. — Suppose thatΓ |=L,D
c ψ but Γ 6|=4

ci
ψ. Then there is ac4i -mcmM4

of Γ s.t. M4(ψ) 6∈ {t,⊤}. Now, for every atomp let ML(p) be some element in

18. In particular, for every0≤ i≤3, the inconsistency order≤4

ci
in FOUR is of typei.
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min
≤

L,D
c

TM4(p). Thusω◦ML=M4, andML is similar toM4. By Proposition 21,

ML is a model ofΓ and it is not a model ofψ. To get a contradiction toΓ |=L,D
c ψ,

it remains to show, then, thatML is a c-mcm ofΓ in (L,D). Indeed, otherwise by
stopperdness (Proposition 17) there is ac-mcmNL of Γ s.t. NL <L,D

c ML. So for
every atomp, [NL(p)] ≤L,D

c [ML(p)], and there is an atomp0 s.t. [NL(p0)] <
L,D
c

[ML(p0)]. Let N4 = ω ◦NL. Again,N4 is similar toNL, therefore it is a (four-
valued) model ofΓ. Also, by the definition ofM , for every atomp, ML(p)∈Ω

≤
L,D
c

and by Lemma 22,∀p NL(p)∈Ω
≤

L,D
c

. Thus, by Lemma 23,

[N4(p)] = [ω◦NL(p)] ≤4
ci

[ω◦ML(p)] = [M4(p)].

Also, by the same lemma,

[N4(p0)] = [ω◦NL(p0)] <
4
ci

[ω◦ML(p0)] = [M4(p0)].

It follows thatN4<4
ci
M4, but this contradicts the assumption thatM4 is ac4i -mcm

of Γ.

For the converse, suppose thatΓ |=4
ci
ψ, butΓ 6|=L,D

c ψ. Then there is ac-mcmML

of Γ in (L,D) s.t.ML(ψ) 6∈D. Define, for every atomp,M4(p)=ω◦ML(p). By the
definition ofω,M4 is similar toML and soM4 is a model ofΓ in FOUR, but it is not
a model ofψ. It remains to show, then, thatM4 is ac4i -mcm ofΓ. Indeed, otherwise
there is a modelN4 of Γ s.t. N4 <4

ci
M4, that is, for every atomp [N4(p)] ≤4

ci

[M4(p)], and there is an atomp0 for which this inequality is strict:[N4(p0)] <
4
ci

[M4(p0)]. Now, for every atomp, let NL(p) be some element inmin
≤

L,D
c

TN4(p).

Thusω◦NL=N4, andNL is similar toN4. By Proposition 21,NL is in particular a
model ofΓ in (L,D). Moreover, for every atomp,

[ω◦NL(p)] = [N4(p)] ≤4
ci

[M4(p)] = [ω◦ML(p)].

Now, by the definition ofNL we have that for every atomp, NL(p)∈Ω
≤

L,D
c

, and by

Lemma 22,ML(p)∈Ω
≤

L,D
c

as well. Hence, by Lemma 23,[NL(p)]≤L,D
c [ML(p)].

Similarly,

[ω◦NL(p0)] = [N4(p0)] <
4
ci

[M4(p0)] = [ω◦ML(p0)]

and again this entails that[NL(p0)] <
L,D
c [ML(p0)]. It follows thatNL <L,D

c ML,
but this contradicts the assumption thatML is ac-mcm ofΓ in (L,D). ■

Now, by Lemma 24, Theorem 15 is obtained. ■

4. Reasoning with |=L,D
c

In this section we consider some basic properties of|=L,D
c . By Theorem 15, it is

sufficient to considerFOUR and the four corresponding consequence relations|=4
ci

(i = 0,. . . , 3). Note that the proof of Theorem 15 induces a simple algorithmfor
determining which one of the basic four-valued consequencerelations is the same as
a given consequence relation of the form|=L,D

c . See Figure 2 for the details.



Reasoning with graded uncertainty 331

input: an inconsistency order ≤L,D
c in (L,D)

choose some m⊥ ∈ min
≤

L,D
c

T⊥ and m⊤ ∈ min
≤

L,D
c

T⊤.

if ([m⊤] = [t]) then output 0 /∗ |=L,D
c = |=4

c0
∗/

else if ([m⊥] = [t]) then output 1 /∗ |=L,D
c = |=4

c1
∗/

else if ([m⊤] = [m⊥]) then output 2 /∗ |=L,D
c = |=4

c2
∗/

else output 3 /∗ |=L,D
c = |=4

c3
∗/

Figure 2. Finding the equivalent four-valued consequence relation of |=L,D
c .

4.1. The relative strength of the basic logics

PROPOSITION25. — LetΓ be a set of formulae andψ a formula inΣ.

a) The consequence relations|=4
ci

, 0≤ i≤3, are all different.

b) For every1≤ i≤3, if Γ |=4
c0
ψ thenΓ |=4

ci
ψ.

c) No one of|=4
c1

, |=4
c2

, and|=4
c3

, is stronger than the other.

PROOF. — For the first part, consider the following set:

Γ = {¬q, (p ⊃ q) ∨ (¬q ⊃ ¬p), (¬p ⊃ q) ∨ (¬q ⊃ p)}.

Thec4i -mcms ofΓ are given in Table 5.

Table 5. Thec4i -mcms ofΓ

p q c40-mcms c41-mcms c42-mcms c43-mcms
M1 ⊥ f + + + +
M2 ⊤ f + – + –
M3 t ⊤ + – + +
M4 f ⊤ + – + +
M5 ⊥ ⊤ + – – –
M6 ⊤ ⊤ + – – –

It is easy to verify that for every0 ≤ i≤ 3, the consequences ofΓ w.r.t. |=4
ci

are
different. LetThi(Γ) = {ψ | Γ |=4

ci
ψ}. Then from Table 5 it follows thatTh0(Γ)⊆

Th2(Γ)⊆ Th3(Γ)⊆ Th1(Γ). Moreover,q⊃ p∈ Th1(Γ) \ Th3(Γ), p⊃ q ∈ Th3(Γ) \
Th2(Γ), andq⊃(p∨¬p)∈Th2(Γ) \ Th0(Γ), so the inclusions above are proper.

The second part of the claim is obvious. For the last part, note thatp∨¬p∈Th2(∅)
andp ∨ ¬p∈Th3(∅), while p ∨ ¬p 6∈Th1(∅). Thus, by what we have already shown
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in the first part of this proof, it remains to show that|=4
c3

is not stronger than|=4
c2

. For
this, consider the following set:

Γ′ = {p, (¬p ⊃ q) ⊃ q, q ⊃ ¬q, ¬q ⊃ q}.

The onlyc42-mcm ofΓ′ isM1(p)= t,M1(q)=⊤, while thec43-mcms ofΓ′ areM1 and
M2(p)=⊤, M2(q) =⊥. Thus, e.g.,Γ′ |=4

c2
q while Γ′ 6|=4

c3
q. In this case, therefore,

Th3(Γ
′)⊂Th2(Γ

′). ■

In contrast to the last proposition, in the classical languageΣcl,19 the basic conse-
quence relationsarecomparable:

PROPOSITION26. — LetΓ be a set of formulae andψ a formula inΣcl. Then:

a) Γ |=4
c2
ψ iff Γ |=4

c3
ψ.

b) if Γ |=4
c1
ψ thenΓ |=4

c2
ψ andΓ |=4

c3
ψ.

c) If ψ is a formula in a conjunctive normal form (CNF), none of its conjuncts is a
tautology, thenΓ |=4

c1
ψ iff Γ |=4

c2
ψ iff Γ |=4

c3
ψ.

PROOF. — For item (a), consider the following lemma:

LEMMA 27. — Let Γ be a set of formulae inΣcl, M – a c42-mcm ofΓ, andN – a
c43-mcm ofΓ. Then there is no formulaψ s.t.M(ψ)=⊥ or N(ψ)=⊥.

PROOF (OF THE LEMMA). — Since{t, f,⊤} is closed under¬,∨,∧, it is sufficient
to show the lemma only for atomic formulae. We show it forM ; the proof forN is
similar. Define a transformationg : FOUR → {t, f,⊤} as follows: g(⊥) = t, and
g(x)=x otherwise. As it is easily verified (by induction on the structure of formulae
in Σcl), for every formulaeψ in Σcl s.t. M(ψ) is designated,g◦M(ψ) is designated
as well. It follows thatg◦M is also a model ofΓ. Sinceg◦M ≤4

c2
M , necessarily

g◦M=M . ■

Now, lemma 27 implies that the set of thec42-mcms ofΓ are the same as the set of
thec43-mcms ofΓ, and so item (a) is obtained.

The first part of item (b) follows from the fact that inΣcl, everyc42-mcm ofΓ is
also ac41-mcm ofΓ. Indeed, suppose for a contradiction thatM is ac42-mcm ofΓ and
it is not ac41-mcm ofΓ, i.e., there is another modelN of Γ s.t.N <4

c1
M . Define for

every atomp a valuationM ′ as follows:M ′(p) = t if N(p) =⊥ andM ′(p) =N(p)
otherwise. Now, it is easy to verify, by induction on the structure of the formulae in
Σcl, thatM ′(ψ) ∈ D wheneverN(ψ) ∈ D, and soM ′ is a model ofΓ. Also, as for
every atomp, the equivalence class w.r.t.≤4

c1
of M ′(p) is the same as that ofN(p),

andN<4
c1
M , it follows thatM ′<4

c1
M . By Lemma 27, then,M ′<4

c2
M as well, and

this is a contradiction to the assumption thatM ∈ !(Γ,≤4
c2

).

The second part of item (b) (the one that is related to|=4
c3

) follows from the first
part of item (b) together with item (a).

19. I.e., the language of{¬,∧,∨,→, t, f}.
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For item (c) it is sufficient to assume thatψ is a disjunction of literals that does
not contain an atomic formula and its negation. Assume thatΓ 6|=4

c1
ψ. Then there is a

c41-mcmM of Γ s.t.M(ψ) 6∈{t,⊤}. Consider the valuationM ′, defined as follows:

M ′(p) =







t if M(p)=⊥ andp does not appear inψ
f if M(p)=⊥ andp appears inψ
M(p) otherwise

As in part (b), it is easy to verify thatM ′ is ac42-mcm ofΓ andM ′(ψ) 6∈{⊤, t}. Thus,
Γ 6|=4

c2
ψ. Again, the second part of item (c) follows from the first partof this item

together with item (a). ■

4.2. Paraconsistency and relations to classical logic

In what follows we shall write|=2 for the classical consequence relation, and|=4
c

for any one of|=4
ci

, 0≤ i≤3.

PROPOSITION28. — |=4
c is paraconsistent.

PROOF. — It is easy to see that reasoning with|=4
c does not reduce to triviality even

when the set of premises is not consistent. For instance,p,¬p 6|=4
c q. To see that,

consider a valuationν, for whichν(p)=⊤ andν(q)=f . ■

PROPOSITION29. — If Γ |=4
c ψ thenΓ |=2ψ.

PROOF. — LetM be a classical model ofΓ. Since the set{t, f} is closed under the
operations inΣ, there is no difference between viewingM as a valuation inFOUR
and viewing it as a valuation in{t, f}. HenceM is also a model ofΓ in FOUR.
Now, sinceM assigns only classical truth values to the atomic formulae,M must be
a c-mcm ofΓ in FOUR. SinceΓ |=4

c ψ, necessarilyM(ψ) ∈ {t,⊤}. On the other
hand,M(ψ)∈ {t, f}, and soM(ψ) = t. It follows thatM is a classical model ofψ,
thusΓ |=2ψ. ■

The converse of Proposition 29 is not true in general. For instance, excluded mid-
dle is not valid w.r.t. |=4

c0
and |=4

c1
. However, with respect to the other basic four-

valued consequence relations, the converse of Proposition29, applied on classically
consistent theories, does hold.

PROPOSITION30. — LetΓ be a classically consistent theory. Then for every formula
ψ in Σ, Γ |=2ψ iff Γ |=4

c2
ψ iff Γ |=4

c3
ψ.

PROOF. — Immediately follows from the fact that the set of thec42-mcms and the
set of thec43-mcms of a classically consistent theoryΓ are the same as the set of the
classical models ofΓ. ■

By Propositions 28 and 30 it follows that with (any consequence relation of the
form |=L,D

c that is equivalent to)|=4
c2

and|=4
c3

one can draw classical conclusions from
(classically) consistent theories, while the set of conclusions is not ‘exploded’ when
the theory becomes inconsistent. Batens [BAT 98, BAT 00a] describes this property
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as an ‘oscillation’ between some lower limit (paraconsistent) logic and an upper limit
(classical) logic.

4.3. Monotonicity and transitivity

PROPOSITION 31. — |=4
c0

is a monotonic consequence relation, while|=4
ci

, i =
1, 2, 3, are nonmonotonic relations.

PROOF. — For the first part, note that|=4
c0

is in fact the same as|=4, which is clearly
monotonic. For the other part, considerΓ={p,¬p∨q}. SinceM(p)= t,M(q)= t is
the onlyc4i -mcm ofΓ for i=1, 2, 3, it follows thatΓ |=4

ci
q (i=1, 2, 3). However, as

in the proof of Proposition 28, it is easy to see thatΓ,¬p 6|=4
ci
q for i=1, 2, 3.

For another example, consider again Example 13. As we have shown, for every
1≤ i≤3, Γ1 |=4

ci
fly(Tweety), while Γ1, penguin(Tweety) 6|=4

ci
fly(Tweety). ■

The last proposition implies that unless the inconsistencyorder under considera-
tion is degenerated,|=L,D

c is not monotonic, and so it is not a consequence relation in
the standard sense of Tarski [TAR 41]. In such cases it is usual to require a weaker
condition (see, e.g., [GAB 85, KRA 90]):

PROPOSITION32. — |=4
c satisfies cautious (left) monotonicity: ifΓ |=4

c ψ andΓ |=4
c φ,

thenΓ, ψ |=4
c φ.

PROOF. — Assume thatΓ |=4
c ψ, andΓ |=4

c φ. LetM be somec-mcm ofΓ∪{ψ}.
In particular,M is a model ofΓ. Moreover, it must be ac-mcm ofΓ as well, since
otherwise there would have been someN ∈mod(Γ) s.t.N <4

cM . SinceΓ |=4
c ψ, this

N would have been a model ofΓ ∪ {ψ} which is strictly≤4
c-smaller thanM . Hence

M cannot be ac-mcm ofΓ∪{ψ}, with a contradiction to the choice ofM . Therefore,
M is ac-mcm ofΓ. Now, sinceΓ |=4

c φ,M is a model ofφ. HenceΓ, ψ |=4
c φ. ■

A desirable property of non-monotonic consequence relations is the ability to pre-
serve any conclusion when learning about a new fact that has no influence on the
set of premises. Consequence relations that satisfy this property are calledrational
[LEH 92]. The next proposition shows that|=4

ci
(i=0, . . . , 3) are rational.

PROPOSITION33. — If Γ |=4
c ψ andA(Γ ∪ {ψ}) ∩ A(φ) = ∅, thenΓ, φ |=4

c ψ.20

Intuitively, the second condition in Proposition 33 guarantees thatφ is ‘irrelevant’
for Γ andψ. The intuitive meaning of Proposition 33 is, therefore, that the reasoner
does not have to retractψ when learning thatφ holds.

PROOF. — Otherwise,Γ, φ 6|=4
c ψ, so there is anM ∈ !(Γ∪φ,≤4

c) s.t.M(ψ) 6∈{t,⊤}.
Letm be some≤4

c-minimal element. Consider the following valuation:

N(p) =

{

M(p) if p ∈ A(Γ ∪ ψ),

m otherwise.

20. Recall thatA(Γ) is the set of atomic formulae that appear in some formula ofΓ.
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Clearly,N is a model ofΓ andN(ψ) 6∈ {t,⊤}. SinceΓ |=4
c ψ, N cannot be ac-mcm

of Γ, and so there is a modelN ′ of Γ s.t. N ′<4
c N . By the definition ofN , there is

somep0∈A(Γ ∪ ψ) s.t.N ′(p0)<
4
cN(p0). Now, consider the following valuation:

M ′(p) =

{

N ′(p) if p ∈ A(Γ ∪ ψ),

M(p) otherwise.

Clearly,M ′ <4
cM , and sinceM ′ is the same asN ′ onA(Γ), M ′ is also a model of

Γ. Moreover, using the facts thatA(Γ ∪ ψ) ∩ A(φ) = ∅ and thatM is a model ofφ,
it follows thatM ′ is also a model ofφ. HenceM ′ is a model ofΓ ∪ {φ}, which is
strictly≤4

c-smaller thanM , but this is a contradiction to the choice ofM . ■

NOTE 34. — In order to assure rationality, Lehmann and Magidor [LEH 92] intro-
duced the rule ofrational monotonicity:

if Γ |∼ψ thenΓ, φ |∼ψ, unlessΓ |∼¬φ.

Rational monotonicity may be considered as too strong for assuring rationality,
and there are many general patterns of nonmonotonic reasoning that do not satisfy
this rule. For instance, although|=4

c1
is rational (by Proposition 33), it does not satisfy

rational monotonicity. To see this consider, e.g.,Γ = {p, q⊃¬p}, ψ = ¬p⊃¬q, and
φ = q.

PROPOSITION35. — |=4
c is a Tarskian cautious consequence relation in the sense of

[ARI 99, ARI 00b], i.e., it is reflexive(Γ |=4
c ψ for everyψ ∈ Γ), and satisfies cautious

monotonicity(see Proposition 32) and cautious cut(if Γ |=4
c ψ andΓ, ψ |=4

c φ, then
Γ |=4

c φ).

PROOF. — Reflexivity easily follows from the definition of|=4
c , and cautious mono-

tonicity is shown in Proposition 32. It remains to show cautious cut (transitivity):
suppose thatΓ |=4

c ψ andΓ, ψ |=4
c φ. We shall show that this entails that every≤4

c-
mcm of Γ is also a model ofφ (and soΓ |=4

c φ). Indeed, letM ∈ mod(Γ). Since
Γ |=4

c ψ, M is a modelψ, thusM ∈ mod(Γ ∪ {ψ}). Now,M is also ac-mcm of
Γ ∪ {ψ}, otherwise there would have been someN ∈mod(Γ ∪ {ψ}) s.t. N <4

c M .
In particular, thisN would be a model ofΓ which is strictly≤4

c-smaller thanM , and
this is a contradiction to the choice ofM as ac-mcm ofΓ. The fact thatM is a model
of φ follows now from the assumption thatΓ, ψ |=4

c φ. ■

4.4. Inconsistency adaptation

We conclude this section by showing that|=4
c2

and |=4
c3

are, in terms of Batens
[BAT 98, BAT 00a, BAT 02],adaptive: if it is possible to distinguish between a con-
sistent part and an inconsistent part of a given theory, thenevery assertion that clas-
sically follows from the consistent part, and is not relatedto the inconsistent part, is
also a|=4

ci
-consequence(i = 2, 3) of the whole theory. Thus, while|=4

c2
and |=4

c3
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handle inconsistent theories in a nontrivial way (Proposition 28), they presuppose a
consistency of all the assertions ‘unless and until proven otherwise’.

PROPOSITION36. — LetΓ=Γ′ ∪ Γ′′ be a set of formulae inΣ s.t. Γ′ is classically
consistent andA(Γ′) ∩ A(Γ′′)=∅. Then for everyψ s.t.A(ψ) ∩ A(Γ′′)=∅, the fact
thatΓ′ |=2ψ entails thatΓ |=4

c2
ψ andΓ |=4

c3
ψ.

PROOF. — We show here the case of|=4
c2

; the proof for|=4
c3

is similar. Suppose that
Γ′ |=2 ψ. By Proposition 30,Γ′ |=4

c2
ψ, and by Proposition 33, sinceA(Γ′ ∪ ψ) ∩

A(Γ′′)=∅, we have thatΓ |=4
c2
ψ. ■

EXAMPLE 37. — Consider the setΓ = {p, ¬p, q, ¬p ∨ r, ¬q ∨ s}. A plausible
inference system shouldnotapply here the Disjunctive Syllogism onΓ′′ = {p, ¬p∨r}
for concluding thatr follows from Γ. The reason for this is that¬p is also true inΓ,
and so¬p ∨ r holds even in cases thatr is false. On the other hand, applying the
Disjunctive Syllogism on the subsetΓ′ = {q, ¬q ∨ s} (for concludings from Γ)
may be justified by the fact thatΓ′ should not be affected by the inconsistency inΓ,
therefore inference rules that are classically valid can beapplied on its elements. Now,
sinceΓ can be split-up to two separated subsets, one (Γ′) is consistent, and the other
(Γ′′) is inconsistent, it follows from Proposition 36 thatΓ |=4

c2
s andΓ |=4

c3
s. Also,

Γ 6|=4
c2
r andΓ 6|=4

c3
r, as indeed intuitively expected.

5. Computability

A general method for reducing questions of consequences in preferential structures
to computations of classical entailments is introduced in [ARI 02b, ARI 03b]. This ap-
proach is based on a definition of appropriate circumscriptive axioms to capture the
notion of minimality and for representing preferential reasoning. In this section we
incorporate this method in our framework, and show how reasoning with (graded) un-
certainty can be implemented using algorithms for processing circumscriptive theories
(such as those of [OHL 96, DOH 97]). As the underlying language of these algorithms
is the (propositional or first-order) classical one, our computational method is applied
on theories in the classical fragment ofΣ, namely:Σcl = {¬,∧,∨,→, f, t}.

Given a theoryΓ, the first step according to the approach of [ARI 02b, ARI 03b],
is to apply on it the following transformation, that essentially serves as a separator of
negated atoms from affirmed ones:

DEFINITION 38 ([ARI 03B]). — Letψ be a formula inΣcl. Denote byψ the for-
mula that is obtained fromψ by substituting every positive occurrence inψ of an
atomic formulap by a new symbolp+, and replacing every negative occurrence inψ
of an atomic formulap by¬p−.21 The language that is obtained fromΣcl by introduc-
ing these new symbols is denoted byΣ±

cl . Given a setΓ of formulae inΣcl, we denote
the set{ψ | ψ∈Γ} byΓ.

21. An occurrence ofp in ψ is calledpositiveif it appears in the scope of an even number of
negation operators; otherwise, it is anegativeoccurrence.
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EXAMPLE 39. — Letψ = ¬(p∨¬q)∨¬q. The first appearance ofq in ψ is positive,
and the second appearance ofq in ψ as well as the appearance ofp in ψ are negative.
Thus,ψ = ¬(¬p− ∨ ¬q+) ∨ ¬¬q−.

Consider now the following transformation between four-valued valuations of for-
mulae inΣcl and two-valued valuations of formulae inΣ±

cl :

DEFINITION 40 ([ARI 02B, ARI 03B]). —

ν(p) = t ⇐⇒ ν(p+) = 1, ν(p−) = 0, ν(p) = f ⇐⇒ ν(p+) = 0, ν(p−) = 1,

ν(p) = ⊤⇐⇒ ν(p+) = 1, ν(p−) = 1, ν(p) = ⊥ ⇐⇒ ν(p+) = 0, ν(p−) = 0.

A key result for the computational method is the following:

LEMMA 41 ([ARI 02B, ARI 03B]). — ν ∈ mod(ψ) iff ν ∈ mod(ψ).

Lemma 41 immediately entails the following result:

PROPOSITION42 ([ARI 02B, ARI 03B]). — Γ |=4ψ iff Γ |=2ψ.

Since, by its definition,|=4 is the same as|=4
c0

, we actually have a method of
computing|=4

c0
by |=2:

COROLLARY 43. — Γ |=4
c0
ψ iff Γ |=2ψ.

Corollary 43 implies, in particular, that reasoning with|=4
c0

may be implemented
by two-valued theorem provers. Moreover, sinceΓ is obtained fromΓ in a polynomial
time, computing consequences in this case ispolynomially reducibleto computations
of classical entailment.

We turn now to the other three basic types of logics of the form|=L,D
c , namely:

|=4
c1

, |=4
c2

, and|=4
c3

. Recall that with respect to the languageΣcl, |=4
c2

and|=4
c3

are
actually the same relation (item (a) of Proposition 26). It is sufficient, therefore, to
consider only|=4

c1
and|=4

c2
.

In order to simulate reasoning with|=4
c1

and|=4
c2

by classical entailment we should
first represent the inconsistency orders≤4

ci
(i=1, 2). Following [ARI 02b, ARI 03b],

this is accomplished by introducing a circumscription axiom Circi that expresses≤4
ci

objectively, using a formulaCi:

DEFINITION 44. — For a set~p = {p1, p2, . . . , pn} of atoms inΣcl,22 let ~p ± =
{p+

1 , p
−
1 , p

+
2 , p

−
2 , . . . , p

+
n , p

−
n } be the corresponding set of atoms inΣ±

cl , and~q ± – a
renaming inΣ±

cl of ~p ±. Now,

C1(~p
±, ~q ±) =

n
∧

i=1

(

(p+
i ∧p

−
i ) → (q+i ∧q−i )

)

,

C2(~p
±, ~q ±) =

n
∧

i=1

(

(

(p+
i ∧p

−
i ) ∨ (¬p+

i ∧¬p
−
i )

)

→
(

(q+i ∧q−i ) ∨ (¬q+i ∧¬q−i )
)

)

.

22. In fact, for checking the entailmentΓ |=4

ci
ψ, it is sufficient to taken = |A(Γ ∪ {ψ})|.
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For a finite setΓ of formulae inΣcl depending on~p ±, andi = 1, 2, denote:

Circ
Γ
i (~p

±) = ∀(~q ±)
(

∧

ψ ∈ Γ

ψ(~q ±) →
(

Ci(~q
±, ~p ±) → Ci(~p

±, ~q ±)
)

)

.

Now we are ready to give a general characterization of reasoning with |=4
c in terms

of ‘formula circumscription’ [MCC 86] and two-valued entailment:

THEOREM 45. — LetΓ be a finite set of formulae andψ a formula inΣcl. LetCirc
Γ
i

(i=1, 2) be the formula given in Definition 44. ThenΓ |=4
ci
ψ iff Γ,Circ

Γ
i |=

2ψ.

Theorem 45 immediately follows from the following proposition:

PROPOSITION46. — LetΓ be a finite set of formulae inΣcl. Thenν is a c4i -mcm of
Γ (i=1, 2) iff ν is a model ofΓ andCirc

Γ
i .

PROOF. — By Lemma 41,ν is a model ofΓ iff ν is a model ofΓ. It remains to
show, then, that the fact thatν satisfiesCirc

Γ
i is a necessary and sufficient condition

for assuring thatν is≤4
ci

-minimal among the models ofΓ. Indeed, let(~p ± :ν , ~q ± :µ)
be the two-valued interpretation that interprets the symbols in ~p ± according toν and
the symbols in~q ± according toµ. It is easy to see thatν ≤4

ci
µ iff (~p ± : ν, ~q ± : µ)

satisfiesCi(~p ±, ~q ±). It follows, therefore, thatν satisfiesCirc
Γ
i iff for every valuation

µ that satisfiesΓ and for whichµ≤4
ci
ν, it is also true thatν ≤4

ci
µ. Thus,ν satisfies

Circ
Γ
i iff there is no modelµ of Γ such thatµ <4

ci
ν, iff ν∈ !(Γ,≤4

ci
). ■

By Theorem 45 and Proposition 26(a) we also have the following result:

COROLLARY 47. — Let Γ be a finite set of formulae andψ a formula inΣcl. Then
Γ |=4

c3
ψ iff Γ,Circ

Γ
2 |=

2ψ.

Now, entailments of the formΓ |=L,D
c ψ (where≤L,D

c is an inconsistency order in
(L,D), andΓ∪{ψ} is a finite set of formulae inΣcl) can be reduced to questions of
classical entailments by the algorithm of Figure 3.

compute Γ and ψ

execute the algorithm of Figure 2 to determine the type of ≤L,D
c

let i be the type of ≤L,D
c /* i.e., |=L,D

c = |=4
ci

*/

– if i = 0, check if Γ |=2ψ

– if i = 1, compute Circ1 and check if Γ,Circ
Γ
1 |=

2ψ

– otherwise, compute Circ2 and check if Γ,Circ
Γ
2 |=

2ψ

Figure 3. Algorithm for converting|=L,D
c -entailments to classical entailments.

Next we consider the computational complexity of reasoningwith |=L,D
c . Again,

by Theorem 15 and the algorithm of Figure 2, the problem is polynomially reducible
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to the four-valued case, so it is sufficient to consider only four-valued logics. As the
following proposition shows, checking entailments with respect to such consequence
relations is on the second level of the polynomial hierarchy.

PROPOSITION48. — LetΓ, ψ be inΣ. Then

1) Checking ifΓ |=4
c0
ψ is coNP-complete; ifΓ is in CNF andψ is an atom, the

same decision problem is inP.

2) Checking ifΓ |=4
ci
ψ, where1≤ i≤3, is ΠP

2
-complete (even ifΓ is in CNF and

ψ is an atom).

NOTE 49. — The results in Proposition 48 remain the same also whenψ and the
formulae ofΓ are inΣcl.

The proof of Proposition 48 and Note 49 is a direct adaptationto our framework of
the proof of Proposition 2 in [COS 02]; the interested readeris referred to the appendix
of that paper. A computational analysis of the algorithm of Figure 3 provides an
alternative proof for Note 49, as it shows that verifying|=4

c0
-inferences is equivalent to

checking classical entailment, and deciding|=4
ci

-consequences of a finite theory inΣcl

is equivalent to validity checking of formulae with exactlyone quantifier alternation
(known to beΠP

2
-complete, see [WRA 76]).

6. Summary and concluding remarks

We have introduced a family of preferential logics that are useful for reasoning
with different degrees of incomplete and inconsistent information. It is shown that
these logics can be characterized in terms of four-valued consequence relations, and
that they can be computed by algorithms that process second-order circumscriptive
axioms.

As we have shown, the ‘basic’ non-degenerated consequence relations (i.e.,|=4
ci

where1≤ i≤ 3) are all different, and none of them is strictly stronger than the other.
The decision which one should be used in practice depends, therefore, on further con-
siderations. For instance, the fact that|=4

c2
and|=4

c3
are the same as|=2 as long as the

set of premises is classically consistent (but they are not trivial w.r.t. inconsistent set
of premises), may be considered as an advantage for applications that need to draw
classical conclusions from (classically) consistent theories. For other languages, the
relative strength of the consequence relations may be a possible criterion for choosing
the most appropriate formalism (see, e.g., Proposition 26 for a comparison of conse-
quence relations with respect to the classical language).

It is worth noting that the logics that are defined here generalize some other for-
malisms, considered elsewhere in the literature for similar goals. The next proposition
shows some examples of this.
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PROPOSITION50. — 23

– |=4
c0

coincides with Belnap’s four-valued logic[BEL 77a, BEL 77b], and it can
be used for implementing Kleene’s[KLE 50] and Priest’s[PRI 89, PRI 91]three-
valued logics (denoted, respectively,|=3

Kl and|=3
LP): for A(Γ∪{ψ}) = {p1, p2, . . .},

Γ |=3
Kl ψ iff Γ, (p1∧¬p1)⊃f, (p2∧¬p2)⊃f, . . . |=4

c0
ψ

Γ |=3
LP ψ iff Γ, p1∨¬p1, p2∨¬p2 . . . |=4

c0
ψ

– |=4
c1

and|=4
c2

are, respectively, the same as the logics|=4
I1

and|=4
I2

of [ARI 98a,
ARI 98b].24 It follows, therefore, that these logics capture the notions of inclusion of
inconsistency sets andI-mcms, introduced in[ARI 98a, ARI 98b].

– |=4
ci

(i=1, 2, 3) can be used for implementing Priest’s three-valued preferential
logic LPm(|=3

LPm) [PRI 89, PRI 91], for reasoning with minimal inconsistency:25 if
A(Γ ∪ {ψ}) = {p1, p2, . . .}, thenΓ |=3

LPm ψ iff Γ, p1∨¬p1, p2∨¬p2 . . . |=4
ci
ψ.

PROOF (OUTLINE). — The consequence relation|=4
c0

and Belnap’s four-valued
logic are the same simply because in both cases conclusions are based on all the four-
valued models of the premises. The relation of|=4

c0
to the three-valued logic|=3

Kl

(respectively,|=3
LP) follows from the fact that the{t, f,⊥}-models (respectively, the

{t, f,⊤}-models) ofΓ are the same as the four-valued models ofΓ ∪ {p1 ∧ ¬p1 ⊃
f, p2 ∧ ¬p2 ⊃ f, . . .} (respectively, the four-valued models ofΓ ∪ {p1 ∨ ¬p1, p2 ∨
¬p2, . . .} ).

For the second item, consider an inconsistency setI (in the sense of [ARI 98a,
ARI 98b]) in a logical lattice(L,D). It induces an inconsistency order≤c in (L,D),
wherex≤c y iff y∈I andx 6∈I. InFOUR, there are two inconsistency setsI1 ={⊤}
andI2 = {⊤,⊥}, so the corresponding inconsistency orders in this case are≤4

c1
and

≤4
c2

, respectively. Also, it is easy to verify that a four-valuedvaluationM is anIj-
mcm of a theoryΓ iff it is a c4j -mcm ofΓ (j= 1, 2), and so for everyψ in Σ and for
j = 1, 2, we have thatΓ |=4

Ij
ψ iff Γ |=4

cj
ψ.

The last item immediately follows from the previous item andProposition 69 of
[ARI 98b], which states a similar property as in our proposition, but for the conse-
quence relations|=4

Ij
(j = 1, 2). ■

A major goal for future work is to carry on the ideas of Section5, so thatpractical
reasoning with|=L,D

c will become more feasible. As making decisions in the presence
of (different types and levels of) uncertainty is a matter ofeveryday life, this challenge
is certainly worthy.

23. In what follows we shall assume that the reader is familiar with the relevant formalisms, and
so we shall omit the corresponding definitions. For more details, one may check the references
that appear in the proposition.
24. Note, however, that there is no equivalent in [ARI 98a, ARI 98b] to |=4

c3
.

25. Also known as the logic|=m of Besnard et al., see [BES 03].
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