
Artificial Intelligence 331 (2024) 104110

Contents lists available at ScienceDirect

Artificial Intelligence

journal homepage: www.elsevier.com/locate/artint

Non-deterministic approximation fixpoint theory and its

application in disjunctive logic programming

Jesse Heyninck a,b,∗, Ofer Arieli c, Bart Bogaerts d

a Open Universiteit, the Netherlands
b University of Cape Town, South Africa
c School of Computer Science, Tel-Aviv Academic College, Israel
d Vrije Universiteit Brussel, Belgium

A R T I C L E I N F O A B S T R A C T

Keywords:

Logic Programming

Answer Set Programming

Approximation Fixpoint Theory

Knowledge Representation

Approximation fixpoint theory (AFT) is an abstract and general algebraic framework for
studying the semantics of nonmonotonic logics. It provides a unifying study of the semantics
of different formalisms for nonmonotonic reasoning, such as logic programming, default logic
and autoepistemic logic. In this paper, we extend AFT to dealing with non-deterministic constructs

that allow to handle indefinite information, represented e.g. by disjunctive formulas. This is done
by generalizing the main constructions and corresponding results of AFT to non-deterministic
operators, whose ranges are sets of elements rather than single elements. The applicability and
usefulness of this generalization is illustrated in the context of disjunctive logic programming.

1. Introduction

Semantics of various formalisms for knowledge representation can often be described by fixpoints of corresponding operators.
For example, in many logics, theories of a set of formulas can be seen as fixpoints of the underlying consequence operator [55].
Likewise, in logic programming, default logic or formal argumentation, all the major semantics can be formulated as different types
of fixpoints of the same operator [23,53]. Such operators are usually non-monotonic, and so one cannot always be sure whether their
fixpoints exist, and how they can be constructed.

In order to deal with this ‘illusive nature’ of the fixpoints, Denecker, Marek and Truszczyński [23] introduced a method for
approximating each value 𝑧 of the underlying operator by a pair of elements (𝑥, 𝑦). These elements intuitively represent lower and
upper bounds on 𝑧, and so a corresponding approximation operator for the original, non-monotonic operator, is constructed. If the
approximation operator that is obtained is precision-monotonic, intuitively meaning that more precise inputs of the operator give
rise to more precise outputs, then the approximation operator has fixpoints that can be constructively computed, and which in turn
approximate the fixpoints of the approximated operator, if such fixpoints exist.

The usefulness of the algebraic theory that underlies the computation process described above was demonstrated on several
knowledge representation formalisms, such as propositional logic programming [21], default logic [24], autoepistemic logic [24],
abstract argumentation and abstract dialectical frameworks [53], hybrid MKNF [42], the graph description language SHACL [11],
and active integrity constraints [10], each one of which was shown to be an instantiation of this abstract theory of approximation.
More precisely, it was shown that various semantics of the formalisms mentioned above correspond to the various fixpoints defined

* Corresponding author.
Available online 8 March 2024
0004-3702/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

E-mail address: jesse.heyninck@ou.nl (J. Heyninck).

https://doi.org/10.1016/j.artint.2024.104110

Received 2 December 2022; Received in revised form 29 January 2024; Accepted 2 March 2024

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
mailto:jesse.heyninck@ou.nl
https://doi.org/10.1016/j.artint.2024.104110
http://crossmark.crossref.org/dialog/?doi=10.1016/j.artint.2024.104110&domain=pdf
https://doi.org/10.1016/j.artint.2024.104110
http://creativecommons.org/licenses/by/4.0/

Artificial Intelligence 331 (2024) 104110J. Heyninck, O. Arieli and B. Bogaerts

in [23]. This means that approximation fixpoint theory (AFT, for short) captures the uniform principles underlying all these non-

monotonic formalisms in a purely algebraic way.

Besides its unifying capabilities, AFT also allows for a straightforward definition of semantics for new formalisms. Indeed, one
merely has to define an approximation of the operator of interest, and AFT then automatically gives rise to a family of semantics
with several desirable properties. This potential of AFT for a straightforward derivation of semantics was demonstrated in e.g. logic
programming, where it was used to define semantics for extensions of logic programs [3,18,47], in argumentation theory, where
it was used to define semantics for (weighted) abstract dialectical frameworks (ADFs, [9,53]), in autoepistemic logic, where it was
used for defining distributed variants that are suitable for studying access control policies [35], and in second-order logic extended
with non-monotonic inductive definitions [20].

Another benefit of AFT is that, due to its generality, it has proven useful to develop central concepts, such as strong equiva-

lence [56], groundedness [12], safe inductions [13], and stratification [60] for approximation operators in a purely algebraic way,
which then allow us to derive, for all the specific formalisms representable in AFT, results on these concepts as straightforward
corollaries.

So far, AFT has mainly been applied to deterministic operators, i.e., operators which map single inputs to single outputs. This means
that, while AFT is able to characterize semantics for normal logic programs (i.e., programs consisting of rules with single atomic
formulas as their head), disjunctive logic programs [44] (i.e., programs consisting of rules with disjunctions of atoms in their head)
cannot be represented by it. The same holds for the representation of e.g. default logic versus disjunctive default logic [33], abstract
argumentation versus set-based abstract argumentation [45] and the generalization of abstract dialectical frameworks to conditional

abstract dialectical frameworks [40].

Extending AFT to handle disjunctive information is therefore a desirable goal, as the latter has a central role in systems for knowl-

edge representation and reasoning, and since disjunctive reasoning capabilities provide an additional way of expressing uncertainty
and indeterminism to many formalisms for non-monotonic reasoning. However, the introduction of disjunctive reasoning often in-

creases the computational complexity of formalisms and thus extends their modeling capabilities [26]. Perhaps due to this additional
expressiveness, the integration of non-deterministic reasoning with non-monotonic reasoning (NMR) has often proven non-trivial, as
witnessed e.g. by the large body of literature on disjunctive logic programming [43,44]. The implementation of non-deterministic
reasoning in NMR yielded the formulation of some (open) problems that are related to the combination of non-monotonic and dis-

junctive reasoning [5,6,14], or was restricted to limited semantics available for the core formalism, as is the case for e.g. default
logic [33].

The goal of this work is to provide an adequate framework for modeling disjunctive reasoning in NMR. We do so by extending
AFT to handle non-deterministic operators. This idea was first introduced by Pelov and Truszczyński in [48], where some first results
on two-valued semantics for disjunctive logic programs were provided. In this paper, we further extend AFT for non-deterministic
operators. This, among others, allows a generalization of the results of [48] to the three-valued case. In particular, we define several
interesting classes of approximating fixpoints and show their existence, constructability and consistency where it is possible. An
application of this theory is demonstrated in the context of disjunctive logic programming. Furthermore, we show that our theory is
a conservative generalization of the work in [23] of AFT for deterministic operators, in the sense that all the concepts introduced in
this paper coincide with the deterministic counterparts when the operator at hand happens to be deterministic.

The outcome of this work is therefore a comprehensive study of semantics for non-monotonic formalisms incorporating non-

determinism. Its application is demonstrated in this paper in the context of disjunctive logic programming. Specifically, the paper
contains the following contributions:

1. We define variants of both the Kripke-Kleene and the stable/well-founded semantics, the interpretation or fixpoint semantics and state
semantics. Interpretation semantics consist of single pairs of elements, and thus approximate a single element. State semantics,
on the other hand, consist of pairs of sets of elements, intuitively viewed as a convex set, which approximates a set of elements.

2. We show that the Kripke-Kleene state and well-founded state (obtained as the least fixpoint of the stable state operator) exist
and are unique (Theorem 2 and Theorem 5).

3. We show that the Kripke-Kleene state approximates any fixpoint of an approximation operator (Theorem 5), whereas the well-

founded state approximates any stable fixpoint of an approximation operator (Theorem 5). In more detail, any fixpoint of an
approximation operator, respectively stable fixpoint of an approximation operator, is an element of the convex set represented
by the Kripke-Kleene state, respectively the well-founded state.

4. We show that when restricting the attention to deterministic operators, the theory reduces to deterministic AFT [23] (Remark 5

and Propositions 3, 9 and 11).

5. We show that, just like in deterministic AFT, stable fixpoints are fixpoints that are minimal with respect to the truth order
(Proposition 14).

6. We demonstrate the usefulness of our abstract framework by showing how all the major semantics for disjunctive logic pro-

gramming can be characterized as fixpoints of an approximation operator for disjunctive logic programming. In more detail,
the weakly supported models [15] are characterized as fixpoints of the operator  (Theorem 1), the stable models can be
characterized as the stable fixpoints of  (Theorem 4) and the well-founded semantics by Alcântara, Damásio and Pereira [2]

is strongly related to the well-founded state of  (Theorem 7).

Relation with previous work on non-deterministic approximation fixpoint theory This work extends and improves our work in [38]. The
2

theory has been simplified on several accounts, among others since: (1) we no longer require minimality of the elements of the

Artificial Intelligence 331 (2024) 104110J. Heyninck, O. Arieli and B. Bogaerts

Table 1

List of the notations of different types of sets used in this paper.

Elements Notations Example

Elements of   𝑥, 𝑦,… 𝑥, 𝑦

Sets of elements of  ℘() 𝑋,𝑌 ,… {𝑥1, 𝑦1, 𝑥2, 𝑦2}
Pairs of sets of elements of  ℘()2 𝐗,𝐘,… ({𝑥1, 𝑥2,…}, {𝑦1 , 𝑦2,…})
Sets of sets of elements of  ℘(℘())  , ,… {{𝑥1, 𝑥2},{𝑥1}}

Table 2

List of the preorders used in this paper.

Preorder Type Definition

Element Orders

≤  primitive

≤𝑖 ,≤𝑡  × bilattice orders (Definition 4)

≤𝑖 2 ×2 (𝑥1, 𝑦1) ≤𝑖 (𝑥2, 𝑦2) iff 𝑥1 ≤ 𝑥2 and 𝑦1 ≥ 𝑦2
≤𝑡 2 ×2 (𝑥1, 𝑦1) ≤𝑡 (𝑥2, 𝑦2) iff 𝑥1 ≤ 𝑥2 and 𝑦1 ≤ 𝑦2

Set-based Orders

⪯𝑆
𝐿

℘() ×℘() 𝑋 ⪯𝑆
𝐿
𝑌 iff for every 𝑦 ∈ 𝑌 there is an 𝑥 ∈𝑋 s.t. 𝑥 ≤ 𝑦

⪯𝐻
𝐿

℘() ×℘() 𝑋 ⪯𝐻
𝐿
𝑌 iff for every 𝑥 ∈𝑋 there is an 𝑦 ∈ 𝑌 s.t. 𝑥 ≤ 𝑦

⪯𝐴
𝑖

℘()2 ×℘()2 (𝑋1, 𝑌1) ⪯𝐴
𝑖
(𝑋2, 𝑌2) iff 𝑋1 ⪯𝑆

𝐿
𝑋2 and 𝑌2 ⪯𝐻

𝐿
𝑌1

Table 3

List of the operators used in this paper.

Operator Notation Type Definition

Non-deterministic operator 𝑂 →℘() Definition 8

Non-deterministic approximation operator  2 →℘()2 Definition 11

Non-deterministic state approx. operator ′ ℘()2 →℘()2 Definition 18

Stable operator 𝑆() 2 →℘()2 Definition 20

range of a non-deterministic (approximation) operator, which leads to a significant decrease in the number of lattice-constructions
needed, (2) the state operator is now more general and can be defined on the basis of a non-deterministic approximation operator.
Furthermore, intuitive explanations and illustrative examples are added throughout the paper. As a by-product, the simplified frame-

work allows us to identify and correct a faulty statement on the ≤𝑖-monotonicity of the approximation operator for disjunctive logic
programs, made in [38] (see Remark 7).

Both this paper and the work in [38] were partially inspired by Pelov and Truszczyński’s work [48] where, to the best
of our knowledge, the idea of a non-deterministic operator was first introduced in approximation fixpoint theory. Pelov and
Truszczyński [48] studied only two-valued semantics, whereas we study the full range of semantics for AFT. Furthermore, in [48],
Pelov and Truszczyński require minimality of the codomain of non-deterministic operators, which we do not require here.

Outline of this paper The rest of this paper is organized as follows: In Section 2 we recall the necessary background on disjunctive
logic programming (Section 2.1) and approximation fixpoint theory (Section 2.2). In Section 3 we introduce non-deterministic
operators and their approximation, and show some preliminary results on approximations of non-deterministic operators. In Section 4

we study these non-deterministic approximation operators, showing their consistency and introducing and studying their fixpoints,
Kripke-Kleene interpretation and the Kripke-Kleene state semantics. In Section 5 we introduce and study the stable interpretation
and state semantics, as well as the well-founded state semantics. Related work is discussed in Section 6, followed by a conclusion
in Section 7. Proofs of results on disjunctive logic programming are given in Appendix A, and additional characterization results on
other semantics for disjunctive logic programs are given in Appendix B.

2. Background and preliminaries

In this section, we recall the necessary basics of approximation fixpoint theory (AFT) for deterministic operators. We start with a
brief survey on disjunctive logic programming (DLP, Section 2.1), which will serve to illustrate concepts and results of the general
theory of non-deterministic AFT (Section 2.2).

Remark 1. Before proceeding, a note on notation: As we often have to move from the level of single elements to sets of elements,
the paper is, by its nature, notationally heavy. We tried to keep the notational burden as light as possible by staying consistent in our
notation of different types of elements. For the readers convenience, we provide already at this stage a summary of the notations of
3

different types of sets (Table 1), the preorders (Table 2) and the operators (Table 3) that are used in this paper.

Artificial Intelligence 331 (2024) 104110J. Heyninck, O. Arieli and B. Bogaerts

2.1. Disjunctive logic programming

In what follows we consider a propositional1 language 𝔏, whose atomic formulas are denoted by 𝑝, 𝑞, 𝑟 (possibly indexed), and
that contains the propositional constants 𝖳 (representing truth), 𝖥 (falsity), 𝖴 (unknown), and 𝖢 (contradictory information). The
connectives in 𝔏 include negation ¬, conjunction ∧, disjunction ∨, and implication ←. Formulas are denoted by 𝜙,𝜓 (again, possibly
indexed). Logic programs in 𝔏 may be divided to different kinds as follows:

• A (propositional) disjunctive logic program  in 𝔏 (a dlp, for short) is a finite set of rules of the form
⋁𝑛

𝑖=1 𝑝𝑖 ← 𝜓 , where
⋁𝑛

𝑖=1 𝑝𝑖
(the rule’s head) is a non-empty disjunction of atoms, and 𝜓 (the rule’s body) is a (propositional) formula.

• A rule is called normal, if its body is a conjunction of literals (i.e., atomic formulas or negated atoms), and its head is atomic. A
program is normal if it consists only of normal rules; It is positive if there are no negations in the rules’ bodies.

• We call a rule disjunctively normal if its body is a conjunction of literals (and its head is a non-empty disjunction of atoms). A
program is called disjunctively normal, if it consists of disjunctively normal rules.

The set of atoms occurring in a logic program  is denoted  . In what follows, we will often leave the reference to the language 𝔏
of  implicit.

The primary algebraic structure for giving semantics to logic programs in our setting is the four-valued structure , shown
in Fig. 1. This structure was introduced by Belnap [7,8] and later considered by Fitting [29] and others in the context of logic
programming. It is the simplest instance of a bilattice (Definition 4).2

≤𝑖

≤𝑡

𝖴

𝖥 𝖳

𝖢

Fig. 1. A four-valued bilattice.

Each element of  is associated with the propositional constant of  with the same notation. These elements are arranged
in two lattice orders, ≤𝑡 and ≤𝑖, intuitively representing differences in the amount of truth and information (respectively) that
each element exhibits. According to this interpretation, 𝖳 (respectively, 𝖥) exhibits maximal (respectively, minimal) truth, while
𝖢 (respectively, 𝖴) represents “too much” (respectively, “lack of”) information. In what follows, we denote by − the ≤𝑡-involution
on  (that is, −𝖥 = 𝖳, −𝖳 = 𝖥, −𝖴 = 𝖴 and −𝖢 = 𝖢).

A four-valued interpretation of a program  is a pair (𝑥, 𝑦), where 𝑥 ⊆ intuitively represents the atoms that are true (that, is,
strictly true 𝖳 or contradictory 𝖢), and 𝑦 ⊆ represents the atoms that are not false (i.e., strictly true 𝖳 or undecided 𝖴).34

Interpretations are compared by two order relations, corresponding to the two partial orders of :

1. the information order ≤𝑖, where (𝑥, 𝑦) ≤𝑖 (𝑤, 𝑧) iff 𝑥 ⊆𝑤 and 𝑧 ⊆ 𝑦, and

2. the truth order ≤𝑡, where (𝑥, 𝑦) ≤𝑡 (𝑤, 𝑧) iff 𝑥 ⊆𝑤 and 𝑦 ⊆ 𝑧.

The information order represents differences in the “precisions” of the interpretations. Thus, the components of higher values ac-

cording to this order represent tighter evaluations. The truth order represents increased “positive” evaluations. Truth assignments to
complex formulas are then recursively defined as follows:

1 For simplicity we restrict ourselves to the propositional case. The investigation of disjunctive logic programs with variables is left for future work.
2 We refer to [30,31] for further details on bilattices and their applications in logic programming.
3 Somewhat skipping ahead, the intuition here is that 𝑥 (respectively, 𝑦) is a lower (respectively, an upper) approximation of the true atoms.
4 Notice that we use lower case letters 𝑥 and 𝑦 to denote sets, as sets of atoms are elements of the lattice under consideration. This notation is thus consistent with
4

our conventions.

Artificial Intelligence 331 (2024) 104110J. Heyninck, O. Arieli and B. Bogaerts

• (𝑥, 𝑦)(𝑝) =

⎧⎪⎪⎨⎪⎪⎩
𝖳 if 𝑝 ∈ 𝑥 and 𝑝 ∈ 𝑦,

𝖴 if 𝑝 ∉ 𝑥 and 𝑝 ∈ 𝑦,

𝖥 if 𝑝 ∉ 𝑥 and 𝑝 ∉ 𝑦,

𝖢 if 𝑝 ∈ 𝑥 and 𝑝 ∉ 𝑦.

• (𝑥, 𝑦)(¬𝜙) = −(𝑥, 𝑦)(𝜙),
• (𝑥, 𝑦)(𝜓 ∧ 𝜙) = 𝑔𝑙𝑏≤𝑡{(𝑥, 𝑦)(𝜙), (𝑥, 𝑦)(𝜓)},

• (𝑥, 𝑦)(𝜓 ∨ 𝜙) = 𝑙𝑢𝑏≤𝑡{(𝑥, 𝑦)(𝜙), (𝑥, 𝑦)(𝜓)}.

A four-valued interpretation of the form (𝑥, 𝑥) may be associated with a two-valued (or total) interpretation 𝑥, in which for an
atom 𝑝, 𝑥(𝑝) = 𝖳 if 𝑝 ∈ 𝑥 and 𝑥(𝑝) = 𝖥 otherwise. We say that (𝑥, 𝑦) is a three-valued (or consistent) interpretation, if 𝑥 ⊆ 𝑦. Note that
in consistent interpretations there are no 𝖢-assignments.

We now consider semantics for dlp’s. First, given a two-valued interpretation, an extension to dlp’s of the immediate consequence
operator for normal programs [58] is defined as follows:

Definition 1. Given a dlp  and a two-valued interpretation 𝑥, we define:

• HD (𝑥) = {Δ ∣
⋁
Δ ← 𝜓 ∈  and (𝑥, 𝑥)(𝜓) = 𝖳}.

• IC (𝑥) = {𝑦 ⊆
⋃

HD (𝑥) ∣ ∀Δ ∈ HD (𝑥), 𝑦 ∩Δ ≠ ∅}.

Thus, IC (𝑥) consists of sets of atoms, each set contains at least one representative from every disjunction in the head of a rule
in  whose body is 𝑥-satisfied (i.e., a representative from each set Δ ∈ HD (𝑥)). In other words, IC (𝑥) consists of the two-valued
interpretations that validate all disjunctions which are derivable from  given 𝑥. Denoting by ℘() the powerset of  , IC is a
non-deterministic operator on the lattice ⟨℘(),⊆⟩, mapping sets of atoms to sets of sets of atoms.5

Example 1. Consider the dlp  = {𝑝 ∨ 𝑞←}. For any two-valued interpretation 𝑥, HD (𝑥) = {{𝑝, 𝑞}}, since 𝑝 ∨ 𝑞←∈  and the body
of this rule is an empty conjunction and therefore true under any interpretation. Thus, IC (𝑥) = {{𝑝}, {𝑞}, {𝑝, 𝑞}} for any two-valued
interpretation 𝑥. This intuitively reflects the fact that 𝑝 or 𝑞 has to be true to validate the head of 𝑝 ∨ 𝑞←.

Other semantics for dlp’s, this time based on three-valued interpretations, are defined next:

Definition 2. Given a dlp  and a consistent interpretation (𝑥, 𝑦). We say that (𝑥, 𝑦) is:

• a (three–valued) model of  , if for every 𝜙 ← 𝜓 ∈  , (𝑥, 𝑦)(𝜙) ≥𝑡 (𝑥, 𝑦)(𝜓). We denote by 𝑚𝑜𝑑() the set of the three-valued
models of  .

• a weakly supported model of  , if it is a model of  and for every 𝑝 ∈ 𝑦, there is a rule
⋁
Δ ← 𝜙 ∈  such that 𝑝 ∈ Δ and

(𝑥, 𝑦)(𝜙) ≥𝑡 (𝑥, 𝑦)(𝑝).

The intuition behind the notions above is the following. An interpretation is a model of  , if for each rule in  there is at least
one atom whose truth value is ≤𝑡-greater or equal to the truth value of the rule’s body. Thus, the truth values of the rules’ heads in
the models of  are ≤𝑡-greater or equal to the truth values of the rules’ bodies. Weakly supported models require that for every atom
that is true (respectively undecided), we can find a rule in whose head this atom occurs and for which the body is true (respectively
undecided). In other words, every atom is supported by an “activated” rule.

The semantical notions of Definition 2 are illustrated in Example 2 and Example 3 below.

Remark 2. Two-valued weakly supported models are defined by Brass and Dix [15]. Their generalization to the 3-valued case is,
to the best of our knowledge, a novel semantics. Brass and Dix [15] also introduce supported semantics, which we characterize in
the appendix. An alternative but equivalent definition of a supported model (𝑥, 𝑦) is the following: (𝑥, 𝑦) is a model, and for every
𝑝 ∈ such that (𝑥, 𝑦)(𝑝) ≠ 𝖥, there is a rule

⋁
Δ ← 𝜙 such that 𝑝 ∈Δ and for every other 𝑝′ ∈ Δ, (𝑥, 𝑦)(𝜙) ≥𝑡 (𝑥, 𝑦)(𝑝) >𝑡 (𝑥, 𝑦)(𝑝′).

Another common way of providing semantics to dlp’s is by Gelfond-Lifschitz reduct [32]:

Definition 3. The GL-transformation 

(𝑥,𝑦) of a disjunctively normal dlp  with respect to a consistent interpretation (𝑥, 𝑦), is the
positive program obtained by replacing in every rule in  of the form

𝑝1 ∨…∨ 𝑝𝑛 ←
𝑚⋀
𝑖=1

𝑞𝑖 ∧
𝑛⋀

𝑗=1
¬𝑟𝑗

5 The operator IC is a generalization of the immediate consequence operator from [28, Definition 3.3], where the minimal sets of atoms in 𝐼𝐶 (𝑥) are considered.
5

We will see below that this requirement of minimality is neither necessary nor desirable in the consequence operator.

Artificial Intelligence 331 (2024) 104110J. Heyninck, O. Arieli and B. Bogaerts

any negated literal ¬𝑟𝑖 (1 ≤ 𝑖 ≤ 𝑘) by: (1) 𝖥 if (𝑥, 𝑦)(𝑟𝑖) = 𝖳, (2) 𝖳 if (𝑥, 𝑦)(𝑟𝑖) = 𝖥, and (3) 𝖴 if (𝑥, 𝑦)(𝑟𝑖) = 𝖴. In other words, replacing
¬𝑟𝑖 by (𝑥, 𝑦)(¬𝑟𝑖). To avoid clutter, we denote 

(𝑥,𝑥) by 
𝑥

.

An interpretation (𝑥, 𝑦) is a three-valued stable model of  iff it is a ≤𝑡-minimal model of 

(𝑥,𝑦) .
6 For normal logic programs, the

well-founded model is defined as the ≤𝑖-minimal three-valued stable model, which is unique and guaranteed to exist [49,59].

Example 2. Consider the dlp  = {𝑝 ← ¬𝑝; 𝑞← ¬𝑟; 𝑟 ← ¬𝑞; 𝑞 ∨ 𝑟 ←}.

• The following interpretations are the (consistent) models of  :

({𝑝, 𝑞, 𝑟},{𝑝, 𝑞, 𝑟}), ({𝑝, 𝑟},{𝑝, 𝑟}), ({𝑞, 𝑟},{𝑞, 𝑟}), ({𝑟},{𝑝, 𝑟}), ({𝑞},{𝑝, 𝑞}),
({𝑟},{𝑝, 𝑞, 𝑟}), ({𝑞},{𝑝, 𝑞, 𝑟}), ({𝑝, 𝑟},{𝑝, 𝑞, 𝑟}), ({𝑝, 𝑞},{𝑝, 𝑞, 𝑟}).

Notice that (∅, {𝑝, 𝑞, 𝑟}) is not a model of  , since (∅, {𝑝, 𝑞, 𝑟})(𝑞 ∨ 𝑟) = 𝖴 <𝑡 (∅, {𝑝, 𝑞, 𝑟})(⊤),7 thus this interpretation is not a
model of 𝑞 ∨ 𝑟 ←.

• The following interpretations are the weakly supported models of  :

({𝑞},{𝑝, 𝑞}), ({𝑟},{𝑝, 𝑟}).

• These interpretations are also stable models of  . Indeed, note for instance that:



({𝑞},{𝑝, 𝑞})
= {𝑝←𝖴; 𝑞←𝖳; 𝑟←𝖥; 𝑞 ∨ 𝑟←}.

The minimal (and, in this case also the unique) model of 

({𝑞},{𝑝,𝑞}) is ({𝑞}, {𝑝, 𝑞}) and thus this interpretation is stable.

Example 3. Consider the dlp  = {𝑝 ∨ 𝑞← 𝑞}.

• The following interpretations are weakly supported models of  :

(∅,∅), (∅,{𝑞}), ({𝑞},{𝑞}), (∅,{𝑝, 𝑞}), ({𝑞},{𝑝, 𝑞}), ({𝑝, 𝑞},{𝑝, 𝑞})

One can see that e.g. ({𝑝, 𝑞}, {𝑝, 𝑞}) is not weakly supported, as there is no rule for which 𝑝 is the only atom that is true and
occurs in the head (as also 𝑞 occurs in 𝑝 ∨ 𝑞← 𝑞 and is true according to ({𝑝, 𝑞}, {𝑝, 𝑞})).

• The only stable model of  is (∅, ∅). This can be seen by observing that for any interpretation (𝑥, 𝑦) it holds that 

(𝑥,𝑦) =  , and
that the minimal model of  is (∅, ∅).

2.2. Approximation fixpoint theory

We first recall some basic algebraic notions. A lattice is a partially ordered set (poset) ⟨, ≤⟩ s.t. for every 𝑥, 𝑦 ∈ , a least upper
bound 𝑥 ⊔ 𝑦 and a greatest lower bound 𝑥 ⊓ 𝑦 exist. A lattice is complete if every 𝑋 ⊆  has a least upper bound

⨆
𝑋 and a greatest

lower bound
⨅
𝑋.8

⨆
 is denoted by ⊤ and

⨅
 is denoted by ⊥. A poset 𝑋 is a chain if for all 𝑥, 𝑦 ∈ 𝑋, 𝑥 ≤ 𝑦 or 𝑦 ≤ 𝑥. It is

chain-complete if and only if every chain has a least upper bound. A function 𝑓 ∶𝑋 → 𝑌 from a poset ⟨𝑋, ≤1⟩ to a poset ⟨𝑌 , ≤2⟩ is
monotonic if 𝑥1 ≤1 𝑥2 implies 𝑓 (𝑥1) ≤2 𝑓 (𝑥2). Given a function 𝑓 ∶𝑋 →𝑋, we say that 𝑥 ∈𝑋 is a fixpoint of 𝑓 if 𝑥 = 𝑓 (𝑥), 𝑥 is called
a pre-fixpoint of 𝑓 if 𝑓 (𝑥) ≤ 𝑥 and 𝑥 is a post-fixpoint of 𝑓 if 𝑥 ≤ 𝑓 (𝑥). We define the ordinal powers of a function 𝑓 ∶ 𝑋 → 𝑋 as
follows:

𝑓 0(𝑥) = 𝑥, 𝑓𝛼+1(𝑥) = 𝑓 (𝑓𝛼(𝑥)) for a successor ordinal 𝛼, 𝑓𝛼(𝑥) =
⨆
𝛽<𝛼

𝑓𝛽 (𝑥) for a limit ordinal 𝛼.

It follows from Theorem 5.1 shown by Cousot and Cousot [19] that a monotonic operator over a complete lattice admits a least
fixpoint that can be constructed by applying the ordinal powers of the operator starting from ⊥:

Proposition 1 ([19]). Let ⟨, ≤⟩ be a complete lattice and let 𝑓 ∶  →  be a monotonic function. Then there is an ordinal 𝛼 such that
𝑓𝛼(⊥) is the least fixpoint of 𝑓 .

We now recall some basic notions from approximation fixpoint theory (AFT), as described by Denecker, Marek and
Truszczyński [23]. As we have already noted, AFT introduces constructive techniques for approximating the fixpoints of an op-

erator 𝑂 over a lattice 𝐿 = ⟨,≤⟩. This is particularly useful when 𝑂 is non-monotonic (as is often the case in logic programming,

6 If 𝑥 = 𝑦, (𝑥, 𝑦) is called a two-valued stable model of  .
7 We use ⊤ to denote the empty body in the rule 𝑞 ∨ 𝑟 ←, in order to avoid the potentially confusing (∅, {𝑝, 𝑞, 𝑟})(). Notice that (𝑥, 𝑦)(⊤) = 𝖳 for any 𝑥, 𝑦 ⊆ .
6

8 As usual, we assume that ⨆𝑋, ⨅𝑋 ∈𝑋.

Artificial Intelligence 331 (2024) 104110J. Heyninck, O. Arieli and B. Bogaerts

default logic and abstract argumentation, and other disciplines for non-monotonic reasoning in AI), in which case such operators are
not guaranteed to even have a fixpoint, or a unique least fixpoint that can be constructively obtained.

AFT generalizes the principles for the construction of fixpoints to the non-monotonic setting, by working with approximations of
such operators on a bilattice [4,7,8,30,31,34], constructed on the basis of 𝐿.

Definition 4. Given a lattice 𝐿 = ⟨,≤⟩, a bilattice is the structure 𝐿2 = ⟨2,≤𝑖,≤𝑡⟩, in which 2 = ×, and for every 𝑥1, 𝑦1, 𝑥2, 𝑦2 ∈
,

• (𝑥1, 𝑦1) ≤𝑖 (𝑥2, 𝑦2) if 𝑥1 ≤ 𝑥2 and 𝑦1 ≥ 𝑦2,

• (𝑥1, 𝑦1) ≤𝑡 (𝑥2, 𝑦2) if 𝑥1 ≤ 𝑥2 and 𝑦1 ≤ 𝑦2.9

Bilattices of the form 𝐿2 are used for defining operators that approximate operators on 𝐿.

An approximation operator  ∶ 2 → 2 of an operator 𝑂 ∶  →  is an operator that maps every approximation (𝑥, 𝑦) of an
element 𝑧 to an approximation (𝑥′, 𝑦′) of the element 𝑂(𝑧), thus approximating the behaviour of the approximated operator 𝑂.
Approximation operators may be viewed as combinations of two operators: ((⋅, ⋅))1 and ((⋅, ⋅))2 which calculate, respectively, a
lower and an upper bounds for the value of 𝑂 (where, as usual, (𝑥, 𝑦)1 respectively (𝑥, 𝑦)2 represents the first respectively second
component of (𝑥, 𝑦)). To avoid clutter, we will also denote ((𝑥, 𝑦))1 by 𝑙(𝑥, 𝑦) and ((𝑥, 𝑦))2 by 𝑢(𝑥, 𝑦).

Two fundamental requirements on approximation operators are the following:

1. ≤𝑖-monotonicity: the values of an approximation operator should be more precise as its arguments are more precise, and

2. exactness: exact arguments are mapped to exact values.

These requirements result in the following definition:

Definition 5. Let 𝑂 ∶ →  and  ∶2 →2.

•  is ≤𝑖-monotonic, if when (𝑥1, 𝑦1) ≤𝑖 (𝑥2, 𝑦2), also (𝑥1, 𝑦1) ≤𝑖 (𝑥2, 𝑦2);  is approximating, if it is ≤𝑖-monotonic and for any
𝑥 ∈, 𝑙(𝑥, 𝑥) =𝑢(𝑥, 𝑥).10

•  is an approximation of 𝑂, if it is ≤𝑖-monotonic and  extends 𝑂, that is: (𝑥, 𝑥) = (𝑂(𝑥), 𝑂(𝑥)) (for every 𝑥 ∈ ).

Notice that any approximation of an operator is an approximation operator.

Remark 3. One can define an approximation operator  without having to specify which operator 𝑂 it approximates, and indeed it
will often be convenient to study approximation operators without having to refer to the approximated operator. However, one can
easily obtain the operator 𝑂 that  approximates by letting: 𝑂(𝑥) =𝑙(𝑥, 𝑥).

Another operator that has a central role in AFT and which is used for expressing the semantics of many non-monotonic formalisms
is the stable operator, defined next.

Definition 6. For a complete lattice 𝐿 = ⟨,≤⟩, let  ∶ 2 → 2 be an approximation operator. We denote: 𝑙(⋅, 𝑦) =
𝜆𝑥.𝑙(𝑥, 𝑦) and 𝑢(𝑥, ⋅) = 𝜆𝑦.𝑢(𝑥, 𝑦), i.e.: 𝑙(⋅, 𝑦)(𝑥) = 𝑙(𝑥, 𝑦) and 𝑢(𝑥, ⋅)(𝑦) = 𝑢(𝑥, 𝑦). The stable operator for  is: 𝑆()(𝑥, 𝑦) =
(lfp(𝑙(⋅, 𝑦)), lfp(𝑢(𝑥, ⋅)).

Stable operators capture the idea of minimizing truth, since for any ≤𝑖-monotonic operator  on 2, the fixpoints of the stable
operator 𝑆() are ≤𝑡-minimal fixpoints of  [23, Theorem 4]. Two remarks are of interest here.

1. 𝑙(⋅, 𝑦) and 𝑢(𝑥, ⋅) are ≤-monotonic operators [23, Proposition 20]. This guarantees that the stable operator is well-defined.

2. 𝑆() is an ≤𝑖-monotonic operator [23, Proposition 20].

Altogether, the following semantic notions are obtained:

Definition 7. Given a complete lattice 𝐿 = ⟨,≤⟩, let  ∶2 →2 be an approximation operator. Then:

• (𝑥, 𝑦) is a Kripke-Kleene fixpoint of  if it is the ≤𝑖-least (3-valued) stable fixpoint of .

9 Recall that we use lower case letters to denote elements of lattice, capital letters to denote sets of elements, and capital calligraphic letters to denote sets of sets
of elements (Table 1).
10 In some papers (e.g. [23]), an approximation operator is defined as a symmetric ≤𝑖 -monotonic operator, i.e., a ≤𝑖-monotonic operator s.t. for every 𝑥, 𝑦 ∈ ,
7

(𝑥, 𝑦) = (𝑙(𝑥, 𝑦), 𝑙(𝑦, 𝑥)) for some 𝑙 ∶ 2 → . However, the weaker condition we take here (taken from [22]) is actually sufficient for most results on AFT.

Artificial Intelligence 331 (2024) 104110J. Heyninck, O. Arieli and B. Bogaerts

• (𝑥, 𝑦) is a three-valued stable fixpoint of  if (𝑥, 𝑦) = 𝑆()(𝑥, 𝑦).
• (𝑥, 𝑥) is a two-valued stable fixpoints of  if (𝑥, 𝑥) = 𝑆()(𝑥, 𝑥).
• (𝑥, 𝑦) is the well-founded fixpoint of  if it is the ≤𝑖-least (3-valued) stable fixpoint of 𝑆().

Denecker, Marek and Truszcyński [23] show that every approximation operator admits a unique ≤𝑖-minimal fixpoint, and that this
is guaranteed to be consistent, i.e. the Kripke-Kleene and well-founded fixpoint are guaranteed to exist, be unique and consistent.
Pelov, Denecker and Bruynooghe [47] show that for normal logic programs, the fixpoints based on the four-valued immediate
consequence operator for a logic program give rise to the following correspondences: the three-valued stable models coincide with the
three-valued semantics as defined by Przymusinski [49], the well-founded model coincides with the homonymous semantics [49,59],
and the two-valued stable models coincide with the two-valued (or total) stable models of a logic program.

Example 4. For a normal logic program  , an approximation of the operator IC [47] can be obtained by first constructing a lower
bound operator as follows11:

𝑙

(𝑥, 𝑦) = {𝑝 ∈ ∣ 𝑝← 𝜙 ∈  , (𝑥, 𝑦)(𝜙) ≥𝑡 𝖢}

and then defining:

 (𝑥, 𝑦) = (𝑙

(𝑥, 𝑦),𝑙


(𝑦,𝑥))

Notice that the upper bound 𝑢

(𝑦, 𝑥) is defined as 𝑙


(𝑦, 𝑥), i.e.  is a symmetric operator (see also Footnote 10). Pelov,

Denecker and Bruynooghe [47] have shown that this operator approximates IC for normal logic programs  .

We now illustrate the behaviour of this operator with the following logic program:

 = {𝑝← ¬𝑞; 𝑞← ¬𝑝; 𝑟← 𝑟}.

IC is thus an operator over the lattice ⟨℘({𝑝, 𝑞, 𝑟}), ⊆⟩. Now,

• Concerning the approximation  of IC , it holds, e.g. that:

– 𝑙

(∅, {𝑝, 𝑞, 𝑟}) = ∅ as (∅, {𝑝, 𝑞, 𝑟})(¬𝑞) = (∅, {𝑝, 𝑞, 𝑟})(¬𝑝) = (∅, {𝑝, 𝑞, 𝑟})(𝑟) = 𝖴.

– 𝑙

({𝑝, 𝑞, 𝑟}, ∅) = {𝑝, 𝑞, 𝑟} as ({𝑝, 𝑞, 𝑟}, ∅)(¬𝑞) = ({𝑝, 𝑞, 𝑟}, ∅)(¬𝑝) = ({𝑝, 𝑞, 𝑟}, ∅)(𝑟) = 𝖢.

• We now illustrate the stable operator.

– It holds that lfp( (⋅, {𝑝}) = {𝑝}, and therefore 𝑆(𝑙

)({𝑝}) = {𝑝}.

– By symmetry of  , ({𝑝}, {𝑝}) is a stable fixpoint of  .

– Likewise, it can be observed that (∅, {𝑝, 𝑞}) and ({𝑞}, {𝑞}) are stable fixpoints of  .

– It follows that (∅, {𝑝, 𝑞}) is the well-founded fixpoint of  .

We shall generalize this operator to the disjunctive case in Section 3.

3. Non-deterministic operators and approximations

In this section, we generalize approximation fixpoint theory to allow for non-deterministic operators. In Section 3.1 we formally
define non-deterministic operators and the necessary order-theoretic background. In Section 3.2 we then define non-deterministic
approximation operators and show some basic results on these operators.

3.1. Non-deterministic operators

In order to characterize (two-valued) semantics for disjunctive logic programming, in [48] Pelov and Truszczyński introduced the
notion of non-deterministic operators and accordingly extended AFT to non-deterministic AFT.

Definition 8. A non-deterministic operator on  is a function 𝑂 ∶  →℘() ⧵ {∅}.

Intuitively, a non-deterministic operator assigns to every element 𝑥 of  a (nonempty) set of choices 𝑂(𝑥) = {𝑥1, 𝑥2, …} which
can be seen as equally plausible alternatives of the outcome warranted by 𝑥. Thus, non-deterministic operators allow for multiple
options or choices in their output (reflected by the fact that elements of their codomain are sets of elements in the lattice). Just like
deterministic operators, it is required that every element 𝑥 is mapped to at least one choice (which might be the ≤-least element ⊥,
if it exists). As an example of non-determinism, consider an activated disjunctive rule

⋁
Δ ← 𝜙 (i.e., a rule for which the body is true

and its head is a disjunction), requiring that at least one among the disjuncts 𝛿 ∈Δ is true.
8

11 Notice that the lattice under consideration is ⟨℘(), ⊆⟩, i.e., elements of the lattice are sets of atoms.

Artificial Intelligence 331 (2024) 104110J. Heyninck, O. Arieli and B. Bogaerts

Example 5. The operator IC from Definition 1 is a non-deterministic operator on the lattice ⟨℘(),⊆⟩.
As the ranges of non-deterministic operators are sets of lattice elements, one needs a way to compare them. Next, we recall two

such relations, known as the Smyth order [52] and the Hoare order (used in the context of DLP in several works (see, e.g. [2,28])).

Definition 9. Let 𝐿 = ⟨,≤⟩ be a lattice, and let 𝑋, 𝑌 ∈℘(). Then:

• 𝑋 ⪯𝑆
𝐿
𝑌 if for every 𝑦 ∈ 𝑌 there is an 𝑥 ∈𝑋 such that 𝑥 ≤ 𝑦.

• 𝑋 ⪯𝐻
𝐿
𝑌 if for every 𝑥 ∈𝑋 there is a 𝑦 ∈ 𝑌 such that 𝑥 ≤ 𝑦.

Here, the sets of lattice elements 𝑋 and 𝑌 represent values of a non-deterministic operator (i.e., these are non-deterministic
states). Thus, according to the intuition described above, each one is a set of choices. Accordingly, ⪯𝑆

𝐿
means that for every choice

𝑦 in 𝑌 , there is a ≤-smaller choice 𝑥 in 𝑋. Likewise, ⪯𝐻
𝐿

means that for every choice 𝑥 in 𝑋, there is a ≤-greater choice 𝑦 in 𝑌 . In
other words, ⪯𝐻

𝐿
and ⪯𝑆

𝐿
allow to compare non-deterministic states on the basis of the ≤-relationship of their constituent elements

in 𝐿. We will see below that ⪯𝑆
𝐿

is well-suited to compare lower bounds, whereas ⪯𝐻
𝐿

is well-suited to compare upper bounds.

Remark 4. Both ⪯𝑆
𝐿

and ⪯𝐻
𝐿

are preorders (i.e., reflexive and transitive) on ℘().

3.2. Non-deterministic approximation operators

We now develop a notion of approximation of non-deterministic operators. Such an approximation generalizes the analogue
approximation of deterministic operators explained in Section 2.2. The benefits of such an approximation will be demonstrated in
Sections 4 and 5.

Before describing the formal details, we explain the intuition behind the approximation. Recall that, in deterministic AFT, an
operator over 𝐿 is approximated by an approximation operator that specifies a lower bound and an upper bound of an approximated
element. Thus, an approximation operator essentially consists of two operators over 𝐿, the lower bound operator 𝑙 and the upper
bound operator 𝑢. We generalize this idea to the non-deterministic case. As in deterministic AFT, a non-deterministic approximation
operator can be seen as consisting of a non-deterministic lower bound operator and a non-deterministic upper bound operator. A
non-deterministic approximation  of a non-deterministic operator 𝑂, maps a pair (𝑥, 𝑦) (intuitively representing an approximation
of a single value 𝑧) to a pair of sets 𝑋, 𝑌 ⊆  (intuitively representing sets of lower bounds 𝑋 and upper bounds 𝑌 on the non-

deterministic choices 𝑂(𝑧)). Thus, an approximation operator  is of the type 2 →℘()2.

As in the deterministic case, it is natural to assume two formal properties of the approximation operators (recall Definition 5).
Below, we adjust the requirements in Definition 5 to the non-deterministic case, using the order relations in Definition 9:

1. Exactness: if (𝑥, 𝑦) is an approximation of 𝑧, every non-deterministic choice 𝑧′ ∈ 𝑂(𝑧) should have at least one lower bound
𝑥′ ∈ 𝑙(𝑥, 𝑦) and at least one upper bound 𝑦′ ∈ 𝑢(𝑥, 𝑦). In other words, 𝑙(𝑥, 𝑦) ⪯𝑆

𝐿
𝑂(𝑧) and 𝑂(𝑧) ⪯𝐻

𝐿
𝑢(𝑥, 𝑦). Informally,

every choice in 𝑂(𝑧) is in between some lower bound and upper bound of (𝑥, 𝑦). In the extreme case where the argument
is an exact pair (𝑥, 𝑥), this means that (𝑥, 𝑥) = (𝑂(𝑥), 𝑂(𝑥)) and so, for an exact pair (𝑥, 𝑥), both the lower and upper bound
operator coincide with the approximated operator 𝑂. Thus, (𝑥, 𝑥) represents a single set of choices. We shall use this as a
defining condition: for exact pairs, the lower and upper bound coincide. Intuitively, exact inputs give rise to exact (but non-

deterministic) outputs. We will call such an operator exact.

2. Monotonicity: just like in the deterministic case, a non-deterministic approximation operator should be expected to be monotonic
w.r.t. the information ordering: more precise inputs give rise to more precise outputs. To make this notion formally precise, we
need a way to compare the precision of pairs of sets (interpreted as a set of lower bounds and a set of upper bounds). A set of
lower bounds 𝑋1 is more precise than a set of lower bounds 𝑋2 if, for every lower bound 𝑥1 in the more precise set 𝑋1, there
is a less precise (i.e. ≤-smaller) lower bound 𝑥2 in the less precise set 𝑋2. Thus: 𝑋2 ⪯𝑆

𝐿
𝑋1. Likewise, a set of upper bounds 𝑌1

is more precise than a set of upper bounds 𝑌2 if, for every upper bound 𝑦1 in the more precise set 𝑌1, there is a less precise
(i.e. ≤-higher) upper bound 𝑦2 in the less precise set 𝑌2. Thus: 𝑌1 ⪯𝐻

𝐿
𝑌2. Altogether, a pair of bounds (𝑋1, 𝑌1) is more precise

than a second pair of bounds (𝑋2, 𝑌2) if the lower bounds are compared w.r.t. the Smyth-order ⪯𝑆
𝐿

and the upper bounds are
compared w.r.t. the Hoare-order ⪯𝐻

𝐿
. This idea was defined by Alcântara, Damásio and Moniz Pereira [2] on pairs of sets, and

is generalized here to an algebraic setting:

Definition 10. Given some 𝑋1, 𝑋2, 𝑌1, 𝑌2 ⊆, we write (𝑋1, 𝑌1) ⪯𝐴
𝑖
(𝑋2, 𝑌2) iff 𝑋1 ⪯𝑆

𝐿
𝑋2 and 𝑌2 ⪯𝐻

𝐿
𝑌1.

We are now ready to define a non-deterministic approximation operator: it is an operator  ∶ 2 →℘()2 assigning to every pair
(𝑥, 𝑦) a set of lower bounds and a set of upper bounds, that is ⪯𝐴

𝑖
-monotonic and for which exact inputs give rise to exact outputs.

Formally:

Definition 11. Let 𝐿 = ⟨,≤⟩ be a lattice. An operator  ∶ 2 → (℘()⧵{∅})2 is called a non-deterministic approximation operator
9

(ndao, for short), if satisfies the following properties:

Artificial Intelligence 331 (2024) 104110J. Heyninck, O. Arieli and B. Bogaerts

•  is ⪯𝐴
𝑖

-monotonic.

•  is exact, i.e., for every 𝑥 ∈ , (𝑥, 𝑥) = (𝑙(𝑥, 𝑥), 𝑙(𝑥, 𝑥)).12

We also say that an ndao  is an approximation of the non-deterministic operator, defined as 𝑂(𝑥) =𝑙(𝑥, 𝑥) (for every 𝑥 ∈ ).

In what follows, we sometimes abuse notation and write (𝑥′, 𝑦′) ∈(𝑥, 𝑦) to denote that 𝑥′ ∈𝑙(𝑥, 𝑦) and 𝑦′ ∈𝑢(𝑥, 𝑦). Likewise,
we will often refer to the type of an ndao  as 2 →℘()2 to avoid clutter (note that this is formally correct and will not cause any
confusion).

We remark here that in some works, the definition of an approximation operator assumes a complete lattice. We need this
assumption for some, but not all the results. Therefore, we do not make this assumption from the outset, but assume and mention it
where this is necessary.

Remark 5. We shall show below (Proposition 3) that Definition 11 extends Definition 5: when an ndao is deterministic, in the sense
that (𝑥, 𝑦) is singleton for every 𝑥, 𝑦 ∈ , an ndao reduces to an approximation operator.

Remark 6. It is sometimes useful to assume the following property of ndaos:  is symmetric, if 𝑙(𝑥, 𝑦) =𝑢(𝑦, 𝑥) for any 𝑥, 𝑦 ⊆ .(Or,
equivalently, if 𝑢(𝑥, 𝑦) =𝑙(𝑦, 𝑥) for every 𝑥, 𝑦 ∈ ). Notice that symmetric operators are exact. Just like in deterministic AFT, the
assumption of symmetry is not essential and we do not assume it unless specific results require it (see also Footnote 10).

We now give an example of an ndao in the context of disjunctive logic programming. The operator  is constructed on the
basis of the operators 𝑙


and 𝑢


, which intuitively constitute a lower bound and an upper bound on the activated heads. In

more detail, 𝑙

(𝑥, 𝑦) contains all the heads of rules whose body is at least (according to ≥𝑡) contradictory, i.e., whose body is 𝖳 or

𝖢. Likewise, 𝑢

(𝑥, 𝑦) contains heads of rules whose body is at least (according to ≥𝑡) undecided, i.e., whose body is 𝖳 or 𝖴. The

lower (respectively upper) bounds are then constructed by taking all sets of atoms containing only atoms in at least one of the heads
in 𝑙


(𝑥, 𝑦) (respectively 𝑢


(𝑥, 𝑦)), and containing at least one atom for every head in 𝑙


(𝑥, 𝑦) (respectively 𝑢


(𝑥, 𝑦)).

Definition 12. For a dlp  and an interpretation (𝑥, 𝑦), we define:

• 𝑙

(𝑥, 𝑦) = {Δ ∣

⋁
Δ ← 𝜙 ∈  , (𝑥, 𝑦)(𝜙) ≥𝑡 𝖢},

• 𝑢

(𝑥, 𝑦) = {Δ ∣

⋁
Δ ← 𝜙 ∈  , (𝑥, 𝑦)(𝜙) ≥𝑡 𝖴},

• 𝑙

(𝑥, 𝑦) = {𝑥1 ⊆

⋃
𝑙


(𝑥, 𝑦) ∣ ∀Δ ∈𝑙


(𝑥, 𝑦), 𝑥1 ∩ Δ ≠ ∅},

• 𝑢

(𝑥, 𝑦) = {𝑦1 ⊆

⋃
𝑢


(𝑥, 𝑦) ∣ ∀Δ ∈𝑢


(𝑥, 𝑦), 𝑦1 ∩ Δ ≠ ∅},

•  (𝑥, 𝑦) = (𝑙

(𝑥, 𝑦), 𝑢


(𝑥, 𝑦)).

Example 6. The operator  is an approximation of the non-deterministic operator 𝐼𝐶 in Example 5 (and Definition 1). Further-

more, as we show next, it is a symmetric operator.

Proposition 2.  is a symmetric ndao that approximates 𝐼𝐶 .

The proof of this proposition and other results on disjunctive logic programs can be found in the appendix.

We now illustrate the operator  using two simple disjunctive logic programs:

Example 7. Consider the following dlp:  = {𝑝 ∨ 𝑞← ¬𝑞}. The corresponding operator 𝑙


behaves as follows:

• For any (𝑥, 𝑦) with 𝑞 ∈ 𝑦, 𝑙

(𝑥, 𝑦) = ∅ and thus 𝑙


(𝑥, 𝑦) = {∅},

• For any (𝑥, 𝑦) with 𝑞 ∉ 𝑦, 𝑙

(𝑥, 𝑦) = {𝑝, 𝑞} and thus 𝑙


(𝑥, 𝑦) = {{𝑝}, {𝑞}, {𝑝, 𝑞}}.

Since 𝑙

(𝑥, 𝑦) = 𝑢


(𝑦, 𝑥) (by Lemma 13), this means that  behaves as follows:

• For any (𝑥, 𝑦) with 𝑞 ∉ 𝑥 and 𝑞 ∉ 𝑦,  (𝑥, 𝑦) = ({{𝑝}, {𝑞}, {𝑝, 𝑞}}, {{𝑝}, {𝑞}, {𝑝, 𝑞}}),
• For any (𝑥, 𝑦) with 𝑞 ∉ 𝑥 and 𝑞 ∈ 𝑦,  (𝑥, 𝑦) = ({∅}, {{𝑝}, {𝑞}, {𝑝, 𝑞}}),
• For any (𝑥, 𝑦) with 𝑞 ∈ 𝑥 and 𝑞 ∉ 𝑦,  (𝑥, 𝑦) = ({{𝑝}, {𝑞}, {𝑝, 𝑞}}, {∅}), and

• For any (𝑥, 𝑦) with 𝑞 ∈ 𝑥 and 𝑞 ∈ 𝑦,  (𝑥, 𝑦) = ({∅}, {∅}).

Example 8. Consider the dlp  from Example 2. 𝑙


behaves as follows (for arbitrary 𝑦 ⊆):
10

12 Recall that we denote by 𝑙 the operator defined by 𝑙(𝑥, 𝑦) =(𝑥, 𝑦)1 , and likewise by 𝑢 the operator defined by 𝑢(𝑥, 𝑦) =(𝑥, 𝑦)2 .

Artificial Intelligence 331 (2024) 104110J. Heyninck, O. Arieli and B. Bogaerts

𝑥 𝑙

(𝑥, 𝑦)

∅ {{𝑝, 𝑞, 𝑟}}
{𝑝} {{𝑞, 𝑟}}
{𝑞} {{𝑝, 𝑞},{𝑝, 𝑞, 𝑟}}
{𝑟} {{𝑝, 𝑟},{𝑝, 𝑞, 𝑟}}
{𝑝, 𝑞} {{𝑞},{𝑞, 𝑟}}
{𝑝, 𝑟} {{𝑟},{𝑞, 𝑟}}
{𝑞, 𝑟} {{𝑝, 𝑞},{𝑝, 𝑟},{𝑝, 𝑞, 𝑟}}
{𝑝, 𝑞, 𝑟} {{𝑞},{𝑟},{𝑞, 𝑟}}

Again, by the symmetry of  , the behaviour of  can be easily derived on the basis of 𝑙


.

In the rest of this section, we discuss several design choices and properties of non-deterministic approximation operators. In
particular, firstly, we explain why we do not enforce minimality of the image of an ndao (in contradistinction to other works [3,48]),
secondly, we explain how pairs of sets can be interpreted as sets of pairs or convex sets, thirdly, we show a strong relation with
non-deterministic operators and, finally, we derive some useful properties of the lower and the upper bound operators.

Remark 7. In the literature (e.g. [3,48]), similar non-deterministic four-valued operators have been defined to characterize the se-

mantics of disjunctive logic programs, inspired by deterministic approximation fixpoint theory. In some of these operators minimality
of the image of the operator was built-in. In our setting, this is defined as follows:

• 
𝑚,𝑙


(𝑥, 𝑦) =min⊆({𝑣 ∣ ∀Δ ∈𝑙

(𝑥, 𝑦), 𝑣 ∩Δ ≠ ∅}),13

• 𝑚

(𝑥, 𝑦) = (𝑚,𝑙


(𝑥, 𝑦), 𝑚,𝑙


(𝑦, 𝑥)).

However, there are some issues with this approach, e.g. the operator 𝑚


is not ⪯𝐴
𝑖

-monotonic. To see this, consider the program
 = {𝑎 ∨ 𝑏 ←; 𝑎 ← 𝑐} and the two interpretations (∅, {𝑎, 𝑏, 𝑐}) and (∅, {𝑎, 𝑏}). Then we have:

• 
𝑚,𝑙


(∅, {𝑎, 𝑏, 𝑐}) = {{𝑎}, {𝑏}} and 𝑚,𝑙


({𝑎, 𝑏, 𝑐}, ∅) = {{𝑎}} (the latter since ({𝑎, 𝑏, 𝑐}, ∅)(𝑐) = 𝖢 and thus 𝑙

({𝑎, 𝑏, 𝑐}, ∅) =

{{𝑎, 𝑏}, {𝑎}}).

• 
𝑚,𝑙


(∅, {𝑎, 𝑏}) = {{𝑎}, {𝑏}} and 𝑚,𝑙


({𝑎, 𝑏}, ∅) = {{𝑎}, {𝑏}} (the latter since ({𝑎, 𝑏, 𝑐}, ∅)(𝑐) = 𝖥 and thus 𝑙

({𝑎, 𝑏}, ∅) =

{{𝑎, 𝑏}}).

It follows that 𝑚,𝑙


({𝑎, 𝑏}, ∅) 𝐻
𝐿


𝑚,𝑙


({𝑎, 𝑏, 𝑐}, ∅) i.e., {{𝑎}, {𝑏}} 𝐻
𝐿
{{𝑎}}, since {𝑏} ⊈ {𝑎}. Hence, 𝑚,𝑢


(∅, {𝑎, 𝑏}) = 

𝑚,𝑙


({𝑎, 𝑏},
∅) 𝐻

𝐿


𝑚,𝑙


({𝑎, 𝑏, 𝑐}, ∅) = 
𝑚,𝑢


(∅, {𝑎, 𝑏, 𝑐}). Thus, (∅, {𝑎, 𝑏, 𝑐}) ≤𝑖 (∅, {𝑎, 𝑏}), yet 𝑚

(∅, {𝑎, 𝑏, 𝑐}) 𝐴

𝑖
𝑚


(∅, {𝑎, 𝑏}), and so 𝑚


is not

⪯𝐴
𝑖

-monotonic.

Note that this is a counter-example to a wrong claim made in [38, Example 2], about 𝑚


as defined above being a ⪯𝐴
𝑖

-monotonic
operator.

In the work of Pelov and Truszczyński [48], and of Antić, Eiter and Fink [3], ⪯𝐴
𝑖

-monotonicity is not studied, and only ⪯𝑆
𝐿

-

monotonicity of the lower bound operator is shown and used (i.e., if (𝑥1, 𝑦1) ≤𝑖 (𝑥2, 𝑦2) then 𝑚,𝑙(𝑥1, 𝑦1) ⪯𝑆
𝐿
𝑚,𝑙(𝑥2, 𝑦2)). Thus,

the above counter-example does not invalidate this claim (i.e., this counter-example does not show that 𝑚,𝑙 is not ⪯𝑆
𝐿

-monotonic).
For two-valued stable semantics, this suffices, but as we shall see in what follows, when moving to three- and four-valued semantics,
full ⪯𝐴

𝑖
-monotonicity is needed.

Altogether, this example shows that requiring minimality in the non-deterministic approximation operator leads to undesirable
behaviour. This is perhaps not surprising, as in deterministic approximation theory minimization is also not ensured by the operator
itself, but by taking the stable fixpoints of an operator. In our work, minimization is not demanded in the definitions of the operators,
but rather is achieved in the definitions of stable operators and fixpoints. And indeed, we will be able to show that this works well,
as stable fixpoints will be shown to be ≤𝑡-minimal fixpoints of an ndao (see Proposition 14).

We now explain how pairs of sets can equivalently be interpreted as convex sets or as sets of pairs.

Remark 8. A pair of sets can alternatively be viewed as a convex set. A convex set is a set 𝑋 ⊆  that contains no “holes”, i.e., for
any 𝑥, 𝑦 ∈𝑋, if 𝑥 ≤ 𝑧 ≤ 𝑦 then also 𝑧 ∈𝑋. We can then view a pair of sets as a convex set by viewing the two sets as a lower and an
upper bound of a convex set. In that case, ⪯𝐴

𝑖
reduces to comparing convex sets in terms of subset relations. This representation will

play an important role in what we call the state semantics (see Section 4.3).

Remark 9. A third way (in addition to those in the previous remarks) of viewing pairs of sets (which we conceived of as lower and
upper bounds) is as set of pairs, i.e., a set of pairs of lower and upper bounds. This is, of course, done by taking all combinations
11

13 Recall that min⊆(𝑋) = {𝑥 ∈𝑋 ∣ ∄𝑦 ∈𝑋 ∶ 𝑦 ⊂ 𝑥}.

Artificial Intelligence 331 (2024) 104110J. Heyninck, O. Arieli and B. Bogaerts

of lower and upper bounds. Also in that case, the order ⪯𝐴
𝑖

makes intuitive sense. In more detail, it boils down to comparing the
resulting sets of pairs using ≤𝑖 and the Smyth-ordering.

Definition 13. Given some 𝐗, 𝐘 ⊆ 2, 𝐗 ⪯𝑆
𝑖
𝐘 if for every (𝑦1, 𝑦2) ∈𝐘, there is some (𝑥1, 𝑥2) ∈𝐗 s.t. (𝑥1, 𝑥2) ≤𝑖 (𝑦1, 𝑦2).

Intuitively, if (𝑥2, 𝑦2) is more precise than (𝑥1, 𝑦1), then each interval in (𝑥2, 𝑦2) should be at least as precise as at least one
interval in (𝑥1, 𝑦1). In other words, on more precise inputs, the produced intervals become more precise than (some) interval
produced on the less precise input. Thus, whereas ⪯𝐴

𝑖
allows for comparison of a set of lower bounds and a set of upper bounds, ⪯𝑆

𝑖

allows for the comparison of two sets of pairs. The order ⪯𝐴
𝑖

over pairs of sets is equivalent to ⪯𝑆
𝑖

over pairs obtained on the basis of
a pair of sets:

Lemma 1. Let some 𝑋1, 𝑋2, 𝑌1, 𝑌2 ⊆ be given. Then (𝑋1, 𝑌1) ⪯𝐴
𝑖
(𝑋2, 𝑌2) iff 𝑋1 × 𝑌1 ⪯𝑆

𝑖
𝑋2 × 𝑌2.

Proof. [⇒]: Suppose that 𝑋1 × 𝑌1 ⪯𝐴
𝑖
𝑋2 × 𝑌2 and consider some (𝑥2, 𝑦2) ∈ 𝑋2 × 𝑌2. Since 𝑋1 × 𝑌1 ⪯𝐴

𝑖
𝑋2 × 𝑌2, there is some

𝑥1 ∈𝑋1 s.t. 𝑥1 ≤ 𝑥2 and there is some 𝑦1 ∈ 𝑌1 s.t. 𝑦2 ≤ 𝑦1. Thus, there is an (𝑥1, 𝑦1) ∈𝑋1 × 𝑌1 such that (𝑥1, 𝑦1) ≤𝑖 (𝑥2, 𝑦2), and so
𝑋1 × 𝑌1 ⪯𝑆

𝑖
𝑋2 × 𝑌2.

[⇐]: Suppose that 𝑋1 × 𝑌1 ⪯𝑆
𝑖
𝑋2 × 𝑌2 and consider some 𝑦2 ∈ 𝑌2. (The case for 𝑥2 ∈𝑋2 is analogous.) Then for every 𝑥 ∈𝑋2,

(𝑥, 𝑦2) ∈ 𝑋2 × 𝑌2 and, since 𝑋1 × 𝑌1 ⪯𝑆
𝑖
𝑋2 × 𝑌2, there is some (𝑥1, 𝑦1) ∈ 𝑋1 × 𝑌1 s.t. (𝑥1, 𝑦1) ≤𝑖 (𝑥, 𝑦2), which implies that 𝑦2 ≤ 𝑦1.

Thus, there is some 𝑦1 ∈ 𝑌1 s.t. 𝑦2 ≤ 𝑦1, and so 𝑌2 ⪯𝐻
𝐿
𝑌1. The proof that 𝑋1 ⪯𝑆

𝐿
𝑋2 is similar, and so 𝑋1 × 𝑌1 ⪯𝐴

𝑖
𝑋2 × 𝑌2. □

By Lemma 1 it immediately follows that an operator 2 →℘() ×℘() is ⪯𝐴
𝑖

-monotonic if and only if the corresponding operator
2 →℘(2) (obtained by taking the Cartesian product of the lower and upper bound) is ⪯𝑆

𝑖
-monotonic.

Remark 10. The notion of exactness that we introduced constitutes an attempt to generalize the notion of exactness as known from
works on non-deterministic AFT, where an interval is exact if the lower and upper bound coincide. We thus generalize this by stating
that an operator is exact if, when applied to an exact input, the resulting lower bound and upper bound coincide. Notice that this
means that if we interpret a pair of sets as a set of pairs, this means that the set of pairs includes exact pairs, but does not necessarily
consist only of exact pairs. For instance, considering the program  = {𝑝 ∨ 𝑞 ←},  (∅, ∅) = ({{𝑝}, {𝑞}, {𝑝, 𝑞}}, {{𝑝}, {𝑞}, {𝑝, 𝑞}}),
which, interpreted as a set of pairs includes ({𝑝}, {𝑝}), ({𝑞}, {𝑞}) and ({𝑝, 𝑞}, {𝑝, 𝑞}), but also e.g. ({𝑝}, {𝑝, 𝑞}), ({𝑞}, {𝑝}) and
({𝑝, 𝑞}, {𝑞}).

Next, we show that when an ndao is deterministic, in the sense that (𝑥, 𝑦) is a singleton for every 𝑥, 𝑦 ∈, then the ndao reduces
to an approximation operator. In other words, our notion of an ndao is a faithful generalization of a deterministic approximation
operator.

Proposition 3. Let an ndao  ∶ 2 → ℘()2 be given s.t. (𝑥, 𝑦) is a pair of singleton sets for every 𝑥, 𝑦 ∈ . Then 𝖠𝖥𝖳 defined by
𝖠𝖥𝖳(𝑥, 𝑦) = (𝑤, 𝑧) where (𝑥, 𝑦) = ({𝑤}, {𝑧}), is an approximation operator.

Proof. We have to show that  satisfies ≤𝑖-monotonicity and for every 𝑥 ∈ , 𝖠𝖥𝖳
𝑙

(𝑥, 𝑥) =𝖠𝖥𝖳
𝑢 (𝑥, 𝑥) (according to Definition 5). We

first show ≤𝑖-monotonicity. Suppose (𝑥1, 𝑦1) ≤𝑖 (𝑥2, 𝑦2). Then by ⪯𝐴
𝑖

-monotonicity of  and Lemma 1, (𝑥1, 𝑦1) ⪯𝑆
𝑖
(𝑥2, 𝑦2). Thus,

for every (𝑤2, 𝑧2) ∈(𝑥2, 𝑦2), there is some (𝑤1, 𝑧1) ∈(𝑥1, 𝑦1) such that (𝑤1, 𝑧1) ≤𝑖 (𝑤2, 𝑧2). Since both (𝑥1, 𝑦1) and (𝑥2, 𝑦2) are
pairs of singleton sets, we obtain (𝑥1, 𝑦1) ≤𝑖 (𝑥2, 𝑦2). For the second condition, notice that 𝑢(𝑥, 𝑥) = 𝑙(𝑥, 𝑥) in view of  being
exact. This implies that 𝖠𝖥𝖳(𝑥, 𝑥) = (𝖠𝖥𝖳

𝑢 (𝑥, 𝑥), 𝖠𝖥𝖳
𝑙

(𝑥, 𝑥)). □

The following lemma shows that an ndao is composed of a ⪯𝑆
𝐿

-monotonic lower-bound operator and a ⪯𝐻
𝐿

-anti-monotonic upper-

bound operator, i.e., for any ndao , 𝑙 is ⪯𝑆
𝐿

-monotonic in the first argument and ⪯𝑆
𝐿

-monotonic in the second argument (and
similarly for 𝑢):

Lemma 2. An operator  ∶ 2 →℘()2 is ⪯𝐴
𝑖

-monotonic iff for every 𝑥, 𝑦 ∈ , 𝑙(⋅, 𝑦) is ⪯𝑆
𝐿

-monotonic, 𝑙(𝑥, ⋅) is ⪯𝑆
𝐿

-anti-monotonic,
𝑢(𝑥, ⋅) is ⪯𝐻

𝐿
-monotonic and 𝑢(⋅, 𝑦) is ⪯𝐻

𝐿
-anti-monotonic.

Proof. [⇒]: We first show the ⪯𝑆
𝐿

-anti-monotonicity of 𝑙(𝑥, ⋅). Consider some 𝑦′, 𝑦 ∈  s.t. 𝑦′ ≤ 𝑦. Then (𝑥, 𝑦) ≤𝑖 (𝑥, 𝑦′) and thus
(𝑥, 𝑦) ⪯𝐴

𝑖
(𝑥, 𝑦′), which in particular means that 𝑙(𝑥, 𝑦) ⪯𝑆

𝐿
𝑙(𝑥, 𝑦′).

We now show the case for 𝑢(𝑥, ⋅). Consider some 𝑥, 𝑦′, 𝑦 ∈  s.t. 𝑦′ ≤ 𝑦. Then (𝑥, 𝑦) ≤𝑖 (𝑥, 𝑦′) and thus (𝑥, 𝑦) ⪯𝐴
𝑖
(𝑥, 𝑦′). This

means that 𝑢(𝑥, 𝑦′) ⪯𝐻
𝐿
𝑢(𝑥, 𝑦).

⪯𝑆
𝐿

-monotonicity of 𝑙(⋅, 𝑦) and ⪯𝐻
𝐿

-monotonicity of 𝑢(⋅, 𝑦) are shown similarly.

[⇐]: Suppose that for every 𝑥, 𝑦 ∈ , (1) 𝑙(⋅, 𝑦) is ⪯𝑆
𝐿

-monotonic, (2) 𝑙(𝑥, ⋅) is ⪯𝑆
𝐿

-anti-monotonic, (3) 𝑢(𝑥, ⋅) is ⪯𝐻
𝐿

-monotonic,
12

and (4) 𝑢(⋅, 𝑦) is ⪯𝐻
𝐿

-anti-monotonic. Consider now some 𝑥1, 𝑥2, 𝑦1, 𝑦2 ∈ s.t. 𝑥1 ≤ 𝑥2 and 𝑦2 ≤ 𝑦1, i.e. (𝑥1, 𝑦1) ≤𝑖 (𝑥2, 𝑦2). With (1),

Artificial Intelligence 331 (2024) 104110J. Heyninck, O. Arieli and B. Bogaerts

𝑙(𝑥1, 𝑦2) ⪯𝑆
𝐿
𝑙(𝑥2, 𝑦2). With (2), 𝑙(𝑥1, 𝑦1) ⪯𝑆

𝐿
𝑙(𝑥1, 𝑦2). With transitivity, 𝑙(𝑥1, 𝑦1) ⪯𝑆

𝐿
𝑙(𝑥2, 𝑦2). The case for the upper bound

(namely, 𝑢(𝑥2, 𝑦2) ⪯𝐻
𝐿
𝑢(𝑥1, 𝑦1)) is similar. □

Remark 11. By Lemma 2, we see that for a symmetric ndao , 𝑙(⋅, 𝑧) is both ⪯𝑆
𝐿

-monotonic and ⪯𝐻
𝐿

-monotonic, and 𝑙(𝑧, ⋅) is both
⪯𝑆
𝐿

-anti-monotonic and ⪯𝐻
𝐿

-anti-monotonic. This follows immediately from the fact that since  is symmetric, 𝑙(𝑥, 𝑦) =𝑢(𝑦, 𝑥) for
any 𝑥, 𝑦 ∈.

The last remark means that for symmetric operators, the ⪯𝐴
𝑖

-monotonicity reduces to a far simpler order, obtained by comparing
both the lower and upper bounds as follows: one set 𝑋 is smaller than another set 𝑌 , if for every 𝑥 ∈𝑋 there is a ≤-larger element
in 𝑌 , and for every 𝑦 ∈ 𝑌 there is a ≤-smaller element in 𝑋.

It seems that the most commonly arising useful non-deterministic approximation operators are symmetric. However, there are
also useful non-symmetric ndaos. In the remainder of this section, we provide an example of a non-symmetric ndao that approximates
IC . This operator is inspired by the ultimate semantics for normal (non-disjunctive) logic programs introduced by Denecker, Marek
and Truszczyński [22]. First, we recall the ultimate semantics for normal (non-disjunctive) logic programs:

Definition 14. Given a normal logic program  , we define14:


𝖣𝖬𝖳,𝑙


(𝑥, 𝑦) =
⋂

𝑥⊆𝑧⊆𝑦

{𝛼 ∣ 𝛼← 𝜙 ∈  and 𝑧(𝜙) = 𝖳},


𝖣𝖬𝖳,𝑢


(𝑥, 𝑦) =
⋃

𝑥⊆𝑧⊆𝑦

{𝛼 ∣ 𝛼← 𝜙 ∈  and 𝑧(𝜙) = 𝖳}.

The ultimate approximation operator is then defined in [22] by:

𝖣𝖬𝖳


(𝑥, 𝑦) = (𝖣𝖬𝖳,𝑙


(𝑥, 𝑦), 𝖣𝖬𝖳,𝑢


(𝑥, 𝑦)).

To generalize this operator to an ndao, we proceed as follows: we start by generalizing the idea behind 𝖣𝖬𝖳,𝑙


to an operator
gathering the heads of rules that are true in every interpretation 𝑧 in the interval [𝑥, 𝑦]:


𝖣𝖬𝖳,𝑙


(𝑥, 𝑦) =
⋂

𝑥⊆𝑧⊆𝑦

HD (𝑧).

The immediate consequence operator is then defined as usual, that is: by taking all interpretations that only contain atoms in


𝖣𝖬𝖳,𝑙


(𝑥, 𝑦) and contain at least one member of every head Δ ∈
𝖣𝖬𝖳,𝑙


(𝑥, 𝑦):


𝖣𝖬𝖳,𝑙


(𝑥, 𝑦) = {𝑧 ⊆
⋃


𝖣𝖬𝖳,𝑙


(𝑥, 𝑦) ∣ ∀Δ ∈
𝖣𝖬𝖳,𝑙


(𝑥, 𝑦) ≠ ∅ ∶ 𝑧 ∩Δ ≠ ∅}.

The upper bound operator is constructed entirely analogously, but now gathering the heads of rules that are true in at least one
interpretation in [𝑥, 𝑦]:


𝖣𝖬𝖳,𝑢


(𝑥, 𝑦) =
⋃

𝑥⊆𝑧⊆𝑦

HD (𝑧)


𝖣𝖬𝖳,𝑢


is defined in an identical way to 𝖣𝖬𝖳,𝑙


, by just replacing 
𝖣𝖬𝖳,𝑙


(𝑥, 𝑦) by 
𝖣𝖬𝖳,𝑢


(𝑥, 𝑦). Finally, the 𝖣𝖬𝖳-ndao is
defined as:

𝖣𝖬𝖳


(𝑥, 𝑦) = (𝖣𝖬𝖳,𝑙


(𝑥, 𝑦), 𝖣𝖬𝖳,𝑢


(𝑥, 𝑦)).

Notice that for a non-disjunctive program  , 
𝖣𝖬𝖳,𝑙


(𝑥, 𝑦) = 
𝖣𝖬𝖳,𝑙


(𝑥, 𝑦), which also coincides with the deterministic operator
defined in Definition 14.

We observe that 𝖣𝖬𝖳


is an ndao that approximates 𝐼𝐶 :

Proposition 4. For any disjunctive logic program  , 𝖣𝖬𝖳


is an ndao that approximates 𝐼𝐶 .

Notice that the operators 
𝖣𝖬𝖳,𝑙


(𝑥, 𝑦) and 
𝖣𝖬𝖳,𝑢


(𝑥, 𝑦) are only defined for consistent interpretations (𝑥, 𝑦), and thus 𝖣𝖬𝖳


is not a symmetric operator.

Example 9. Consider again the program  = {𝑝 ∨ 𝑞← ¬𝑞} from Example 7. Then 𝖣𝖬𝖳,𝑙


behaves as follows:

14 We use the abbreviation DMT for Denecker, Marek and Truszczyński to denote this operator, as to not overburden the use of 


. Indeed, we will later see that
13

the ultimate operator for non-disjunctive logic programs generalizes to an ndao that is different from the ultimate operator 


.

Artificial Intelligence 331 (2024) 104110J. Heyninck, O. Arieli and B. Bogaerts

• If 𝑞 ∈ 𝑦 then 
𝖣𝖬𝖳,𝑙


(𝑥, 𝑦) = ∅ and thus 𝖣𝖬𝖳,𝑙


(𝑥, 𝑦) = {∅}.

• If 𝑞 ∉ 𝑦 then 
𝖣𝖬𝖳,𝑙


(𝑥, 𝑦) = {{𝑝, 𝑞}} and thus 𝖣𝖬𝖳,𝑙


(𝑥, 𝑦) = {{𝑝}, {𝑞}, {𝑝, 𝑞}}.


𝖣𝖬𝖳,𝑢


behaves as follows:

• If 𝑞 ∈ 𝑥 then 
𝖣𝖬𝖳,𝑢


(𝑥, 𝑦) = ∅ and thus 𝖣𝖬𝖳,𝑢


(𝑥, 𝑦) = ∅.

• If 𝑞 ∉ 𝑥 then 
𝖣𝖬𝖳,𝑢


(𝑥, 𝑦) = {{𝑝, 𝑞}} and thus 𝖣𝖬𝖳,𝑢


(𝑥, 𝑦) = {{𝑝}, {𝑞}, {𝑝, 𝑞}}.

As an example of the difference between  and 𝖣𝖬𝖳


, a normal logic program suffices [22]: consider  = {𝑝 ← 𝑝; 𝑝 ← ¬𝑝}.
Then 𝖣𝖬𝖳


(∅, {𝑝}) = ({𝑝}, {𝑝}) whereas  (∅, {𝑝}) = (∅, {𝑝}). This means, among others, that ({𝑝}, {𝑝}) is a stable fixpoint of

𝖣𝖬𝖳


but not of  .

4. Theory of non-deterministic AFT

We now develop a general theory of approximation of non-deterministic operators. First, in Section 4.1 we show that the notion
of consistency from deterministic AFT [23] can be generalized to the non-deterministic setting and holds for any ndao. Then, in
Section 4.2 we introduce fixpoint semantics for ndaos. It is shown that in general such a semantics does not preserve the uniqueness
or existence properties of Kripke-Kleene semantics from the deterministic setting. In Section 4.3 we consider Kripke-Kleene states
that do not have these shortcomings.

4.1. Consistency of approximations

Recall that a pair (𝑥, 𝑦) is consistent if 𝑥 ≤ 𝑦, i.e., if it approximates at least one element 𝑧 (𝑥 ≤ 𝑧 ≤ 𝑦). Consistency of a deterministic
approximating operator means that a consistent input, i.e. an input that approximates at least one element, gives rise to a consistent
output, i.e. an output that approximates at least one element. For deterministic operators, consistency of any approximation operator
is guaranteed [23, Theorem 9].

This intuition is generalized straightforwardly to non-deterministic approximation operators by requiring that whenever the
operator is applied to a consistent pair, there is at least one lower bound which is smaller than at least one upper bound, i.e., there
is at least one element approximated by the operator. Formally, this comes down to the following definition:

Definition 15. Given a lattice 𝐿 = ⟨,≤⟩ and an ndao  on 𝐿, we say that  is consistent if for every 𝑥, 𝑦 ∈  with 𝑥 ≤ 𝑦, there is
some (𝑤, 𝑧) ∈(𝑥, 𝑦) with 𝑤 ≤ 𝑧.15

We now show the consistency of every ndao.

Proposition 5. Any ndao  is consistent.

Proof. Consider some 𝑥, 𝑦 ∈  s.t. 𝑥 ≤ 𝑦. Then clearly, (𝑥, 𝑦) ≤𝑖 (𝑥, 𝑥) and thus, with ⪯𝐴
𝑖

-monotonicity of  and Lemma 1, (𝑥, 𝑦) ⪯𝑆
𝑖

(𝑥, 𝑥). Since (𝑥, 𝑥) = (𝑙(𝑥, 𝑥), 𝑢(𝑥, 𝑥)) (in view of the exactness of ), for any 𝑤 ∈𝑙(𝑥, 𝑥), we have that (𝑤, 𝑤) ∈(𝑥, 𝑥). Thus,
since (𝑥, 𝑦) ⪯𝑆

𝑖
(𝑥, 𝑥), there is some (𝑧1, 𝑧2) ∈(𝑥, 𝑦) s.t. (𝑧1, 𝑧2) ≤𝑖 (𝑤, 𝑤), i.e. 𝑧1 ≤𝑤 ≤ 𝑧2. □

For symmetric operators, a stronger notion of consistency holds, namely for every 𝑥 ≤ 𝑦, it holds that: 𝑙(𝑥, 𝑦) ⪯𝑆
𝐿
𝑢(𝑥, 𝑦) and

𝑙(𝑥, 𝑦) ⪯𝐻
𝐿
𝑢(𝑥, 𝑦). Intuitively, this means that for every upper bound we can find a lower bound below the upper bound in question,

and likewise, for every lower bound we can find an upper bound above the lower bound in question. Thus, in symmetric operators,
every lower bound respectively upper bound approximates an element.

Proposition 6. Let a symmetric ndao  be given. Then for every 𝑥 ≤ 𝑦, 𝑙(𝑥, 𝑦) ⪯𝑆
𝐿
𝑢(𝑥, 𝑦) and 𝑙(𝑥, 𝑦) ⪯𝐻

𝐿
𝑢(𝑥, 𝑦).

Proof. Since 𝑥 ≤ 𝑦, it holds that (𝑥, 𝑦) ≤𝑖 (𝑥, 𝑥). Thus, 𝑙(𝑥, 𝑦) ⪯𝑆
𝐿
𝑙(𝑥, 𝑥) and (since 𝑢(𝑥, 𝑦) =𝑙(𝑦, 𝑥)), 𝑢(𝑥, 𝑥) ⪯𝑆

𝐿
𝑢(𝑥, 𝑦). Since

𝑙(𝑥, 𝑥) =𝑢(𝑥, 𝑥), we obtain 𝑙(𝑥, 𝑦) ⪯𝑆
𝐿
𝑢(𝑥, 𝑦). The other case is similar. □

Notice that for non-symmetric operators, the above result might not hold, i.e., there might be lower bounds 𝑥1 ∈ 𝑙(𝑥, 𝑦) with
no correspondent upper bound 𝑦1 ≥ 𝑥1 in 𝑢(𝑥, 𝑦), and vice versa. The reason for this is that ⪯𝐴

𝑖
-monotonicity only tells us that

𝑙(𝑥, 𝑦) ⪯𝑆
𝐿
𝑙(𝑥, 𝑥) and 𝑢(𝑥, 𝑥) ⪯𝐻

𝐿
𝑢(𝑥, 𝑦). This is demonstrated by the following example:
14

15 To avoid clutter, we abuse the notation and write (𝑤, 𝑧) ∈(𝑥, 𝑦) to denote that 𝑤 ∈𝑙(𝑥, 𝑦) and 𝑧 ∈𝑢(𝑥, 𝑦).

Artificial Intelligence 331 (2024) 104110J. Heyninck, O. Arieli and B. Bogaerts

Example 10. Consider an ndao  over , defined as follows:

𝑙(𝑥, 𝑦) 𝑢(𝑥, 𝑦)

when 𝑥 = 𝑦 {𝖳} {𝖳}
when 𝑥 ≠ 𝑦 {𝖥,𝖳} {𝖳}

It can be easily observed that  is a non-deterministic approximation operator: Exactness is clear, and, as {𝖥, 𝖳} ⪯𝑆
𝐿
{𝖳}, ⪯𝐴

𝑖
-

monotonicity is also immediate. However, for the consistent pair (𝖴, 𝖳), 𝑙(𝖴, 𝖳) = {𝖥, 𝖳} 𝐻
𝐿

𝑢(𝖴, 𝖳) = {𝖳}. As 𝖥 ≰𝑖 𝖳, there is no
upper bound in 𝑢(𝖴, 𝖳) = {𝖳} corresponding to the lower bound 𝖥.

4.2. Fixpoint semantics and Kripke-Kleene interpretations

As its name suggests, a primary goal of AFT is to provide fixpoints of operators and their approximations. In the context of deter-

ministic AFT, fixpoints of an approximation operator are approximations for which applying the approximation operator to the lower
and upper bound (𝑥, 𝑦) give rise to exactly the same upper and lower bound. Furthermore, Denecker, Marek and Truszczyński [25]

show that a unique ≤𝑖-least consistent fixpoint of an approximation operator  exists and can be constructed by iterating , starting
from (⊥, ⊤). This fixpoint is termed the Kripke-Kleene fixpoint. In this section, we look at fixpoint semantics for non-deterministic
approximation operators, and show that existence and uniqueness of a ≤𝑖-least consistent fixpoint of an ndao are not preserved in
the non-deterministic setting. Nevertheless, we will show the usefulness of such fixpoints for, e.g. representing the weakly supported
semantics.

Recall that an ndao generates, on the basis of a lower bound 𝑥 and an upper bound 𝑦, a set of lower bounds {𝑥1, 𝑥2, …} and a set
of upper bounds {𝑦1, 𝑦2, …}. We can then generalize the notion of fixpoints of deterministic approximation operators by stating that
(𝑥, 𝑦) is a fixpoint of the ndao  if the “input” lower bound 𝑥 and the “input” upper bound 𝑦 are among the “output” lower bounds
respectively “output” upper bounds generated on the basis of (𝑥, 𝑦).

The idea underlying the Kripke-Kleene fixpoint as being minimally informative can then be directly taken over from the deter-

ministic setting and imposed by definition. Accordingly, we can define fixpoints, and Kripke-Kleene interpretations, of an ndao  as
follows:

Definition 16. Given an ndao  over 𝐿 = ⟨, ≤⟩ and some 𝑥, 𝑦 ∈ :

• (𝑥, 𝑦) is a fixpoint of , if 𝑥 ∈𝑙(𝑥, 𝑦) and 𝑦 ∈𝑢(𝑥, 𝑦) (or, somewhat abusing the notation, if (𝑥, 𝑦) ∈(𝑥, 𝑦)),
• (𝑥, 𝑦) is a Kripke-Kleene interpretation of , if it is ≤𝑖-minimal among the fixpoints of .

Thus, Kripke-Kleene interpretations retain the type of Kripke-Kleene semantics in deterministic AFT, namely pairs of single
elements (𝑥, 𝑦). Intuitively, these interpretations represent approximations (𝑥, 𝑦) of elements such that, when making the “right
choices” within the set (𝑥, 𝑦),  allows to derive exactly the same lower and upper bound.

The next example shows that uniqueness is no longer guaranteed in the non-deterministic case.

Example 11. Consider the dlp  = {𝑝 ∨ 𝑞←} from Example 1. There are two ≤𝑖-minimal consistent fixpoints of  (Definition 12):
({𝑝}, {𝑝, 𝑞}) and ({𝑞}, {𝑝, 𝑞}). This is easy to verify, as  (𝑥, 𝑦) = ({{𝑝}, {𝑞}, {𝑝, 𝑞}}, {{𝑝}, {𝑞}, {𝑝, 𝑞}}) for any 𝑥, 𝑦 ⊆ {𝑝, 𝑞}. We thus
see there is no unique ≤𝑖-minimal fixpoint.

We also note that this program has three weakly supported models: {𝑝}, {𝑞} and {𝑝, 𝑞} that correspond to the total consistent
fixpoints ({𝑝}, {𝑝}), ({𝑞}, {𝑞}) and ({𝑝, 𝑞}, {𝑝, 𝑞}). We shall see in Theorem 1 that this is no coincidence.

The following example shows that existence of a consistent fixpoint of an ndao is not guaranteed either:

Example 12. Since we are interested in a consistent fixpoint, it suffices to restrict our attention to the consistent pairs. Consider an
operator  over the bilattice constructed on the powerset of {𝑝, 𝑞} and defined as follows:

(∅,{𝑝, 𝑞}) = ({∅},{{𝑝},{𝑞}})

({𝑝},{𝑝}) = ({𝑞},{𝑞})

({𝑞},{𝑞}) = ({𝑝},{𝑝})

(𝑥, 𝑦) = ({{𝑝},{𝑞}},{{𝑝},{𝑞}}) ∀(𝑥, 𝑦) ∉ {({𝑝},{𝑝}), ({𝑞},{𝑞})}

It is easily observed that  is ≤𝑖-monotonic. Since 𝑙(𝑥, 𝑥) =𝑢(𝑥, 𝑥) for any 𝑥 ⊆ {𝑝, 𝑞}, it is also exact. This operator can be visualized
15

as follows:

Artificial Intelligence 331 (2024) 104110J. Heyninck, O. Arieli and B. Bogaerts

(∅,{𝑝, 𝑞})

({𝑝},{𝑝, 𝑞}) ({𝑞},{𝑝, 𝑞}) (∅,{𝑝}) (∅,{𝑞})

({𝑝, 𝑞},{𝑝, 𝑞}) ({𝑝},{𝑝}) ({𝑞},{𝑞}) (∅,∅)

: application of .

: ≤𝑖.

It can be verified that this operator is ⪯𝐴
𝑖

-monotonic, yet it admits no consistent fixpoint.

Although some properties of fixpoints of approximation operators do not carry over from the deterministic to the non-

deterministic setting, fixpoints of a non-deterministic operator  have been studied in the literature. The following theorem (the
proof of which appears in Appendix A) shows that in the context of disjunctive logic programming, the fixpoints of the operator 

characterize the weakly supported models of  . It thus provides a first representation of semantics of logic programs that are not
covered by (fixpoints of) deterministic AFT.

Theorem 1. Given a dlp  and a consistent interpretation (𝑥, 𝑦) ∈ (℘())2, it holds that (𝑥, 𝑦) is a weakly supported model of  iff
(𝑥, 𝑦) ∈  (𝑥, 𝑦).

To summarize the results in this section, we conclude that in contradistinction to deterministic AFT, an ≤𝑖-minimal fixpoint of
an ndao is neither guaranteed to be unique nor guaranteed to exist. Nevertheless, fixpoint semantics allow for an operator-based
characterization of weakly supported models of disjunctive logic programs. In the next section we introduce the state semantics
which is guaranteed to exist and be unique.

4.3. Kripke-Kleene states

In the previous section, we saw that an (unique) ≤𝑖-minimal fixpoint of an ndao is not guaranteed to exist. This is perhaps not
surprising, as the application of an ndao to a pair (𝑥, 𝑦) gives rise to a set of lower and upper bounds instead of a single lower and
a single upper bound. This means that the method for constructing a ≤𝑖-minimal fixpoint of a deterministic approximation fixpoint
operator 𝖽𝖾𝗍 over a complete lattice by iteratively constructing more and more precise approximations by the converging sequence

(⊥,⊤) ≤𝑖 𝖽𝖾𝗍(⊥,⊤) ≤𝑖 
2
𝖽𝖾𝗍(⊥,⊤) ≤𝑖 …

(where ⊥ and ⊤ respectively represent the minimal and the maximal lattice element) is not well-defined, as an ndao  cannot be
applied to the pair of sets 𝑖(⊥, ⊤). However, we can circumvent this deficit by looking at operators which allow for pairs of sets
in their input. Intuitively, we start with a set of lower bounds {𝑥1, 𝑥2, …} and a set of upper bounds {𝑦1, 𝑦2, …}, and construct a
new, more precise set of lower respectively upper bounds on the basis of them. Thus, instead of approximating a single element 𝑧
by a pair of elements (𝑥, 𝑦), we are now approximating a set of elements {𝑧1, 𝑧2, …} by a pair of sets of elements {𝑥1, 𝑥2, …} and
{𝑦1, 𝑦2, …}. An approximation of such a set of elements can then be seen as a convex set (Remark 8), bounded below by the lower
bounds {𝑥1, 𝑥2, …} and bounded above by the upper bounds {𝑦1, 𝑦2, …}. We first recall some basic notions and notations concerning
convex sets.

4.3.1. Preliminaries on convex sets
Recall from Remark 8 that a convex set is a set without “holes”, that is, a set 𝑋 such that if two elements 𝑥 and 𝑦 are in 𝑋, then

also any element between 𝑥 and 𝑦 is in 𝑋. Such a set can be viewed as consisting of all elements in between a lower bounds and an
upper bound. A convex set can then be obtained by the upwards closure of their lower bound and the downwards closure of their
upper bound, as defined next:

Definition 17. Given a lattice 𝐿 = ⟨, ≤⟩ and an element 𝑥 ∈, then:

• the upwards closure of 𝑥 is 𝑥↑ ∶= {𝑦 ∈ ∣ 𝑥 ≤ 𝑦}.
16

• the downwards closure of 𝑥 is 𝑥↓ ∶= {𝑦 ∈ ∣ 𝑥 ≥ 𝑦}.

Artificial Intelligence 331 (2024) 104110J. Heyninck, O. Arieli and B. Bogaerts

We lift this to sets of elements 𝑋 ⊆  as follows:

• the upwards closure of 𝑋 is 𝑋↑ ∶=
⋃

𝑥∈𝑋 𝑥↑,

• the downwards closure of 𝑋 is 𝑋↓ ∶=
⋃

𝑥∈𝑋 𝑥↓.

A set is upwards (respectively downwards) closed, if 𝑋 =𝑋↑ (respectively 𝑋 =𝑋↓). We denote the set of upwards closed (respectively
downwards closed) subsets of  by ℘↑() (respectively ℘↓()).

It can be shown that every set of elements is ⪯𝑆
𝐿

-equivalent to its upwards closure and ⪯𝐻
𝐿

-equivalent to its downwards closure:

Lemma 3. Given a lattice 𝐿 = ⟨, ≤⟩ and a set 𝑋 ⊆, it holds that:

1. 𝑋↑ ⪯𝑆
𝐿
𝑋 and 𝑋 ⪯𝑆

𝐿
𝑋↑, and

2. 𝑋↓ ⪯𝐻
𝐿
𝑋 and 𝑋 ⪯𝐻

𝐿
𝑋↓.

Proof. Item 1. Since 𝑋↑⊇𝑋, it immediately holds that 𝑋↑ ⪯𝑆
𝐿
𝑋. We now show 𝑋 ⪯𝑆

𝐿
𝑋↑. Consider some 𝑥 ∈𝑋↑. This means there

is some 𝑦 ∈𝑋 s.t. 𝑦 ≤ 𝑥.

Item 2. Since 𝑋↓ ⊇𝑋, it immediately holds that 𝑋 ⪯𝐻
𝐿
𝑋↓. We now show 𝑋↓ ⪯𝐻

𝐿
𝑋. Consider some 𝑥 ∈𝑋↓. By the definition of

𝑋↓, there is some 𝑦 ∈𝑋 s.t. 𝑥 ≤ 𝑦. □

The last lemma gives further motivation to using ⪯𝑆
𝐿

for comparing lower bounds and ⪯𝐻
𝐿

for comparing upper bounds. Indeed,
if 𝑥 ∈𝑋 is a lower bound for 𝑧, then any 𝑦 such that 𝑥 ≤ 𝑦 is also a good candidate for being 𝑧 (or, alternatively, approximating 𝑧
“from below”), and likewise, if 𝑥 ∈𝑋 is an upper bound for 𝑧, then any 𝑦 such that 𝑦 ≤ 𝑥 is also a good candidate for being 𝑧 (or,
alternatively, approximating 𝑧 “from above”).

Lemma 3 means that we can restrict attention to upwards closed sets when using ⪯𝑆
𝐿

and to downwards closed sets when using
⪯𝐻
𝐿

, without losing any information.

The sets ℘↑() and ℘↓() admit greatest lower bounds under ⪯𝑆
𝐿

and least upper bounds under ⪯𝐻
𝐿

(respectively):

Lemma 4. Let  ⊆℘↑() be given. Then
⋃

 is the greatest lower bound (under ⪯𝑆
𝐿

) of  and
⋂

 is the least upper bound (under ⪯𝑆
𝐿

)
of  .16

Proof. We show that
⋃

 is the greatest lower bound by showing the following claims:

•
⋃

 ∈℘↑(). To see this, consider some 𝑥 ∈
⋃

 . Then there is some 𝑋 ∈  s.t. 𝑥 ∈𝑋, and thus since 𝑋 ∈℘↑(), every 𝑦 ∈𝑋

s.t. 𝑥 ≤ 𝑦 is also in 𝑋, and therefore in
⋃

 .

•
⋃

 ⪯𝑆
𝐿
𝑋 for any 𝑋 ∈  . This immediately follows from the fact that for any 𝑥 ∈𝑋, 𝑥 ∈

⋃
 .

• For any 𝑍 ∈℘↑() s.t. 𝑍 ⪯𝑆
𝐿
𝑋 for every 𝑋 ∈  , 𝑍 ⪯𝑆

𝐿

⋃
 . For this, consider some 𝑍 ∈℘↑() s.t. 𝑍 ⪯𝑆

𝐿
𝑋 for every 𝑋 ∈ 

and consider some 𝑥 ∈
⋃

 . Since 𝑥 ∈𝑋 for some 𝑋 ∈  , there is some 𝑧 ∈𝑍 s.t. 𝑧 ≤ 𝑥. Thus, for every 𝑥 ∈
⋃

 , there is some
𝑧 ∈𝑍 s.t. 𝑧 ≤ 𝑥, which implies that 𝑍 ⪯𝑆

𝐿

⋃
 .

We show that
⋂

 is the least upper bound by showing the following claims:

•
⋂

 ∈℘↑(). To see this, consider some 𝑥 ∈
⋂

 . Then for every 𝑋 ∈  , it holds that 𝑥 ∈𝑋, and thus since 𝑋 ∈℘↑(), every
𝑦 ∈𝑋 s.t. 𝑥 ≤ 𝑦 is also in 𝑋, and therefore (since this holds for every 𝑋 ∈ ), 𝑦 is also in

⋂
 .

• 𝑋 ⪯𝑆
𝐿

⋂
 for any 𝑋 ∈  . This follows from the fact that for any 𝑥 ∈

⋂
 , 𝑥 ∈𝑋 for every 𝑋 ∈  .

• For any 𝑍 ∈℘↑() s.t. 𝑋 ⪯𝑆
𝐿
𝑍 for every 𝑋 ∈  ,

⋂
 ⪯𝑆

𝐿
𝑍 . For this, consider some 𝑍 ∈℘↑() s.t. 𝑋 ⪯𝑆

𝐿
𝑍 for every 𝑋 ∈ 

and consider some 𝑧 ∈𝑍 . Since 𝑋 ⪯𝑆
𝐿
𝑍 , there is some 𝑥 ∈𝑋 s.t. 𝑥 ≤ 𝑧. Since 𝑋 is upwards closed, 𝑧 ∈𝑋. Notice that this holds

for any 𝑋 ∈  , and thus 𝑧 ∈
⋂

 , which means that 𝑍 ⊆
⋂

 and thus
⋂

 ⪯𝑆
𝐿
𝑍 . □

The next lemma is proven like the previous one.

Lemma 5. Let some  ⊆℘↓() be given. Then
⋂

 is the greatest lower bound (under ⪯𝐻
𝐿

) of  and
⋃

 is the least upper bound (under
⪯𝐻
𝐿

) of  .

By the last two lemmas, one can construct lower respectively upper bounds for sets of pairs of sets under ⪯𝐴
𝑖

:

16 Recall that we use small letters to denote elements of lattice, capital letters to denote sets of elements, and capital calligraphic letters to denote sets of sets of
17

elements (Table 1).

Artificial Intelligence 331 (2024) 104110J. Heyninck, O. Arieli and B. Bogaerts

Corollary 1. Let some Z ⊆℘↑() ×℘↓() be given. Then (
⋃
{𝑋 ∣ (𝑋, 𝑌) ∈Z},

⋃
{𝑌 ∣ (𝑋, 𝑌) ∈Z}) is the greatest lower bound of (under

⪯𝐴
𝑖

) Z and (
⋂
{𝑋 ∣ (𝑋, 𝑌) ∈},

⋂
{𝑌 ∣ (𝑋, 𝑌) ∈Z}) is the least upper bound of (under ⪯𝐴

𝑖
) of Z .

To make things a bit more graspable, we illustrate the above results with an example.

Example 13. Consider the lattice ⟨℘({𝑝, 𝑞}), ⊆⟩.
• By Lemma 4, the glb under ⪯𝑆

𝐿
of the upwards closed sets {{𝑝}, {𝑞}, {𝑝, 𝑞}}, {{𝑞}, {𝑝, 𝑞}} and {{𝑝, 𝑞}} is

{{𝑝},{𝑞},{𝑝, 𝑞}} ∪ {{𝑞},{𝑝, 𝑞}} ∪ {{𝑝, 𝑞}} = {{𝑝},{𝑞},{𝑝, 𝑞}}.

• By Lemma 5, the ⪯𝐻
𝐿

-glb of the downwards closed sets {{𝑝}, {𝑞}, ∅}, {{𝑝}, ∅} is

{{𝑝},{𝑞},∅} ∩ {{𝑝},∅} = {{𝑝},∅}.

• Consider the following pairs of upwards and downwards closed sets:

(𝑋1, 𝑌1) = ({{𝑝},{𝑝, 𝑞}}, {∅,{𝑝},{𝑞},{𝑝, 𝑞}})

(𝑋2, 𝑌2) = ({{𝑝, 𝑞}}, {∅,{𝑝},{𝑞},{𝑝, 𝑞}})

(𝑋3, 𝑌3) = ({{𝑞},{𝑝, 𝑞}}, {∅,{𝑞}})

According to Corollary 1, the ⪯𝐴
𝑖

-glb and ⪯𝐴
𝑖

-lub of {(𝑋1, 𝑌1), (𝑋2, 𝑌2), (𝑋3, 𝑌3)} are obtained as follows:

𝑔𝑙𝑏⪯𝐴
𝑖
({(𝑋1, 𝑌1), (𝑋2, 𝑌2), (𝑋3, 𝑌3)}) = (

3⋃
𝑖=1

𝑋𝑖,

3⋃
𝑖=1

𝑌𝑖) = ({{𝑝},{𝑞},{𝑝, 𝑞}}, {∅,{𝑝},{𝑞},{𝑝, 𝑞}})

𝑙𝑢𝑏⪯𝐴
𝑖
({(𝑋1, 𝑌1), (𝑋2, 𝑌2), (𝑋3, 𝑌3)}) = (

3⋂
𝑖=1

𝑋𝑖,

3⋂
𝑖=1

𝑌𝑖) = ({{𝑝, 𝑞}}, {∅})

In Fig. 2, the above pairs of sets are visualized as convex sets. In more detail, the elements of convex sets are highlighted gray. For
example, (𝑋1, 𝑌1) corresponds to the convex set {{𝑝}, {𝑝, 𝑞}} and therefore the elements {𝑝} and {𝑝, 𝑞} are highlighted in Fig. 2.

∅

{𝑝} {𝑞}

{𝑝, 𝑞}

(𝑋1, 𝑌1)

∅

{𝑝} {𝑞}

{𝑝, 𝑞}

(𝑋2, 𝑌2)

∅

{𝑝} {𝑞}

{𝑝, 𝑞}

(𝑋3, 𝑌3)

∅

{𝑝} {𝑞}

{𝑝, 𝑞}

𝑔𝑙𝑏⪯𝐴
𝑖

⋃3
𝑖=1(𝑋𝑖, 𝑌𝑖)

∅

{𝑝} {𝑞}

{𝑝, 𝑞}

𝑙𝑢𝑏⪯𝐴
𝑖

⋃3
𝑖=1(𝑋𝑖, 𝑌𝑖)

Fig. 2. Visualization of convex sets in Example 13, with elements of convex sets highlighted in gray.

It is interesting to note that the construction described above does not depend on the completeness of the original lattice . In
more detail, Lemmas 4 and 5 and Corollary 1 mean that ⟨℘↑(), ⪯𝑆

𝐿
⟩, ⟨℘↓(), ⪯𝐻

𝐿
⟩ and ⟨℘↑() ×℘↓(), ⪯𝐴

𝑖
⟩ are complete lattices,

even if ⟨, ≤⟩ is not a complete lattice. To illuminate this somewhat surprising fact, consider the following example:

Example 14. Consider the lattice ⟨ℕ, ≤⟩. As ℕ has no lub, this lattice is not complete. Now, let {{𝑖 ∣ 𝑖 ≤ 𝑗} ∣ 𝑗 ∈ℕ}. Then the ⪯𝐻
𝐿

-lub
of {{𝑖 ∣ 𝑖 ≤ 𝑗} ∣ 𝑗 ∈ℕ} is ℕ. Thus, every set in ⟨℘↓(ℕ), ⪯𝐻

𝐿
⟩ has a least upper bound, even though ⟨ℕ, ≤⟩ does not. Likewise, every set

in ⟨℘↑(ℕ), ⪯𝑆
𝐿
⟩ and in ⟨℘↑(ℕ) ×℘↓(ℕ), ⪯𝐴

𝑖
⟩ has a least upper bound.

In general, (, ) is the ⪯𝐴
𝑖

-glb of ℘↑() ×℘↓() whereas (∅, ∅) is the ⪯𝐴
𝑖

-lub of ℘↑() ×℘↓(). It is interesting to note that,
when ⟨, ≤⟩ is a complete lattice, (⊥↑, ⊤↓) = (, ), i.e. the ⪯𝐴

𝑖
-glb of ℘↑() ×℘↓() corresponds to the convex set obtained on the
18

basis of the ≤𝑖-glb (⊥, ⊤) of 2 (and likewise for (∅, ∅)).

Artificial Intelligence 331 (2024) 104110J. Heyninck, O. Arieli and B. Bogaerts

4.3.2. Non-deterministic state operators and their fixpoints

We can now introduce non-deterministic state approximation operators17 that generate a convex set on the basis of a convex set.
Thus, the type of a non-deterministic state approximation operator ′ is ℘↑() ×℘↓() →℘↑() ×℘↓(). As outlined above, the
idea is that a non-deterministic state approximation operator generates an approximation of a set of elements {𝑧1, 𝑧2, …} on the
basis of an approximation of a set of elements. Just like an ndao, we require information-monotonicity, i.e. more precise inputs give
rise to more precise outputs, and exactness, i.e., a convex set consisting of a single element as input gives rise to at least one element
being both in the generated lower and upper bound.

Definition 18. Let a lattice 𝐿 = ⟨, ≤⟩ be given. Then an operator ′ ∶℘↑() ×℘↓() →℘↑() ×℘↓() is a non-deterministic state
operator (in short, ndso) if it satisfies the following properties:

• ′ is ⪯𝐴
𝑖

-monotonic, and

• ′ is exact, i.e. for every 𝑥 ∈ , there is some 𝑧 ∈  such that 𝑧 ∈′
𝑙
({𝑥}, {𝑥}) ∩′

𝑢({𝑥}, {𝑥}).
18

An ndso approximates a non-deterministic operator 𝑂 iff for any 𝑥 ∈ , ′({𝑥}, {𝑥}) = (𝑂(𝑥)↑, 𝑂(𝑥)↓).

Remark 12. A non-deterministic state operator can be straightforwardly derived on the basis of an ndao as follows (but there are
also other ways to do this, see e.g. Definition 23):

′(𝐗) =
(⋃
(𝑥,𝑦)∈𝐗

𝑙(𝑥, 𝑦)↑,
⋃

(𝑥,𝑦)∈𝐗
𝑢(𝑥, 𝑦)↓

)
In that case we say ′ is derived from . If  approximates 𝑂 then so does ′. Furthermore, ′ is ⪯𝐴

𝑖
-monotonic. In fact, the

⪯𝐴
𝑖

-monotonicity of ′ is independent of the ⪯𝐴
𝑖

-monotonicity of , as we see in the following proposition:

Proposition 7. For any operator  ∶ 2 →℘()2, it holds that ′ ∶℘↑() ×℘↓() →℘↑() ×℘↓() is ⪯𝐴
𝑖

-monotonic.

Proof. Consider some 𝑋, 𝑋′, 𝑌 , 𝑌 ′ ⊆  s.t. (𝑋, 𝑌) ⪯𝐴
𝑖
(𝑋′, 𝑌 ′), i.e. 𝑋 ⪯𝑆

𝐿
𝑋′ and 𝑌 ′ ⪯𝐻

𝐿
𝑌 . We show that ′(𝑋, 𝑌) ⪯𝐴

𝑖
′(𝑋′, 𝑌 ′).

Consider first 𝑧 ∈ (′(𝑋′, 𝑌 ′))1.19 This means that there are some 𝑥′ ∈ 𝑋′↑ and 𝑦′ ∈ 𝑌 ′↓ s.t. 𝑧 ∈ ((𝑥′, 𝑦′))1↑. Since 𝑋 ⪯𝑆
𝐿
𝑋′ and

𝑌 ′ ⪯𝐻
𝐿
𝑌 , there is some 𝑥 ∈𝑋 s.t. 𝑥 ≤ 𝑥′ and some 𝑦 ∈ 𝑌 s.t. 𝑦′ ≤ 𝑦. Thus, 𝑥′ ∈𝑋↑ and 𝑦′ ∈ 𝑌↓, which means that 𝑧 ∈ (′(𝑋, 𝑌))1.

The case for (′(𝑋′, 𝑌 ′))2 is similar. We thus have shown that (′(𝑋′, 𝑌 ′))1 ⊆ (′(𝑋, 𝑌))1 and (′(𝑋′, 𝑌 ′))2 ⊆ (′(𝑋, 𝑌))2, which
implies (′(𝑋, 𝑌))1 ⪯𝑆

𝐿
(′(𝑋, 𝑌))1 and (′(𝑋′, 𝑌 ′))2 ⪯𝐻

𝐿
(′(𝑋′, 𝑌 ′))2, and thus we obtain ′(𝑋, 𝑌) ⪯𝐴

𝑖
′(𝑋′, 𝑌 ′). □

Likewise, if one is given an ndso ′, one can obtain an ⪯𝐴
𝑖

-monotonic operator  ∶ 2 → ℘()2 by simply letting (𝑥, 𝑦) =
′({𝑥}, {𝑦}). Such an operator is not guaranteed to be exact, though.

Example 15. An ndso that approximates IC can be defined as follows:

′

(𝐗) =

(⋃
(𝑥,𝑦)∈𝐗

𝑙

(𝑥, 𝑦)↑,

⋃
(𝑥,𝑦)∈𝐗

𝑢

(𝑥, 𝑦)↓

)
.

For instance, in case that  = {𝑝 ∨ 𝑞←; 𝑟 ∨ 𝑠 ← ¬𝑞}, we have:

′

(({{𝑝},{𝑞},{𝑝, 𝑞}}, {∅,{𝑝},{𝑞},{𝑝, 𝑞}})) =((⋃
∅≠𝑥⊆{𝑝,𝑞},𝑦⊆{𝑝,𝑞}

𝑙

(𝑥, 𝑦)

)
↑,

(⋃
∅≠𝑥⊆{𝑝,𝑞},𝑦⊆{𝑝,𝑞}

𝑢

(𝑥, 𝑦)

)
↓

)
=

(
𝑍1, 𝑍1

)
,

where 𝑍1 =
{
{𝑝}, {𝑞}, {𝑝, 𝑞}, {𝑝, 𝑟}, {𝑞, 𝑟}, {𝑝, 𝑠}, {𝑞, 𝑠}, {𝑝, 𝑞, 𝑟}, {𝑝, 𝑞, 𝑠}

}
.

We show the following property of non-deterministic state operators:

Lemma 6. An operator ′ ∶℘()2 →℘()2 is ⪯𝐴
𝑖

-monotonic iff for any 𝑋 ⊆, ′
𝑙
(⋅, 𝑋) is ⪯𝑆

𝐿
-monotonic, ′

𝑙
(𝑋, ⋅) is ⪯𝑆

𝐿
-anti-monotonic,

′
𝑢(𝑋, ⋅) is ⪯𝐻

𝐿
-monotonic, and ′

𝑢(⋅, 𝑋) is ⪯𝐻
𝐿

-anti-monotonic.

17 The use of the word state comes from disjunctive logic programming, where a set of interpretations is often called a state [44,51].
18 Alternatively, with a slight abuse of the notations, (𝑧, 𝑧) ∈′({𝑥}, {𝑥}).
19

19 Recall that we use (𝑋, 𝑌)1 to denote the first component of the pair (𝑋, 𝑌), i.e. (𝑋, 𝑌)1 ∶=𝑋. Similarly for (𝑋, 𝑌)2 .

Artificial Intelligence 331 (2024) 104110J. Heyninck, O. Arieli and B. Bogaerts

Proof. [⇒]: Suppose that ′ ∶ ℘()2 → ℘()2 is ⪯𝐴
𝑖

-monotonic and consider some 𝑋, 𝑌1, 𝑌2 ⊆  s.t. 𝑌1 ⪯𝑆
𝐿
𝑌2. We first show

that ′
𝑙
(𝑌1, 𝑋) ⪯𝑆

𝐿
′(𝑌2, 𝑋). For this, notice that (𝑌1, 𝑋) ⪯𝐴

𝑖
(𝑌2, 𝑋) (because 𝑌1 ⪯𝑆

𝐿
𝑌2). Since ′ is ⪯𝐴

𝑖
-monotonic, ′(𝑌1, 𝑋) ⪯𝐴

𝑖

′(𝑌2, 𝑋), which on its turn means that ′
𝑙
(𝑌1, 𝑋) ⪯𝑆

𝐿
′
𝑙
(𝑌2, 𝑋).

We now show that ′
𝑢(𝑋, ⋅) is ⪯𝐻

𝐿
-monotonic. For this, consider some 𝑋, 𝑌1, 𝑌2 ⊆  s.t. 𝑌2 ⪯𝐻

𝐿
𝑌1. Then (𝑋, 𝑌1) ⪯𝐴

𝑖
(𝑋, 𝑌2) (since

𝑋 ⪯𝑆
𝐿
𝑋). With the ⪯𝐴

𝑖
-monotonicity of ′, ′(𝑋, 𝑌1) ⪯𝐴

𝑖
′(𝑋, 𝑌2), which implies that ′

𝑢(𝑋, 𝑌2) ⪯𝐻
𝐿

′
𝑢(𝑋, 𝑌1). Thus, 𝑌2 ⪯𝐻

𝐿
𝑌1

implies ′
𝑢(𝑋, 𝑌2) ⪯𝐻

𝐿
′
𝑢(𝑋, 𝑌1) and ′

𝑢(𝑋, ⋅) is ⪯𝐻
𝐿

-monotonic (for any 𝑋 ⊆). The two other cases are similar.

[⇐]: Suppose that for any 𝑋 ⊆ , ′
𝑙
(⋅, 𝑋) is ⪯𝑆

𝐿
-monotonic, ′

𝑙
(𝑋, ⋅) is ⪯𝑆

𝐿
-anti-monotonic, ′

𝑢(𝑋, ⋅) is ⪯𝐻
𝐿

-monotonic, and
′
𝑢(⋅, 𝑋) is ⪯𝐻

𝐿
-anti-monotonic. Consider some 𝑋1, 𝑋2, 𝑌1, 𝑌2 ⊆  s.t. (𝑋1, 𝑌1) ⪯𝐴

𝑖
(𝑋2, 𝑌2). We first show that ′

𝑙
(𝑋1, 𝑌1) ⪯𝑆

𝐿

′
𝑙
(𝑋2, 𝑌2). For this, notice that 𝑌2 ⪯𝑆

𝐿
𝑌1 and thus, with the ⪯𝑆

𝐿
-anti-monotonicity of ′

𝑙
(𝑋1, ⋅), ′

𝑙
(𝑋1, 𝑌1) ⪯𝑆

𝐿
′
𝑙
(𝑋1, 𝑌2). Likewise, it

can be shown that ′
𝑙
(𝑋1, 𝑌2) ⪯𝑆

𝐿
′
𝑙
(𝑋2, 𝑌2) and so ′

𝑙
(𝑋1, 𝑌1) ⪯𝑆

𝐿
′
𝑙
(𝑋2, 𝑌2). The proof for ′

𝑢 is analogous. □

We define consistency for an ndso analogously as for an ndao, namely:

Definition 19. An ndso ′ is consistent if for every 𝑥, 𝑦 ∈  s.t. 𝑥 ≤ 𝑦, there is a 𝑤 ∈′
𝑙
({𝑥}, {𝑦}) and 𝑧 ∈′

𝑢({𝑥}, {𝑦}), (or, slightly
abusing notation, (𝑤, 𝑧) ∈′({𝑥}, {𝑦}), such that 𝑤 ≤ 𝑧.

We note that for a consistent ndso ′, for any 𝑋, 𝑌 ⊆  for which 𝑋↑ ∩ 𝑌↓ ≠ ∅, it holds that ′
𝑙
(𝑋, 𝑌))↑ ∩ ′

𝑢(𝑋, 𝑌))↓ ≠ ∅.
Therefore, for any consistent ndso, a non-empty convex set in the input (i.e. 𝑋↑∩ 𝑌↓ ≠ ∅) gives rise to a non-empty convex set in the
output (′

𝑙
(𝑋, 𝑌))↑ ∩′

𝑢(𝑋, 𝑌))↓ ≠ ∅).

The next proposition shows that state operators are consistent (cf. Proposition 5 for ndao’s).

Proposition 8. Let ′ ∶℘()2 →℘()2 be an ndso. Then ′ is consistent.

Proof. Suppose that ′ is an ndso, which implies that it is exact, i.e., for every 𝑥 ∈ , there is some 𝑧 ∈ such that 𝑧 ∈′
𝑙
({𝑥}, {𝑥})

and 𝑧 ∈ ′
𝑢({𝑥}, {𝑥}). This means that there is some 𝑧 ∈  s.t. 𝑧 ∈ ′

𝑙
({𝑥}, {𝑥}) ∩ ′

𝑢({𝑥}, {𝑥}). By Lemma 6, ′
𝑙
({𝑥}, {𝑦}) ⪯𝑆

𝐿

′
𝑙
({𝑥}, {𝑥}) and ′

𝑢({𝑥}, {𝑥}) ⪯
𝐻
𝐿

′
𝑢({𝑥}, {𝑦}). Thus, there is some 𝑤 ∈′

𝑙
({𝑥}, {𝑦}) s.t. 𝑤 ≤ 𝑧 and there is some 𝑤′ ∈′

𝑢({𝑥}, {𝑦})
s.t. 𝑧 ≤𝑤′. With transitivity of ≤, 𝑤 ≤𝑤′ and thus (slightly abusing notation) there is a consistent pair (𝑤, 𝑤′) ∈′(𝑥, 𝑦). □

Another useful property is the fact that the computation of ′(𝑋↑, 𝑌↓) can be simplified by computing ′(𝑋, 𝑌):

Lemma 7. Let ′ ∶℘()2 →℘()2 be an ndso. Then for any 𝑋, 𝑌 ⊆ , ′(𝑋↑, 𝑌↓) =′(𝑋, 𝑌).

Proof. The ⊇-direction is clear. Suppose now that 𝑤 ∈ (′(𝑋↑, 𝑌↓))1 and 𝑧 ∈ (′(𝑋↑, 𝑌↓))1. Then there are some 𝑥 ∈ 𝑋↑ and
𝑦 ∈ 𝑌↓ s.t. 𝑤 ∈ 𝑙(𝑥, 𝑦)↑ and 𝑧 ∈ 𝑢(𝑥, 𝑦)↓. Thus, there are some 𝑥′ ∈ 𝑋 and some 𝑦′ ∈ 𝑌 s.t. 𝑥′ ≤ 𝑥 and 𝑦 ≤ 𝑦′. This implies that
(𝑥′, 𝑦′) ≤𝑖 (𝑥, 𝑦) and with the ⪯𝐴

𝑖
-monotonicity of , we have (𝑥′, 𝑦′) ⪯𝐴

𝑖
(𝑥, 𝑦). Thus, 𝑙(𝑥′, 𝑦′) ⪯𝑆

𝐿
𝑙(𝑥, 𝑦), which implies that

′
𝑙
(𝑥′, 𝑦′) =𝑙(𝑥′, 𝑦′)↑ ⊇𝑙(𝑥, 𝑦)↑. The case for the upper bound is analogous. □

We now show that an ndso admits a unique ⪯𝐴
𝑖

-least fixpoint:

Theorem 2. Let 𝐿 = ⟨,≤⟩ be a lattice. Every ⪯𝐴
𝑖

-monotonic operator ′ ∶℘↑() ×℘↓() →℘↑() ×℘↓() admits a unique ⪯𝐴
𝑖

-least
fixpoint that can be constructed by iterative application of ′ to (, ). If ′ is exact, this fixpoint is consistent.

Proof. Let 𝐿 = ⟨,≤⟩ be a lattice and let ′ ∶ ℘↑() × ℘↓() → ℘↑() × ℘↓() be a ⪯𝐴
𝑖

-monotonic operator. Then ⟨℘↑() ×
℘↓(), ⪯𝐴

𝑖
⟩ forms a complete lattice with ⪯𝐴

𝑖
-glb (, ) (in view of Corollary 1 and since ⪯𝐴

𝑖
is a reflexive, transitive and anti-

symmetric order over ℘↑() × ℘↓()). We can apply Knaster and Tarski’s fixpoint theorem to show that the set of fixpoints of
′ forms a complete lattice, and thus the ⪯𝐴

𝑖
-monotonic operator ′ admits a unique ⪯𝐴

𝑖
-least fixpoint. Consistency follows from

Proposition 8. The fact that the ⪯𝐴
𝑖

-least fixpoint can be constructed iteratively follows from Theorem 5.1 shown by Cousot and
Cousot [19]. □

We call the ⪯𝐴
𝑖

-least fixpoint of ′ that is guaranteed by Theorem 2 the Kripke-Kleene state of ′, and denote it by 𝖪𝖪(′). Some
examples of Kripke-Kleene state for concrete logic programs can be found in Examples 16 and 17 below.

For the Kripke-Kleene state of an ndso that is derived from an ndao , we can show the following additional results:

Theorem 3. Let 𝐿 = ⟨,≤⟩ be a lattice. Given an ndso ′ derived from an ndao , we have the following:

• For any fixpoint (𝑥, 𝑦) of , 𝖪𝖪(′) ⪯𝐴
𝑖
(𝑥, 𝑦),

• 𝖪𝖪(′) contains at least one consistent pair.
20

• If ′ approximates a non-deterministic operator 𝑂, then for any 𝑥 ∈  s.t. 𝑥 ∈𝑂(𝑥), it holds that 𝖪𝖪(′) ⪯𝐴
𝑖
(𝑥, 𝑥).

Artificial Intelligence 331 (2024) 104110J. Heyninck, O. Arieli and B. Bogaerts

Proof. We first show two lemmas:

Lemma 8. For any 𝑥, 𝑦 ∈ , ′(𝑥, 𝑦) ⪯𝐴
𝑖
(𝑥, 𝑦).

Proof. Since ′(𝑥, 𝑦) = (𝑙(𝑥, 𝑦)↑, 𝑢(𝑥, 𝑦)↓), for every 𝑤 ∈𝑙(𝑥, 𝑦), there is some 𝑤′ ∈𝑙(𝑥, 𝑦)↑ s.t. 𝑤′ ≤𝑤 and for every 𝑧 ∈𝑢(𝑥, 𝑦)
there is some 𝑧′ ∈𝑢(𝑥, 𝑦)↓ s.t. 𝑧 ≤ 𝑧′ (namely, 𝑤 and 𝑧 themselves). Thus, ′

𝑙
(𝑥, 𝑦) ⪯𝑆

𝐿
𝑙(𝑥, 𝑦) and 𝑢(𝑥, 𝑦) ⪯𝐻

𝐿
′
𝑢(𝑥, 𝑦), so the lemma

is obtained. ■

Lemma 9. For any 𝑋, 𝑌 ⊆℘(), 𝑥 ∈𝑋 and 𝑦 ∈ 𝑌 , (𝑋, 𝑌) ⪯𝐴
𝑖
({𝑥}, {𝑦}).

Proof. Clearly, there are some 𝑥′ ∈𝑋 and 𝑦′ ∈ 𝑌 (namely 𝑥′ = 𝑥 and 𝑦′ = 𝑦) s.t. 𝑥′ ≤ 𝑥 and 𝑦 ≤ 𝑦′. ■

The proof of Theorem 3 now continues as follows: For the first item, by Proposition 2, we have that 𝖪(′) = (′)𝛼(⊥, ⊤) for some
ordinal 𝛼. Furthermore, (⊥, ⊤) ≤𝑖 (𝑥, 𝑦). By the ⪯𝐴

𝑖
-monotonicity of , ′(⊥, ⊤) ⪯𝐴

𝑖
′({(𝑥, 𝑦)}). By Lemma 8, ′({(𝑥, 𝑦)}) ⪯𝐴

𝑖
(𝑥, 𝑦),

and by Lemma 9 and since (𝑥, 𝑦) ∈ (𝑥, 𝑦), ′(⊥, ⊤) ⪯𝐴
𝑖
(𝑥, 𝑦). We can repeat this process until we reach the ordinal 𝛼, and thus

(′)𝛼(⊥, ⊤) = 𝖪𝖪(′) ⪯𝐴
𝑖
(𝑥, 𝑦).

The second item is an immediate consequence of Proposition 8.

The proof of the last item is similar to that of the first item. □

Next, we show that for deterministic operators, the Kripke-Kleene state coincides with the Kripke-Kleene fixpoint:

Proposition 9. Let  ∶ 2 →℘()2 be an ndao on a complete lattice ⟨, ≤⟩ s.t. (𝑥, 𝑦) is a pair of singleton sets for every 𝑥, 𝑦 ∈ , let
𝖠𝖥𝖳 be defined by 𝖠𝖥𝖳(𝑥, 𝑦) = (𝑤, 𝑧) where (𝑥, 𝑦) = ({𝑤}, {𝑧}) and let the Kripke-Kleene fixpoint of 𝖠𝖥𝖳 be given by (𝑥𝗄𝗄, 𝑦𝗄𝗄). Then
𝖪𝖪(′) = (𝑥𝗄𝗄↑, 𝑦𝗄𝗄↓), where ′ is obtained from  as described in Remark 12.

Proof. By Proposition 3, 𝖠𝖥𝖳 is an approximation operator, and thus admits a Kripke-Kleene fixpoint. For every 𝑥, 𝑦 ∈ , it holds
that

′(𝑥, 𝑦) = ({𝖠𝖥𝖳
𝑙

(𝑥, 𝑦)}↑, {𝖠𝖥𝖳
𝑢 (𝑥, 𝑦)}↓).

Notice furthermore that for any 𝑥, 𝑦 ∈ , if 𝑥′ ∈ 𝑥↑ and 𝑦′ ∈ 𝑦↓, (𝑥, 𝑦) ⪯𝑖 (𝑥′, 𝑦′), and so 𝑙(𝑥, 𝑦) ⪯𝑆
𝐿
𝑙(𝑥′, 𝑦′), i.e., for every

𝑤′ ∈𝑙(𝑥′, 𝑦′) there is a 𝑤 ∈𝑙(𝑥, 𝑦) s.t. 𝑤 ≤𝑤′. Thus, 𝑙(𝑥′, 𝑦′) ⊆𝑙(𝑥, 𝑦)↑ (and similarly for the upper bound: 𝑢(𝑥′, 𝑦′) ⊇𝑢(𝑥, 𝑦)).
This means that for any ordinal 𝛼,

′𝛼(⊥,⊤) = ({(𝖠𝖥𝖳
𝑙

)𝛼(⊥,⊤)}↑, {(𝖠𝖥𝖳
𝑢)𝛼(⊥,⊤)}↓).

A simple inductive argument then shows the proposition, as 𝖪𝖪(′) =′𝛼(⊥, ⊤) for the smallest ordinal 𝛼 under which a fixpoint is
reached, and (𝑥𝖪𝖪, 𝑦𝖪𝖪) = (𝖠𝖥𝖳)𝛼(⊥, ⊤) for the smallest ordinal 𝛼 under which a fixpoint is reached. □

From Proposition 9, we immediately obtain the following corollary in the context of disjunctive logic programs:

Corollary 2. Given a dlp  , 𝖪𝖪() ⪯𝐴
𝑖
(𝑥, 𝑦) for every weakly supported model (𝑥, 𝑦) of  .

Proof. This is immediate from Theorem 3 and since  is an ndao (Proposition 2) whose fixpoints coincide with the weakly
supported models of  (Theorem 1). □

Intuitively, the convex set represented by 𝖪𝖪() contains every weakly supported model of  .

We now show some examples for computing Kripke-Kleene states of dlps:

Example 16. Let  = {𝑝 ∨ 𝑞←}. We calculate 𝖪𝖪() as follows:

• ′

(∅, {𝑝, 𝑞}) = ({{𝑝},{𝑞},{𝑝, 𝑞}}↑, {{𝑝},{𝑞},{𝑝, 𝑞}}↓).20 This can be seen by observing that 𝑙


(∅, {𝑝, 𝑞}) = {{𝑝}, {𝑞}, {𝑝, 𝑞}}

and 𝑢

(∅, {𝑝, 𝑞}) = 𝑙


({𝑝, 𝑞}, ∅) = {{𝑝}, {𝑞}, {𝑝, 𝑞}}.

• ′

(({{𝑝},{𝑞},{𝑝, 𝑞}}↑, {{𝑝},{𝑞},{𝑝, 𝑞}}↓)) = ({{𝑝},{𝑞},{𝑝, 𝑞}}↑, {{𝑝},{𝑞},{𝑝, 𝑞}}↓) (This can be seen by observing that

𝑧

(𝑥, 𝑦) = {{𝑝}, {𝑞}, {𝑝, 𝑞}} for any 𝑧 ∈ {𝑙, 𝑢} and any 𝑥, 𝑦 ⊆ {𝑝, 𝑞}). Thus, a fixpoint is reached.

The Kripke-Kleene state in this case thus corresponds to the convex set {{𝑝}, {𝑞}, {𝑝, 𝑞}}.
21

20 Even though this is in principle redundant, we added {𝑝, 𝑞} to the first component for clarity.

Artificial Intelligence 331 (2024) 104110J. Heyninck, O. Arieli and B. Bogaerts

Example 17. Let  = {𝑝 ∨ 𝑞←; 𝑟 ∨ 𝑠 ← ¬𝑞}. We calculate 𝖪𝖪() as follows:

• ′

(∅, {𝑝, 𝑞, 𝑟, 𝑠}) = ({{𝑝},{𝑞}}↑, {{𝑝, 𝑞, 𝑟, 𝑠}}↓). We obtain this by observing that 𝑙


(∅, {𝑝, 𝑞, 𝑟, 𝑠}) = {{𝑝}, {𝑞}, {𝑝, 𝑞}} and

𝑢

(∅, {𝑝, 𝑞, 𝑟, 𝑠}) = {{𝑝, 𝑟}, {𝑝, 𝑠}, {𝑞, 𝑟}{𝑞, 𝑟}, {𝑝, 𝑞, 𝑟}, {𝑝, 𝑞, 𝑠}, {𝑝, 𝑟, 𝑠}, {𝑞, 𝑟, 𝑠}, {𝑝, 𝑞, 𝑟, 𝑠}}}.

• ′

(({{𝑝},{𝑞}}↑, {{𝑝, 𝑞, 𝑟, 𝑠}}↓)) = ({{𝑝},{𝑞}}↑, {{𝑝, 𝑞, 𝑟, 𝑠}}↓) and thus a fixpoint is reached.

(It should be noticed that in the second step of the iteration, two more precise upper bounds are obtained as well: in view
of ({𝑝}, {𝑝, 𝑟})(¬𝑞) = ({𝑝}, {𝑝, 𝑠})(¬𝑞) = 𝖳,  ({𝑝},{𝑝, 𝑟})↑ =  ({𝑝},{𝑝, 𝑠})↑ = {{𝑝, 𝑟}, {𝑝, 𝑠}, {𝑞, 𝑟}, {𝑞, 𝑠}} ↑, but this lower
bound becomes “nulified” since e.g.  ({𝑞},{𝑞, 𝑟})↑ contains {𝑝}↑.)

The Kripke-Kleene fixpoint that is reached is represented by the convex set

{{𝑝},{𝑞},{𝑝, 𝑟},{𝑝, 𝑠},{𝑞, 𝑟},{𝑞, 𝑠},{𝑝, 𝑞, 𝑟},{𝑝, 𝑞, 𝑠},{𝑝, 𝑟, 𝑠},{𝑞, 𝑟, 𝑠},{𝑝, 𝑞, 𝑟, 𝑠}}.

Intuitively, the meaning of this Kripke-Kleene state is that every two-valued (stable) model of this program (if they exist), is in this
convex set. This is indeed the case, as the stable models of this program are {𝑝, 𝑟}, {𝑝, 𝑠} and {𝑞}.

This example thus illustrates how the Kripke-Kleene state is an approximation of the semantics of disjunctive logic programs. The
main benefit of this is that it is guaranteed to uniquely exist and be constructively computed.

To summarize the results in this section, we have shown the following: There are two ways to generalize the Kripke-Kleene seman-

tics from deterministic AFT to a non-deterministic setting: one can keep the type the same, resulting in Kripke-Kleene interpretations

or simply fixpoints of an ndao. We have shown that such fixpoints of  correspond to weakly supported models. Uniqueness and
existence are not guaranteed. This is solved by the alternative generalization of Kripke-Kleene semantics from deterministic AFT,
by Kripke-Kleene state, which is a set of interpretations instead of a single interpretation. Existence, uniqueness, and consistency for
exact ndso’s are guaranteed for these states, and, moreover, for deterministic operators the two Kripke-Kleene fixpoints coincide.

5. Stable semantics

In this section, the stable semantics from deterministic AFT is generalized to the non-deterministic setting. In Section 5.1, we
first introduce and study the stable operator and the corresponding stable interpretation semantics. Then, in Section 5.2 we study
the well-founded state semantics. In Section 5.3, we show the usefulness of the well-founded state semantics by relating it to the
well-founded semantics with disjunction [2] for disjunctive logic programming.

5.1. Stable interpretation semantics

In deterministic AFT, the idea behind the stable operator is to find fixpoints that are minimal w.r.t. the truth order by constructing
a new lower bound and a new upper bound on the basis of the current upper respectively lower bound. In more detail, given the
current upper bound 𝑦, we look for the ≤-least fixpoint of 𝑙(⋅, 𝑦) (which is guaranteed to exist for a deterministic approximation
fixpoint operator  and coincides with the greatest lower bound of fixpoints of 𝑙(⋅, 𝑦)). Thus, informally, we look for the smallest
lower bound s.t. the operator  lets us derive nothing more and nothing less when assuming 𝑦 as an upper bound.

Instead of generating a single lower and a single upper bound, an ndao generates a set of lower bounds {𝑥1, 𝑥2, …} and a set of
upper bounds {𝑦1, 𝑦2, …} on the basis of a lower and upper bound (𝑥, 𝑦). We can again look for a (not necessarily unique) smallest
lower bound that an ndao allows us to derive in view of a given upper bound 𝑦 by looking for ≤-minimal fixpoints of 𝑙(⋅, 𝑦). We will
see below that only under certain assumptions on the ndao such a fixpoint is guaranteed to exist. Furthermore, other properties of
the stable operator and fixpoints, such as ⪯𝐴

𝑖
-monotonicity, the existence of stable fixpoints and the ≤𝑡-minimality of stable fixpoints,

do not generalize or only generalize under certain assumptions from the deterministic setting. Nevertheless, the fixpoint and state
semantics based on this construction are useful in general, as they can e.g. characterize the stable semantics for disjunctive logic
programs and the well-founded semantics with disjunction by Alcântara, Damásio and Pereira [2], and for positive programs it coincides
with the set of minimal models (Proposition 15).

This section is organized as follows. We first define stable non-deterministic operators. Then, we study their properties, mainly
by looking at how properties from the deterministic setting can be generalized. We first show that non-deterministic stable operators
and their fixpoints faithfully generalize the corresponding deterministic notions (see Proposition 11 and Corollary 3). Next, we study
conditions under which the stable operator is well-defined (culminating in Proposition 13). Thereafter, we show that stable operators
are not guaranteed to be ⪯𝐴

𝑖
-monotonic (Example 22), and that stable fixpoints are not guaranteed to exist (Example 22). Finally, we

show that, under certain conditions, stable fixpoints are ≤𝑡-minimal fixpoints of an ndao (Proposition 14). This general study of stable
operators and their fixpoints is followed by an illustration of their usefulness, where it is shown that (partial) stable interpretations
of disjunctive logic programs are stable fixpoints of  (Theorem 4).

Definition 20. Let  ∶ 2 →℘() ×℘() be an ndao. We define:

• The complete lower stable operator: (for any 𝑦 ∈ )
22

𝐶(𝑙)(𝑦) = {𝑥 ∈ ∣ 𝑥 ∈𝑙(𝑥, 𝑦) and ¬∃𝑥′ < 𝑥 ∶ 𝑥′ ∈𝑙(𝑥′, 𝑦)}.

Artificial Intelligence 331 (2024) 104110J. Heyninck, O. Arieli and B. Bogaerts

• The complete upper stable operator: (for any 𝑥 ∈ )

𝐶(𝑢)(𝑥) = {𝑦 ∈ ∣ 𝑦 ∈𝑢(𝑥, 𝑦) and ¬∃𝑦′ < 𝑦 ∶ 𝑦′ ∈𝑢(𝑥, 𝑦′)}.

• The stable operator: 𝑆()(𝑥, 𝑦) = (𝐶(𝑙)(𝑦), 𝐶(𝑢)(𝑥))
• A stable fixpoint of  is any (𝑥, 𝑦) ∈ 2 such that (𝑥, 𝑦) ∈ 𝑆()(𝑥, 𝑦).21

Example 18. Consider the dlp  = {𝑝 ∨ 𝑞 ←} from Example 1. It holds that for any 𝑥, 𝑦 ⊆ {𝑝, 𝑞}, 𝑙

(𝑥, 𝑦) = {{𝑝}, {𝑞}, {𝑝, 𝑞}} and

thus 𝐶(𝑙

(𝑦)) = {{𝑝}, {𝑞}}. It thus follows that ({𝑝}, {𝑝}) and ({𝑞}, {𝑞}) are the stable fixpoints of  .

The complete operator based on  produces the minimal models of the reducts w.r.t. the input. Before showing this, we first
recall that the two-valued models of a positive program  are the sets 𝑥 ⊆  s.t. for every

⋁
Δ ← 𝜙 ∈  , (𝑥, 𝑥)(𝜙) = 𝖳 implies

𝑥 ∩Δ ≠ ∅ (Footnote 6). In what follows, we denote the set of two-valued models  by 𝑚𝑜𝑑2().

Proposition 10. Consider a dlp  and some 𝑦 ⊆ . Then 𝐶(𝑙

)(𝑦) =min⊆(𝑚𝑜𝑑2(



𝑦
)).22

Remark 13. Notice that we did not define the complete stable operator as the glb of fixpoints of 𝑙(⋅, 𝑥). Indeed, this leads to several
problems. First, the glb of fixpoints of 𝑙(⋅, 𝑥) might itself not be a fixpoint of 𝑙(⋅, 𝑥) (since we cannot apply Tarski-Knaster fixpoint
theorem to the operator 𝑙(⋅, 𝑥) ∶  →℘()). Secondly, and more importantly, taking the glb might lead to a loss of information.
Consider e.g. the program {𝑝 ∨ 𝑞←}. Then 𝑙


(⋅, 𝑥) has three fixpoints (for any 𝑥 ⊆ {𝑝, 𝑞}), namely {𝑝}, {𝑞} and {𝑝, 𝑞}. If we take

the glb, however, we obtain ∅. This would be counter-intuitive, since we clearly should be more interested in the more informative
{𝑝} and {𝑞}, which represent two possible choices to be made in view of 𝑝 ∨ 𝑞←.

Remark 14. Notice that since 𝑙(⋅, 𝑥) maps from  to ℘(), i.e., it is not a deterministic operator on , we cannot use Tarski-Knaster
fixpoint theorem to guarantee the existence of fixpoint of 𝑙(⋅, 𝑥), i.e., 𝐶(𝑙) is not guaranteed to be non-empty (i.e., there might be
some 𝑦 ∈ such that 𝐶(𝑙)(𝑦) = ∅). Indeed, as a case in point, consider the following example:

Example 19. Consider the lattice 𝐿 = ⟨ℕ− ∪ {−∞}, ≤⟩ where ℕ− = {0, −1, −2, …} and ≤ is defined as usual (e.g. −2 ≤−1). Consider
the operator 𝑙(𝑥, 𝑦) defined by 𝑙(𝑥, 𝑦) = {𝑥} for any 𝑥, 𝑦 ∈ ℕ−, and 𝑙(−∞, 𝑦) = ℕ− for any 𝑦 ∈ ℕ−. Notice that for this example,
the value of 𝑙(𝑥, −∞) is not significant. It can be verified that this operator is ⪯𝑆

𝐿
-monotonic. Indeed, if 𝑥1, 𝑥2, 𝑦1, 𝑦2 ∈ ℕ−, then if

(𝑥1, 𝑦1) ≤ (𝑥2, 𝑦2), 𝑥1 ≤ 𝑥2 and 𝑙(𝑥1, 𝑦1) = {𝑥1} ⪯𝑆
𝐿
𝑙(𝑥2, 𝑦2) = {𝑥2} since 𝑥1 ≤ 𝑥2. Furthermore, if 𝑥1 = −∞ then for every 𝑥2 s.t.

(𝑥1, 𝑦1) ≤ (𝑥2, 𝑦2), 𝑥2 ∈𝑙(𝑥1, 𝑦1) = ℕ− and thus 𝑙(𝑥1, 𝑦1) = ℕ− ⪯𝑆
𝐿
𝑙(𝑥2, 𝑦2). Moreover, for any 𝑦 ∈ ℕ−, every 𝑥 ∈ ℕ− is a fixpoint

of 𝑙(⋅, 𝑦) (as {𝑥} =𝑙(𝑥, 𝑦)). Since ℕ− has no ≤-minimal element, 𝐶(𝑙)(𝑦) = ∅ for every 𝑦 ∈ ℕ−.

In what follows (see Definition 22), we will delineate a condition that guarantees that the complete lower and upper stable
operator is non-empty.

Next, we show that in finite bilattices, the definitions of complete stable operators coincide with those for deterministic AFT. This
holds since in finite lattices, the greatest lower bound coincides with the minimum.

Proposition 11. Let  ∶ 2 →℘()2 be an ndao over a finite, complete lattice , where (𝑥, 𝑦) is a pair of singleton sets for every 𝑥, 𝑦 ∈.
Let 𝖠𝖥𝖳 be the deterministic approximation operator defined by 𝖠𝖥𝖳(𝑥, 𝑦) = (𝑤, 𝑧) where (𝑥, 𝑦) = ({𝑤}, {𝑧}).23 Then 𝐶(𝑙)(𝑦) =
{𝐶(𝖠𝖥𝖳

𝑙
)(𝑦)}, and 𝐶(𝑢)(𝑥) = {𝐶(𝖠𝖥𝖳

𝑢)(𝑥)} for every 𝑥, 𝑦 ∈.24

Proof. By Proposition 3 𝖠𝖥𝖳 is a deterministic approximation operator. The equalities in the proposition are immediate since for
finite lattices, {𝑥 ∈ ∣ 𝑥 ∈𝑙(𝑥, 𝑦) and ¬∃𝑥′ < 𝑥 ∶ 𝑥′ ∈𝑙(𝑥′, 𝑦)} = {

⨅
{𝑥 ∈  ∣ 𝑥 ∈𝑙(𝑥, 𝑦)}}. □

Thus, in view of Proposition 11, for finite lattices the notion of stable fixpoint is not changed in the non-deterministic case:

Corollary 3. Let  ∶ 2 →℘()2 be an ndao over a finite, complete lattice , where (𝑥, 𝑦) is a pair of singleton sets for every 𝑥, 𝑦 ∈ .
Let 𝖠𝖥𝖳 be defined by 𝖠𝖥𝖳(𝑥, 𝑦) = (𝑤, 𝑧) where (𝑥, 𝑦) = ({𝑤}, {𝑧}). Then (𝑥, 𝑦) is a stable fixpoint of  according to Definition 20 iff
(𝑥, 𝑦) is a stable fixpoint of 𝖠𝖥𝖳 according to Definition 6.

21 Notice that we slightly abuse notation and write (𝑥, 𝑦) ∈ 𝑆()(𝑥, 𝑦) to abbreviate 𝑥 ∈ (𝑆()(𝑥, 𝑦))1 and 𝑦 ∈ (𝑆()(𝑥, 𝑦))2 , i.e. 𝑥 is a lower bound generated by
𝑆()(𝑥, 𝑦) and 𝑦 is an upper bound generated by 𝑆()(𝑥, 𝑦).
22 Recall Definition 3.
23 Recall also Proposition 3.
23

24 Notice that since 𝖠𝖥𝖳 is a deterministic approximation operator, 𝐶(𝖠𝖥𝖳
𝑙

)(𝑦) and 𝐶(𝖠𝖥𝖳
𝑢

)(𝑦) are taken as in Definition 6.

Artificial Intelligence 331 (2024) 104110J. Heyninck, O. Arieli and B. Bogaerts

Remark 15. For approximation operators over infinite bilattices, the coincidence in Proposition 11 cannot be guaranteed. The reason
is that the minimum taken in the non-deterministic complete operators 𝐶(𝑢) (and 𝐶(𝑙)) might not coincide with the glb taken in
the deterministic complete operators 𝐶(𝖠𝖥𝖳

𝑙
)(𝑦) and 𝐶(𝖠𝖥𝖳

𝑢)(𝑦). A case in point is the following example:

Example 20. Consider a lattice 𝐿 = ⟨{⊥, ⊤} ∪ {𝑥𝑖 ∣ 𝑖 ∈ ℕ}, ≤⟩ where ⊥ < 𝑥𝑖 < ⊤ for every 𝑖 ∈ ℕ. Consider the operator  defined as
follows:

• 𝑙(𝑥𝑖, 𝑦) =𝑢(𝑦, 𝑥𝑖) = {𝑥𝑖} for any 𝑦 ∈ {⊥, ⊤} ∪ {𝑥𝑖 ∣ 𝑖 ∈ℕ} and 𝑖 ∈ℕ,

• 𝑙(⊥, 𝑥𝑖) =𝑢(𝑥𝑖, ⊥) = {𝑥𝑖} for any 𝑖 ∈ ℕ,

• 𝑙(𝑥, ⊤) =𝑢(⊤, 𝑥) = {⊤} for any 𝑥 ∈ {⊤} ∪ {𝑥𝑖 ∣ 𝑖 ∈ℕ}, and

• 𝑙(⊥, ⊤) = {⊥}.

Then 𝐶(𝑙)(𝑥𝑖) = {𝑥𝑖 ∣ 𝑖 ∈ℕ}, whereas 𝐶(𝖠𝖥𝖳
𝑙

)(𝑥𝑖) =
⨅
{𝑥𝑖 ∣ 𝑖 ∈ℕ} = ⊥ for any 𝑖 ∈ℕ.

The next property we study is the well-definedness of the complete (and thus stable) operator, which is not guaranteed in view of
Remark 14. First, we show two useful lemmas (the first one is based on a similar lemma in the paper by Pelov and Truszczyński [48]),
which show that minimal pre-fixpoints are also minimal fixpoints and vice versa. For this, we first generalize the notion of a pre-

fixpoint from the deterministic setting to non-deterministic operators.

Definition 21. We say that 𝑤 ∈  is a pre-fixpoint of the non-deterministic operator 𝑂 on , if 𝑂(𝑤) ⪯𝑆
𝐿
{𝑤}.

It can be easily verified that this generalizes the notion of a pre-fixpoint of a deterministic operator.

Lemma 10. Let 𝑂 ∶  →℘() be a ⪯𝑆
𝐿

-monotonic non-deterministic operator. Then if 𝑤 is a ≤-minimal pre-fixpoint of 𝑂, it is a ≤-minimal
fixpoint of 𝑂.25

Proof. Suppose that 𝑤 is a ≤-minimal pre-fixpoint of 𝑂, i.e., 𝑂(𝑤) ⪯𝑆
𝐿
{𝑤}. This means that there is some 𝑧 ∈𝑂(𝑤) s.t. 𝑧 ≤𝑤. Since

𝑂 is ⪯𝑆
𝐿

-monotonic, 𝑂(𝑧) ⪯𝑆
𝐿
𝑂(𝑤). Since 𝑧 ∈ 𝑂(𝑤), 𝑂(𝑧) ⪯𝑆

𝐿
{𝑧}, i.e. 𝑧 is a pre-fixpoint of 𝑂. Since 𝑤 is a ≤-minimal pre-fixpoint

and 𝑧 ≤𝑤, 𝑧 =𝑤. Minimality is immediate since fixpoints are in particular pre-fixpoints. □

Lemma 11. Let 𝑂 ∶  →℘() be a ⪯𝑆
𝐿

-monotonic non-deterministic operator. Then if 𝑤 is a ≤-minimal fixpoint of 𝑂, it is a ≤-minimal
pre-fixpoint of 𝑂.

Proof. Suppose that 𝑤 is a ≤-minimal fixpoint of 𝑂. Then 𝑤 ∈ 𝑂(𝑤) and so 𝑂(𝑤) ⪯𝑆
𝐿
{𝑤}. Thus, 𝑤 is a pre-fixpoint. Suppose now

towards a contradiction that for some 𝑤′ < 𝑤, 𝑂(𝑤′) ⪯𝑆
𝐿
{𝑤′}. Without loss of generality, we may assume that 𝑤′ is a minimal

pre-fixpoint. But then, by Lemma 10, it is a minimal fixpoint of 𝑂, a contradiction. □

Uniqueness of this ≤-minimal fixpoint cannot be guaranteed (as can be seen in e.g. Example 11). This is a crucial difference with
deterministic operators (where even a unique ≤-least fixpoint is guaranteed to exist). Thus, to summarize, non-determinism forces
us to take ≤-minimal fixpoints instead of the greatest lower bound. This choice, in turn, means that existence is not guaranteed on
infinite lattices. Therefore, we now turn to conditions that ensure the existence of ≤-minimal fixpoint of non-deterministic operators
over infinite lattices. As we shall see (Proposition 13 below), the next property (inspired by Pelov and Truszczyński [48]) assures
existence. In order to disambiguate the order over ordinals from the lattice order, we will denote the former by ≺.

Definition 22. A non-deterministic operator 𝑂 ∶  →℘() is downward closed if for every sequence 𝑋 = {𝑥𝜖}𝜖≺𝛼 of elements in 
such that:

1. for every 𝜖 ≺ 𝛼, it holds that 𝑂(𝑥𝜖) ⪯𝑆
𝐿
{𝑥𝜖}, and

2. for every 𝜖′ ≺ 𝜖 ≺ 𝛼, it holds that 𝑥𝜖′ < 𝑥𝜖 ,

we have that 𝑂(
⨅
𝑋) ⪯𝑆

𝐿

⨅
(𝑋).

Definition 22 is a generalization of a similar definition by Pelov and Truszczyński [48]. Its says that an operator is downward
closed if the greatest lower bound of every chain of pre-fixpoints is itself a pre-fixpoint. As we will see in Proposition 14, this ensures
that 𝑂 admits a fixpoint.

As an example of an operator that is downward closed, we consider 𝑙

(⋅, 𝑦) (recall Definition 12).26

25 Notice that for any ndao , 𝑙(⋅, 𝑥) is an operator of the type  ∶ →℘() and thus a non-deterministic operator, which we denote by 𝑂.
24

26 This is inspired by the proof of a similar result by Pelov and Truszczyński [48].

Artificial Intelligence 331 (2024) 104110J. Heyninck, O. Arieli and B. Bogaerts

Proposition 12. For any dlp  and any 𝑦 ⊆ ,  (⋅, 𝑦) is downward closed.

Next we show that downward closure is indeed a sufficient condition for assuring the existence of a fixpoint:

Proposition 13. Let  = ⟨𝐿, ≤⟩ be a lattice and let 𝑂 ∶  →℘() be a downward closed, ⪯𝑆
𝐿

-monotonic non-deterministic operator. Then
𝑂 admits a ≤-minimal fixpoint.

Proof. By Lemma 10 it is sufficient to show that 𝑂 admits a ≤-minimal pre-fixpoint. The set of pre-fixpoints of 𝑂 is clearly a partially
ordered set. With downwards closedness, every chain of pre-fixpoints has a lower bound (which is also a pre-fixpoint). Thus, by the
Kuratowski-Zorn lemma [41,62], the set of pre-fixpoints has a minimal element. □

Notice that Proposition 13 also ensures the well-definedness of 𝐶(𝑢) if  is symmetric. The investigation of other conditions of
well-definedness of the stable operator is left for future work.

We obtain the following corollary for the approximation operator  𝑙


:

Corollary 4. For every dlp  , 𝑙

(⋅, 𝑦) has a ≤-minimal fixpoint.

Proof. By Propositions 12 and 13, and since 𝑙

(⋅, 𝑦) is ⪯𝑆

𝐿
-monotonic. □

As we have now established conditions under which the stable operator is well-defined, we turn to the property of ⪯𝐴
𝑖

-

monotonicity of the stable operator. We notice that in general, 𝑆() is not a ⪯𝐴
𝑖

-monotonic operator:

Example 21. Consider the program  = {𝑝 ∨ 𝑞←; 𝑝 ← ¬𝑟}. We calculate the applications of the stable operators as follows:

• Since ({𝑝}, {𝑟})(¬𝑟) = ({𝑞}, {𝑟})(¬𝑟) = 𝖥, it holds that 𝐶(𝑙

)({𝑟}) = {{𝑝}, {𝑞}} for any 𝑥 ⊆ ⧵ {𝑟}.

• Since ({𝑟}, 𝑥)(¬𝑟) = 𝖥 for any 𝑥 ⊆  ⧵ {𝑟}, it holds that 𝑢

(𝑥, {𝑟}) = 𝑙


({𝑟}, 𝑥) = {{𝑝}, {𝑞}} and thus 𝐶(𝑢


({𝑟}) =

{{𝑝}, {𝑞}}.

• Since (∅, 𝑥)(¬𝑟) = 𝖳 for any 𝑥 ⊆ ⧵ {𝑟}, it holds that 𝐶(𝑢

)({𝑟}) = {{𝑝}}.

Altogether, this means that

𝑆()(∅,{𝑟})) = ({{𝑝},{𝑞}}, {{𝑝}}) 𝐴
𝑖 𝑆()({𝑟},{𝑟}) = ({{𝑝},{𝑞}}, {{𝑝},{𝑞}})

since {{𝑝},{𝑞}} 𝐻
𝐿
{{𝑝}} as {𝑞} ⊈ {𝑝}

And thus, even though (∅, {𝑟})) ≤𝑖 ({𝑟}, {𝑟}), it does not hold that 𝑆()(∅, {𝑟})) ⪯𝐴
𝑖
𝑆()({𝑟}, {𝑟}).

Recall that (in contrast to the last example), by Proposition 7, the state version of the stable operator is still ⪯𝐴
𝑖

-monotonic.
Thus, we can still construct a state by iteratively applying the state version of the stable operator. We will detail this construction in
Section 5.2 and show that this state, which we call the well-founded state, exists, is unique, is more precise than the Kripke-Kleene
state, and coincides with the well-founded fixpoint for deterministic operators.

A third property we investigate is the existence of stable fixpoints.27 Even when the complete stable operator is non-empty for
every element of a lattice, stable fixpoints may not exist:

Example 22. Consider the following dlp:  = {𝑝 ∨ 𝑞 ∨ 𝑟 ←; 𝑝 ← ¬𝑞; 𝑟 ← ¬𝑝; 𝑞 ← ¬𝑟}. It can be checked that there are no
𝑥, 𝑦 ⊆ {𝑝, 𝑞, 𝑟} s.t. (𝑥, 𝑦) ∈ 𝑆()(𝑥, 𝑦). To make this clearer, we calculate some of the outcomes of the complete stable operator
𝐶(𝑙


):

• 𝐶(𝑙

)(∅) = 𝐶(𝑢


)(∅) = {{𝑝, 𝑞, 𝑟}}.

• 𝐶(𝑙

)({𝑝}) = 𝐶(𝑢


)({𝑝}) = {{𝑝, 𝑞}}.

• 𝐶(𝑙

)({𝑝, 𝑞}) = 𝐶(𝑢


)({𝑝}) = {{𝑞}}.

• 𝐶(𝑙

)({𝑝, 𝑞, 𝑟}) = 𝐶(𝑢


)({𝑝}) = {{𝑝}, {𝑞}, {𝑟}}.

Notice that 𝐶(𝑢

(𝑥)) = 𝐶(𝑙


(𝑥)) for any 𝑥 ⊆ as  is symmetric. Other cases can be easily derived in view of symmetry

of 𝑙


w.r.t. 𝑝, 𝑞 and 𝑟. As there is no 𝑥, 𝑦 ⊆  for which 𝑥 ∈ 𝐶(𝑙

)(𝑦) and 𝑦 ∈ 𝐶(𝑢


)(𝑥) = 𝐶(𝑙


)(𝑥), we conclude that

27 Notice that this is not the same as the existence of ≤-minimal fixpoints of 𝑙(⋅, 𝑦): the latter establishes merely that 𝑆() is well-defined, but does not guarantee
25

that stable fixpoints exist as we will see now.

Artificial Intelligence 331 (2024) 104110J. Heyninck, O. Arieli and B. Bogaerts

no stable interpretation exists, which is in accordance with the stable model semantics for disjunctive logic programming, where a
well-founded or more generally three-valued stable model does not exist in this case.

The next proposition shows that if stable fixpoints of  exist, they are ≤𝑡-minimal fixpoints of , thus generalizing this property
from the deterministic to the non-deterministic case.

Proposition 14. Let 𝐿 = ⟨, ≤⟩ be a lattice and let  ∶ 2 →℘() ×℘() be an ndao. Then every stable fixpoint of  is a ≤𝑡-minimal
fixpoint of .

Proof. We first show that any stable fixpoint of  is a fixpoint of . Suppose that (𝑥, 𝑦) ∈ 𝑆()(𝑥, 𝑦). Then 𝑥 ∈ 𝐶(𝑙)(𝑦) and
𝑦 ∈ 𝐶(𝑢)(𝑥), which implies that 𝑥 ∈𝑙(𝑥, 𝑦) and 𝑦 ∈𝑢(𝑥, 𝑦). Thus, (𝑥, 𝑦) ∈(𝑥, 𝑦), i.e. (𝑥, 𝑦) is a fixpoint of .

We now show that any stable fixpoint of  is a ≤𝑡-minimal fixpoint of . Consider some (𝑥′, 𝑦′) ≤𝑡 (𝑥, 𝑦) with (𝑥′, 𝑦′) ∈(𝑥′, 𝑦′).
Since 𝑙(𝑥′, ⋅) is ⪯𝑆

𝐿
-anti-monotonic (Lemma 2), 𝑙(𝑥′, 𝑦) ⪯𝑆

𝐿
𝑙(𝑥′, 𝑦′), which means, as 𝑥′ ∈𝑙(𝑥′, 𝑦′), that 𝑙(𝑥′, 𝑦) ⪯𝑆

𝐿
{𝑥′}. Thus,

𝑥′ is a pre-fixpoint of 𝑙(⋅, 𝑦). By Lemma 11, 𝑥 is a minimal pre-fixpoint of 𝑙(⋅, 𝑦). Since 𝑥′ ≤ 𝑥, necessarily, 𝑥′ = 𝑥. This means
that, as 𝑦′ ∈ 𝑢(𝑥, 𝑦′), 𝑦′ is a fixpoint of 𝑢(𝑥, ⋅). As 𝑦 ∈ 𝐶(𝑢)(𝑥), 𝑦 is a ≤-minimal fixpoint of 𝑢(𝑥, ⋅). As 𝑦′ ≤ 𝑦, this means that
𝑦 = 𝑦′. □

Even though they are not guaranteed to exist, stable fixpoints are useful in knowledge representation. For example, for any DLP
 , the stable fixpoints of  characterize the (three-valued) stable models of  :

Theorem 4. Consider a normal disjunctive logic program  and a consistent interpretation (𝑥, 𝑦) ∈℘() ×℘(). Then (𝑥, 𝑦) is a stable
model of  iff (𝑥, 𝑦) ∈ 𝑆()(𝑥, 𝑦).

Notice that this also means that two-valued stable models coincide with total stable fixpoints (i.e., 𝑥 is a two-valued stable model
iff (𝑥, 𝑥) ∈ 𝑆()(𝑥, 𝑥)).

Example 23. Consider the dlp  = {𝑝 ∨ 𝑞 ←} from Example 1 (see also Example 18). In view of Theorem 4, it is not a coincidence
that ({𝑝}, {𝑝}) and ({𝑞}, {𝑞}) are the stable fixpoints of  and the stable interpretations of  .

5.2. Well-founded state semantics

The well-founded fixpoint in determinstic AFT is obtained by iteratively applying the stable operator 𝑆() to the least precise pair
(⊥, ⊤), which results in a fixpoint that approximates any fixpoint of the operator 𝑂 approximated by  and is guaranteed to exist, be
unique, and is at least as precise as the Kripke-Kleene fixpoint. In this section, we generalize this construction to the non-deterministic
setting by defining the well-founded state, a convex set that is unique, guaranteed to exist, at least as percise as the Kripke-Kleene
state, approximates any fixpoint of the non-deterministic operator 𝑂 approximated by , and is obtained by iteratively applying
𝑆(). Thus, the well-founded state 𝖶𝖥() is obtained, for an approximation operator , by first taking the stable operator 𝑆() on
the basis of  and then taking the Kripke-Kleene state 𝖪𝖪(𝑆()) of this operator (i.e., iterating the application of the state-version
of the operator starting from the least precise element until a fixpoint is reached), thus resulting in 𝖶𝖥() = 𝖪𝖪(𝑆()).

For clarity, we deduce a somewhat simpler computation of the state operator (𝑆())′(𝑋, 𝑌):((⋃
𝑦∈𝑌

𝐶(𝑙)(𝑦)
)
↑,

(⋃
𝑥∈𝑋

𝐶(𝑢)(𝑥)
)
↓

)
.

Notice that the calculation of new lower bounds depends only on the old upper bounds, and the calculation of the new upper bounds
depends only on the old lower bounds.

We first prove the following useful lemma, which shows that, when building up the well-founded state, applications of 𝑆()′
result in at least as precise convex sets as applications of .

Lemma 12. Let a lattice  = ⟨𝐿, ≤⟩ and an ndao  over  be given s.t. 𝑙(⋅, 𝑥) is downward closed for every 𝑥 ∈ 𝐿. Then for any ordinal
𝛼, (′)𝛼(⊥, ⊤) ⪯𝐴

𝑖
((𝑆())′)𝛼(⊥, ⊤).

Proof. We show this by induction on 𝛼.

For the base case, we show that (⊥, ⊤) ⪯𝐴
𝑖
𝑆()(⊥, ⊤). Let 𝑆()(⊥, ⊤) = (𝑋, 𝑌). Consider some 𝑧 ∈ 𝐶(𝑙)(⊤). I.e. 𝑧 ∈𝑙(𝑧, ⊤) and

for every 𝑤 ∈𝑙(𝑤, ⊤), 𝑤 ≮ 𝑧. Since (⊥, ⊤) ≤𝑖 (𝑧, ⊤), with the ⪯𝐴
𝑖

-monotonicity of , 𝑙(⊥, ⊤) ⪯𝑆
𝐿
𝑙(𝑧, ⊤). Since this argument holds

for an arbitrary 𝑧 ∈ 𝐶(𝑙)(⊤), we have established 𝑙(⊥, ⊤) ⪯𝑆
𝐿
𝐶()(⊤). The proof for 𝐶(𝑢)(⊥) (i.e., that 𝐶(𝑢)(⊥)) ⪯𝐻

𝐿
𝑢(⊥, ⊤) is

similar.

For the inductive case, consider two ordinals 𝛼 and 𝛽, let 𝛽 be the successor ordinal of 𝛼, and assume that (′)𝛼(⊥, ⊤) ⪯𝐴
𝑖

((𝑆())′)𝛼(⊥, ⊤). Let ((𝑆())′)𝛼(⊥, ⊤) = (𝑋, 𝑌) and consider some 𝑦 ∈ 𝑌 . Let 𝑥 ∈ 𝑋. Recall that 𝑥 ∈ 𝐶(𝑙)(𝑦) means that 𝑥 is a
26

≤-minimal fixpoint of 𝑙(⋅, 𝑦), and thus 𝑥 ∈ 𝑙(𝑥, 𝑦). Notice that (⊥, ⊤) ≤𝑖 (𝑥, 𝑦) and so (⊥, ⊤) ⪯𝐴
𝑖
(𝑥, 𝑦), which implies that

Artificial Intelligence 331 (2024) 104110J. Heyninck, O. Arieli and B. Bogaerts

𝑙(⊥, ⊤) ⪯𝑆
𝐿
𝑙(𝑥, 𝑦). This means that 𝑙(⊥, ⊤) ⪯𝑆

𝐿
{𝑥} (since 𝑥 ∈ 𝑙(𝑥, 𝑦)). By the inductive hypothesis, {𝑦} ⪯𝐻

𝐿
𝛼
𝑙
(⊥, ⊤), which

means (for any ordinal 𝛾 smaller than 𝛼), since ′ is ⪯𝐴
𝑖

-monotonic and 𝛼
𝑢 (⊥, ⊤) ⪯

𝐻
𝐿


𝛾
𝑢(⊥, ⊤), that {𝑦} ⪯𝐻

𝐿

𝛾

𝑙
(⊥, ⊤). Thus,

(⊥, ⊤) ⪯𝐴
𝑖
(𝑥, 𝑦). We can now use the same line of reasoning recursively until we reach the ordinal 𝛼 to obtain (′)𝛼(⊥, ⊤) ⪯𝐴

𝑖
(𝑥, 𝑦).

Applying ′ one more time gives us (′)𝛽 (⊥, ⊤) ⪯𝐴
𝑖
(𝑥, 𝑦), which, with 𝑥 ∈(𝑥, 𝑦) means (′

𝑙
)𝛽 (⊥, ⊤) ⪯𝑆

𝐿
{𝑥}, as desired. The proof

that {𝑦} ⪯𝐻
𝐿
(′

𝑢)
𝛽 (⊥, ⊤) for every 𝑦 ∈ 𝑌 is similar.

For a limit ordinal 𝛼, we have to show that 𝑙𝑢𝑏⪯𝐴
𝑖
{(′)𝛽 (⊥, ⊤) ∣ 𝛽 < 𝛼} ⪯𝐴

𝑖
𝑙𝑢𝑏⪯𝐴

𝑖
{(𝑆()′)𝛽 (⊥, ⊤) ∣ 𝛽 < 𝛼} under the assumption

that (′)𝛽 (⊥, ⊤) ⪯𝐴
𝑖
((𝑆())′)𝛽 (⊥, ⊤) for any 𝛽 < 𝛼. This is immediate, in view of the following considerations:

1. By Corollary 1, 𝑙𝑢𝑏⪯𝐴
𝑖
{(′)𝛽 (⊥, ⊤) ∣ 𝛽 < 𝛼} = (

⋂
𝛽<𝛼((′)𝛽 (⊥, ⊤))1,

⋂
𝛽<𝛼((′)𝛽 (⊥, ⊤))2), and 𝑙𝑢𝑏⪯𝐴

𝑖
{(𝑆()′)𝛽 (⊥, ⊤) ∣ 𝛽 < 𝛼} =

(
⋂

𝛽<𝛼((𝑆(′))𝛽 (⊥, ⊤))1,
⋂

𝛽<𝛼((𝑆(′))𝛽 (⊥, ⊤))2).
2. By the inductive hypothesis, it holds that

⋂
𝛽<𝛼((′)𝛽 (⊥, ⊤))1 ⪯𝑆

𝐿

⋂
𝛽<𝛼((𝑆(′))𝛽 (⊥, ⊤))1 and ((𝑆(′))𝛽 (⊥, ⊤))2 ⪯𝐻

𝐿

⋂
𝛽<𝛼((′)𝛽 (⊥,

⊤))2. □

Using the above lemma, we can now show that, for downwards closed operators , the well-founded state 𝖶𝖥(), which we
define as the Kripke-Kleene-state of the stable operator 𝖪𝖪(𝑆()), is at least as precise as the Kripke-Kleene-state of , approximates
the stable fixpoints of  and the fixpoints of the approximated operator 𝑂:

Theorem 5. Let  = ⟨𝐿, ≤⟩ be a lattice and  a symmetric ndao over  s.t. 𝑙(⋅, 𝑥) is downward closed for every 𝑥 ∈ 𝐿. Then 𝖶𝖥()
exists, is unique, and has the following properties:

• 𝖪𝖪() ⪯𝐴
𝑖
𝖶𝖥(),

• 𝖶𝖥() approximates any stable interpretation (𝑥, 𝑦) ∈ 𝑆()(𝑥, 𝑦), i.e. 𝖶𝖥() ⪯𝐴
𝑖
(𝑥, 𝑦) for any (𝑥, 𝑦) ∈ 𝑆()(𝑥, 𝑦).

• If  approximates 𝑂, for any fixpoint 𝑥 ∈𝑂(𝑥), 𝖶𝖥() ⪯𝐴
𝑖
(𝑥, 𝑥).

Proof. The proofs of existence and uniqueness are similar to that of Theorem 2, since 𝑆()′ is ⪯𝐴
𝑖

-monotonic (Proposition 7).28

The first property follows from Lemma 12, using again the results from Cousot and Cousot [19]. Notice that we need to require a
symmetric ndao that is downwards closed in order to ensure 𝖶𝖥() is well-defined at every step (Proposition 13).29

For the second property, consider some (𝑥, 𝑦) ∈ 𝑆()(𝑥, 𝑦). Since (⊥, ⊤) ≤𝑖 (𝑥, 𝑦) and 𝑆()′ is ⪯𝐴
𝑖

-monotonic, 𝑆()′(⊥, ⊤) ⪯𝐴
𝑖

𝑆()′(𝑥, 𝑦). Let 𝑆()′(𝑥, 𝑦) = (𝑋, 𝑌). Since (𝑥, 𝑦) is a stable fixpoint, 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 . Thus, 𝑆()′(⊥, ⊤) ⪯𝐴
𝑖
(𝑥, 𝑦). We can repeat

this argument until we reach 𝖪𝖪(𝑆()) =𝖶𝖥().
The proof of the third property is similar to that of the second property. □

Example 24. We illustrate the construction in the proof of Theorem 5 by the program from Example 22. Recall that:

 = {𝑝 ∨ 𝑞 ∨ 𝑟←; 𝑝← ¬𝑞; 𝑟← ¬𝑝; 𝑞← ¬𝑟}.

The well-founded state is constructed as follows:

• 𝑆()′(∅↑, {𝑝, 𝑞, 𝑟}↓) = ({{𝑝}, {𝑞}, {𝑟}} ↑, {{𝑝, 𝑞, 𝑟}} ↓). In more detail, this is obtained as follows (recall that 𝐶(𝑙

) is de-

scribed in Example 22):

𝑆()′(∅ ↑,{𝑝, 𝑞, 𝑟} ↓) =
(⋃
𝑦∈{𝑝,𝑞,𝑟}↓

𝐶(𝑙

)(𝑦)↑,

⋃
𝑥∈∅↑

𝐶(𝑙

)(𝑦)↓

)
=
(⋃
𝑦⊆{𝑝,𝑞,𝑟}

𝐶(𝑙

)(𝑦)↑,

⋃
𝑥⊆{𝑝,𝑞,𝑟}

𝐶(𝑙

)(𝑦)↓

)
•
(
𝑆())′(𝑆()(∅↑, {𝑝, 𝑞, 𝑟}↓)

)
=
(
{{𝑝},{𝑞},{𝑟}}↑, {{𝑝, 𝑞},{𝑞, 𝑟},{𝑝, 𝑟}}↓

)
.

•
(
𝑆())′ 2(𝑆()(∅↑, {𝑝, 𝑞, 𝑟}↓)

)
=
(
𝑆())′(𝑆()(∅ ↑, {𝑝, 𝑞, 𝑟} ↓)

)
and thus a fixpoint is reached.

We thus see that

𝖶𝖥() = 𝖪𝖪(𝑆()) =
(
{{𝑝},{𝑞},{𝑟}}↑, {{𝑝, 𝑞},{𝑞, 𝑟},{𝑝, 𝑟}}↓

)
This is represented by the convex set:

{{𝑝},{𝑞},{𝑟},{𝑝, 𝑞},{𝑞, 𝑟},{𝑝, 𝑟}}

28 Recall that 𝑆()′ is obtained by taking the state-version (Remark 12) of the stable operator (Definition 20) based on .
27

29 Investigating other conditions for well-definedness of the stable operator will result in other conditions under which this theorem can be shown.

Artificial Intelligence 331 (2024) 104110J. Heyninck, O. Arieli and B. Bogaerts

Intuitively, the well-founded state expresses that at least one among 𝑝, 𝑞 or 𝑟 is true (i.e. 𝑝 ∨ 𝑞 ∨ 𝑟 is true), and at least one among 𝑝,
𝑞 or 𝑟 is false (i.e. ¬𝑝 ∨ ¬𝑞 ∨ ¬𝑟 is true).

It is interesting to note that this is exactly the same outcome as the well-founded semantics with disjunction (see [2, Example 6]).
We will see in Section 5.3 that this close resemblance is not a coincidence. For this program, the Kripke-Kleene state coincides with
the well-founded state. It shows that the state semantics give meaning to programs which do not have (partial) stable interpretations.
Thus, this example illustrates the existence and uniqueness-properties of the well-founded state (and the Kripke-Kleene state).

Example 25. Consider the dlp  = {𝑝 ∨ 𝑞← ¬𝑠; 𝑠 ← 𝑟; 𝑟 ← 𝑠}. We calculate 𝖶𝖥() as follows (using Theorem 4):

𝑆()′(∅,{𝑝, 𝑞, 𝑠, 𝑟}) =
(
min
⊆

𝖬𝗈𝖽(



)↑, min
⊆

𝖬𝗈𝖽(
∅
)↓
)
=
(
{∅}↑, {{𝑝},{𝑞}}↓

)
𝑆()′ 2(∅,{𝑝, 𝑞, 𝑠, 𝑟}) =

((
min
⊆

𝖬𝗈𝖽(

{𝑝}
) ∪ min

⊆
𝖬𝗈𝖽(

{𝑞}
)
)
↑, min

⊆
𝖬𝗈𝖽(

∅
)↓
)

=
((

{{𝑝},{𝑞}}↑, {{𝑝},{𝑞}}↓
)

𝑆()′ 3(∅,{𝑝, 𝑞, 𝑠, 𝑟}) =
(
min
⊆

𝖬𝗈𝖽(

{𝑝}
) ∪ min

⊆
𝖬𝗈𝖽(

{𝑞}
)
)
↑,

(
min
⊆

𝖬𝗈𝖽(

{𝑝}
) ∪ min

⊆
𝖬𝗈𝖽(

{𝑞}
)
)
↓

)
=
(
{{𝑝},{𝑞}}↑, {{𝑝},{𝑞}}↓

)
and thus a fixpoint is reached after two iterations. The well-founded state is thus represented by the convex set {{𝑝}, {𝑞}}. This can
be compared to the Kripke-Kleene state 𝖪𝖪():

• ()′(∅, {𝑝, 𝑞, 𝑠, 𝑟}) =
(
∅↑, {{𝑝, 𝑠, 𝑟},{𝑞, 𝑠, 𝑟}}↓

)
.

• ()′ 2(∅, {𝑝, 𝑞, 𝑠, 𝑟}) =
(
∅↑, {{𝑝, 𝑠, 𝑟},{𝑞, 𝑠, 𝑟}}↓

)
and thus a fixpoint is reached.

The Kripke-Kleene state is thus represented by the convex set ℘(). This means that in this case, the well-founded state is signifi-

cantly more precise than the Kripke-Kleene state.

This example also illustrates that the well-founded state approximates the stable interpretations of  . Indeed, the stable interpre-

tations are {𝑝} and {𝑞}, and it holds that ({{𝑝},{𝑞}}↑, {{𝑝},{𝑞}}↓) ⪯𝐴
𝑖
({𝑝}, {𝑝}) and ({{𝑝},{𝑞}}↑, {{𝑝},{𝑞}}↓) ⪯𝐴

𝑖
({𝑞}, {𝑞}).

We conclude this section by showing that the well-founded state coincides with the well-founded fixpoint for deterministic
approximation operators for approximation operators over finite lattices, thus showing that the well-founded state is a faithful
generalization of the deterministic well-founded fixpoint:

Theorem 6. Consider an ndao  ∶ 2 → ℘()2 over a finite lattice  s.t. (𝑥, 𝑦) is a pair of singleton sets for every 𝑥, 𝑦 ∈ . Let
𝖠𝖥𝖳 be defined by 𝖠𝖥𝖳(𝑥, 𝑦) = (𝑤, 𝑧) where (𝑥, 𝑦) = ({𝑤}, {𝑧}), and let (𝑥𝖶𝖥, 𝑦𝖶𝖥) be the well-founded fixpoint of 𝖠𝖥𝖳.30 Then
𝖶𝖥() = (𝑥𝖶𝖥↑, 𝑦𝖶𝖥↓).

Proof. Since the well-founded fixpoint of 𝖠𝖥𝖳 is a fixpoint of 𝑆(), by Proposition 11 (𝑥𝖶𝖥, 𝑦𝖶𝖥) is a stable fixpoint of 𝑆(). By the
second item of Theorem 5, 𝖶𝖥() ⪯𝐴

𝑖
(𝑥𝖶𝖥, 𝑦𝖶𝖥). We now show that (𝑥𝖶𝖥↑, 𝑦𝖶𝖥↓) ⪯𝐴

𝑖
𝖶𝖥() by induction on the number of iterations

for reaching a fixpoint. For the base case notice that, again by Proposition 11, ({𝑆(𝖠𝖥𝖳
𝑙

)(⋅,⊤)}↑, {𝑆(𝖠𝖥𝖳
𝑢)(⊥, ⋅)}↓) = 𝑆()′(⊥, ⊤).

For the inductive case, suppose that for some 𝑖 ∈ℕ, (𝑥𝑖, 𝑦𝑖) corresponds to the result of applying 𝑆() 𝑖 times to (⊥, ⊤) and suppose
that ({𝑥𝑖}↑, {𝑦𝑖}↓) ⪯𝐴

𝑖
𝑆()′ 𝑖(⊥, ⊤). This means that there are some 𝑥′, 𝑦′ ∈ where 𝑥′ occurs in the first component of 𝑆()′ 𝑖(⊥, ⊤)

and 𝑦′ occurs in the second component of 𝑆()′ 𝑖(⊥, ⊤) s.t. 𝑥𝑖 ≤ 𝑥′ and 𝑦′ ≤ 𝑦𝑖, i.e. (𝑥𝑖, 𝑦𝑖) ≤𝑖 (𝑥′, 𝑦′). Since 𝑆(𝖠𝖥𝖳) is ≤𝑖-monotonic
(see [23, Proposition 20]), 𝑆(𝖠𝖥𝖳)(𝑥𝑖, 𝑦𝑖) ≤𝑖 𝑆(𝖠𝖥𝖳)(𝑥′, 𝑦′). By definition,

(𝑆()′)𝑖+1(⊥,⊤) =
(⋃

(𝑥,𝑦)∈𝑆()′ 𝑖(⊥,⊤)
𝐶(𝑙)(𝑦)↑,

⋃
(𝑥,𝑦)∈𝑆()′ 𝑖(⊥,⊤)

𝐶(𝑢)(𝑥)↓
)

=
(⋃
(𝑥,𝑦)∈𝑆()′ 𝑖(⊥,⊤)

{𝐶(𝖠𝖥𝖳
𝑙

)(𝑦)}↑,
⋃

(𝑥,𝑦)∈𝑆()′ 𝑖(⊥,⊤)
{𝐶(𝖠𝖥𝖳

𝑢)(𝑥)}↓
)

and thus (𝑆(𝖠𝖥𝖳))𝑖+1(𝑥′, 𝑦′) ⪯𝐴
𝑖
𝑆()′ 𝑖+1(⊥, ⊤). Hence, with a slight abuse of the notations, we have shown that 𝑆(𝖠𝖥𝖳)(𝑥𝑖, 𝑦𝑖) ⪯𝐴

𝑖

𝑆()′ 𝑖+1(⊥, ⊤). □

An interesting property of the well-founded state of  is that for positive logic programs, the well-founded state coincides with
the minimal models of the logic program.
28

30 Recall Definition 6 for the definition of the well-founded fixpoint of a deterministic approximation operator.

Artificial Intelligence 331 (2024) 104110J. Heyninck, O. Arieli and B. Bogaerts

Proposition 15. If  is a positive dlp, then 𝖶𝖥() = (min⊆ 𝑚𝑜𝑑()↑, min⊆ 𝑚𝑜𝑑()↓).

Proof. Notice first that, since  is positive, 
𝑦
=  for any 𝑦 ⊆ (no rule in  contains negative literals in the body, and so no rule

is deleted or transformed in the construction of 
𝑦

). By Proposition 10, this means that, for any 𝑦 ⊆ , 𝐶(𝑙

)(𝑦) =min⊆(𝑚𝑜𝑑()).

Thus, 𝑆()′(∅, ) = (min⊆ 𝑚𝑜𝑑()↑, min⊆ 𝑚𝑜𝑑()↓) and a fixpoint is reached at the first iteration of the construction of the
well-founded state. □

5.3. The relationship with well-founded semantics with disjunction

As another indication for the usefulness of our constructions, we show that the well-founded state approximates the existing well-

founded semantics for disjunctive logic programs, which is the well-founded semantics for disjunction 𝖶𝖥𝖲𝑑 by Alcântara, Damásio
and Pereira [2].

Alcântara, Damásio and Pereira [2] define the well-founded semantics for disjunction 𝖶𝖥𝖲𝑑 which bears similarities to our
well-founded semantics. We present this semantics here, adapting the notation and technicalities to our setting.

The basic idea behind the well-founded semantics with disjunction as defined by Alcântara, Damásio and Pereira [2] is the
following: a sequence of sets of lower bounds and upper bounds approximating the stable models of a disjunctive logic program is
constructed iteratively. Given a set of lower bounds and a set of upper bounds, new (more precise) lower and upper bounds can
be obtained by applying the two-valued immediate consequence operator 𝐼𝐶 to the reducts of the program obtained on the basis
of the upper bounds and lower bounds (respectively). The lower bounds are thus used to obtain new upper bounds and vice versa.
This iteration leads to more and more precise lower and upper bounds, until a fixpoint is reached. This well-founded semantics is
guaranteed to exist, be unique, and coincide with the well-founded model for normal logic programs [2].

We now develop this notion in more technical details. The operator Γ (𝑋) is defined as follows31:

Γ (𝑋) =
⋃
𝑥∈𝑋

min
⊆

(𝑚𝑜𝑑2(


𝑥
))

Instead of just applying the Γ -operator to the lower bound and closing it downwards to obtain a new upper bound, a form of closed
world reasoning is performed by Alcântara, Damásio and Pereira [2] by applying Γ to the interpretations in the lower bound not
containing any atoms not occurring in any upper bound. Formally, this is done by defining the set 𝔉(𝑌) that contains all atoms not
occurring in any upper bound 𝑦 ∈ 𝑌 , and the set 𝔗𝑌 (𝑋) that contains all the sets in 𝑋 without any atoms in 𝔉(𝑌).

Definition 23. Given 𝑋, 𝑌 ⊆ , we define:

• 𝔉(𝑌) = {𝛼 ∈ ∣ 𝛼 ∉
⋃
𝑌 }.

• 𝔗𝑌 (𝑋) = {𝑥 ∈𝑋 ∣ 𝑥 ∩𝔉(𝑌) = ∅}.

We are now ready to define the Φ-operator which is the basis of the well-founded semantics for disjunction [2], obtained by
taking as set of new lower bounds all the models of reducts of some upper bound, and as new upper bounds all the models of reducts
of some lower bound in 𝔗𝑌 (𝑋).

Definition 24. Let some disjunctive logic program  and some 𝑋, 𝑌 ⊆℘() be given. Then:

Φ (𝑋,𝑌) = (Γ (𝑌)↑, Γ (𝔗𝑌 (𝑋))↓).

The well-founded semantics for disjunction of a program  , denoted 𝖶𝖥𝖲𝑑 () is defined as the least fixpoint of Φ , obtained by
applying Φ iteratively to (∅, ).

We can show that our well-founded semantics is an approximation of the 𝖶𝖥𝖲𝑑 . It really is an approximation, since we do not
apply closed world reasoning in constructing the lower bound (but one could, as we demonstrate below).

Theorem 7. For any disjunctive logic program  , 𝖶𝖥() ⪯𝐴
𝑖
𝖶𝖥𝖲𝑑 ().

The following example (taken from [2]) shows that 𝖶𝖥𝖲𝑑 () can give rise to a strictly more precise approximation than that of
𝖶𝖥():

Example 26. Consider the logic program  = {𝑝 ∨ 𝑞←; 𝑞← ¬𝑟}. We first calculate 𝖶𝖥() as follows:

𝑆()({∅}↑,{𝑝, 𝑞, 𝑟}↓) =
(
min
⊆

(⋃
𝑥⊆{𝑝,𝑞,𝑟}

𝑚𝑜𝑑2(


𝑥
)
)
↑, min

⊆

(⋃
𝑥⊆{𝑝,𝑞,𝑟}

𝑚𝑜𝑑2(


𝑥
)
)
↓

)

29

31 Recall that the two-valued models of a positive program  are the sets 𝑥 ⊆ s.t. for every ⋁Δ ← 𝜙 ∈  , (𝑥, 𝑥)(𝜙) = 𝖳 implies 𝑥 ∩Δ ≠ ∅ (Footnote 6).

Artificial Intelligence 331 (2024) 104110J. Heyninck, O. Arieli and B. Bogaerts

=
(
{{𝑝},{𝑞}}↑, {{𝑝},{𝑞}}↓

)
𝑆2()({∅}↑,{𝑝, 𝑞, 𝑟}↓) =

(
min
⊆

(
𝑚𝑜𝑑2(



{𝑝}
) ∪𝑚𝑜𝑑2(



{𝑞}
)
)
↑, min

⊆

(⋃
𝑥⊆{𝑝,𝑞,𝑟}

𝑚𝑜𝑑2(


𝑥
)
)
↓

)
=
(
{{𝑞}}↑, {{𝑝},{𝑞}}↓

)
𝑆3()({∅}↑,{𝑝, 𝑞, 𝑟}↓) =

(
min
⊆

(
𝑚𝑜𝑑2(



{𝑞}
) ∪𝑚𝑜𝑑2(



{𝑞}
)
)
↑, min

⊆

(⋃
𝑥⊆{𝑝,𝑞,𝑟}

𝑚𝑜𝑑2(


𝑥
)
)
↓

)
=
(
{{𝑞}}↑, {{𝑝},{𝑞}}↓

)
and so a fixpoint is reached after the second iteration. The well-founded state for this program thus corresponds to the convex set
{{𝑞}, {𝑝}, {𝑞}}.

It can be observed that 
𝑥
= {𝑝 ∨ 𝑞←} for any {𝑟} ⊆ 𝑥 ⊆ . In particular, as there are some 𝑥 ∈ {𝑝},{𝑞}↑ s.t. 𝑟 ∈ 𝑥, this explains

why {𝑝} is part of the upper bound of 𝖶𝖥(). It is exactly this kind of behaviour that the filtering out lower bounds that have
elements not occurring in any upper bound in 𝔗𝑌 (𝑋) tries to avoid. Indeed, 𝖶𝖥𝖲𝑑 () is built up as follows:

Φ ({∅},{{𝑝, 𝑞, 𝑟}}) = 𝑆()({∅}↑,{𝑝, 𝑞, 𝑟}↓)

= ({{𝑝},{𝑞}}↑, {{𝑝},{𝑞}}↓)

Φ2

({∅},{{𝑝, 𝑞, 𝑟}}) =

(
min
⊆

(
𝑚𝑜𝑑2(



{𝑝}
) ∪𝑚𝑜𝑑2(



{𝑞}
)
)
↑, min

⊆

(
𝑚𝑜𝑑2(



{𝑝}
) ∪𝑚𝑜𝑑2(



{𝑞}
) ∪𝑚𝑜𝑑2(



{𝑞, 𝑟}
)
)
↓

)
=
(
{{𝑝}}↑, {{𝑝}}↓

)
Φ3


({∅},{{𝑝, 𝑞, 𝑟}}) =

(
min
⊆

(
𝑚𝑜𝑑2(



{𝑝}
) ∪𝑚𝑜𝑑2(



{𝑞}
)
)
↑, min

⊆

(
𝑚𝑜𝑑2(



{𝑝}
) ∪𝑚𝑜𝑑2(



{𝑞}
) ∪𝑚𝑜𝑑2(



{𝑞, 𝑟}
)
)
↓

)
=
(
{{𝑝}}↑, {{𝑝}}↓

)
The upper bound of Φ2


({∅}, {{𝑝, 𝑞, 𝑟}}) can be seen to hold in view of 𝔗{{𝑝},{𝑞}}↓({{𝑝},{𝑞}}↑) = {{𝑝}, {𝑞}, {𝑝, 𝑞}}. After two iterations,

a fixpoint is reached, and thus we see that 𝖶𝖥𝖲𝑑 () corresponds to the convex set {{𝑝}}, which is a more precise approximation
than 𝖶𝖥(). Formally:

𝖶𝖥() = ({{𝑞}}↑, {{𝑝},{𝑞}}↓) ≺𝐴
𝑖 𝖶𝖥𝖲𝑑 () = ({{𝑝}}↑, {{𝑝}}↓).

Indeed, it is not so hard to generalize the 𝔗𝑌 (𝑋)-construction algebraically. We start by observing that the formulation by
Alcântara, Damásio and Pereira [2] can be significantly simplified. Firstly, we observe that 𝔉(𝑌) = ⧵

⋃
𝑌 . 𝔗𝑌 (𝑋) can then be

simplified as 𝔗𝑌 (𝑋) = {𝑥 ∈𝑋 ∣ 𝑥 ⊆
⋃
𝑌 }. This is generalized algebraically to 𝔗𝑌 (𝑋) = {𝑥 ∈𝑋 ∣ 𝑥 ⊆

⨆
𝑌 }. Notice that this requires

the assumption that the lattice in question is complete, as
⨆
𝑌 is not guaranteed to exist otherwise.

On the basis of this, we can define ′
𝖼𝗐(𝑋, 𝑌) =′

𝑙
(𝔗𝑌 (𝑋), 𝑌), and show the following result:

Proposition 16. Let ′ be an ndso approximating an operator 𝑂 over a complete lattice ⟨, ≤⟩. Then ′
𝖼𝗐 is an ndso approximating 𝑂 such

that for any 𝐗 ∈℘↑() ×℘↓(), ′(𝐗) ⪯𝐴
𝑖
′
𝖼𝗐(𝐗).

Proof. We first note that †: (𝑋, 𝑌) ⪯𝐴
𝑖
(𝔗𝑌 (𝑋), 𝑌). This is immediate from the fact that 𝔗𝑌 (𝑋) ⊆𝑋.

⪯𝐴
𝑖

-monotonicity follows from †.

We now show that ′
𝖼𝗐 approximates 𝑂. Indeed, as 𝔗{𝑧}({𝑧}) = {𝑧}, and ′ approximates 𝑂, it holds that ′

𝖼𝗐({𝑧}, {𝑧}) =
′({𝑧}, {𝑧}) = (𝑂(𝑧)↑, 𝑂(𝑧)↓).

We now show that for any (𝑋, 𝑌) ∈ ℘↑() × ℘↓(), ′(𝑋, 𝑌) ⪯𝐴
𝑖
′
𝖼𝗐(𝑋, 𝑌). This is immediate from the fact that ′ is ⪯𝐴

𝑖
-

monotonic and from †, as (𝑋, 𝑌) ⪯𝐴
𝑖
(𝔗𝑌 (𝑋), 𝑌) implies ′(𝑋, 𝑌) ⪯𝐴

𝑖
′(𝔗𝑌 (𝑋), 𝑌) =′

𝖼𝗐(𝑋, 𝑌). □

The well-founded state taking into account the closed world assumption can now be defined as the ⪯𝐴
𝑖

-least fixpoint of (𝑆())′𝖼𝗐,
and is denoted by 𝖶𝖥𝖲𝖼𝗐(). Applying this construction to  allows to represent the well-founded semantics for disjunction by
Alcântara, Damásio and Pereira [2]:

Proposition 17. For any disjunctive logic program  , 𝖶𝖥𝖼𝗐() =𝖶𝖥𝖲𝑑 ().

Proof. This follows immediately from the fact that (𝑆())′𝖼𝗐 =Φ , which is straightforward from the definition of the closed world
assumption (Indeed, the construction is an algebraic generalization of that by Alcântara, Damásio and Pereira [2]). □

An interesting line of research would be to conduct a more systematic investigation of ways of adapting or even constructing
30

ndsos. This, however, is outside the scope of this paper.

Artificial Intelligence 331 (2024) 104110J. Heyninck, O. Arieli and B. Bogaerts

Summary We summarize the results in Section 5. We first defined and studied stable operators (Section 5.1), establishing which
properties carry over (under certain conditions) from the deterministic to the non-deterministic setting, and showing the usefulness
of stable fixpoints in disjunctive logic programming. Then (Section 5.2), we introduced and studied the well-founded state, proving
its existence, uniqueness, and showing that it is more precise than the Kripke-Kleene state and that it approximates any fixpoint of
the approximated operator. Finally (Section 5.3), we have shown that the well-founded state is useful for knowledge representation,
as it is closely related to the well-founded semantics for disjunction [2].

6. Related work

The starting point of this work is the approximation fixpoint theory (for deterministic operator), as introduced by Denecker, Marek
and Truszczyński [23], followed by a series of papers [3,9,12,18,21,22,24,37,54]. As indicated previously (see, e.g. Remark 5), this
work generalizes AFT in the sense that all the operators and fixpoints defined in this paper coincide with the respective counterparts
for deterministic operators.

This paper (extending and improving our paper [38]) is also inspired by the work of Pelov and Truszczyński [48], which extends
approximation fixpoint theory to dealing with non-deterministic operators. Their work provides a representation theorem, in terms
of non-deterministic AFT, of specific two-valued semantics for disjunctive logic programs (namely, the two-valued stable semantics
and two-valued weakly supported and supported models). We have compared our work to that of Pelov and Truszczyński [48] in
Section 1.

To the best of our knowledge, the only setting with a similar unifying potential that has been applied to non-deterministic or
disjunctive reasoning is equilibrium logic [46]. The similarities between equilibrium logic and AFT have been noted before [21], where
it was indicated that equilibrium semantics are defined for a larger class of logic programs than those that are represented by AFT,
a limitation of AFT which we have overcome in this paper. Furthermore, defining three-valued stable and well-founded semantics is
not possible in standard equilibrium logic, but requires an extension known as partial equilibrium logic [16,17], which can be seen as
a six-valued semantics. In contrast, the well-founded semantics is defined in AFT using the same operator used to define the stable
semantics. That being said, in future work we plan to compare the well-founded semantics for DLP obtained on the basis of partial
equilibrium logic and the well-founded semantics obtained in this work in more detail.

7. Summary, conclusion, and future work

This paper contains a full generalization of approximation fixpoint theory to non-deterministic operators. We introduced deter-

ministic operators, their non-deterministic approximation operators, and the various fixpoint semantics, namely, the Kripke-Kleene
interpretation and state semantics, the stable interpretation semantics and the well-founded state semantics. The properties of these
semantics and their representation of disjunctive logic programming semantics are summarized in Table 4. The relation between
these fixpoint semantics is summarized in Fig. 3.

Table 4

Approximation operators and their properties.

Name Definition Exist Unique ≤𝑡-minimality Result DLP-representation

KK interpetation lfp() × × × weakly supported (Theorem 1)

KK state lfp(′) ✓ ✓ × Theorem 2

Stable interpetation fp(𝑆()) × × ✓ Proposition 14 stable models (Theorem 4)

Well-founded state lfp(𝑆()′) ✓ ✓ × Theorem 5 WF sem. with disjunct. (Theorem 7)

Min. mod. of positive dlps (Proposition 15)

This work also allows to generalize the results in [3,48], which provide further approximation operators for disjunctive logic
programs with aggregates or external atoms, to additional semantics of disjunctive logic programs, thus answering an open question
in these works.

The advantage of studying non-deterministic operators is thus at least twofold:

1. allowing to define a family of semantics for non-monotonic reasoning with disjunctive information,

2. clarifying similarities and differences between semantics stemming from the use of different operators.

The introduction of disjunctive information in AFT points to a wealth of further research, such as defining three-valued and
well-founded semantics for various disjunctive nonmonotonic formalisms and studying on the basis of which operators various well-

founded semantics for DLP can be represented in our framework. For example, our framework has been used for characterising
existing semantics and defining new semantics for disjunctive logic programs with aggregates in the body [39] and logic programs
with choice constructs in the head [36]. This framework can also potentially be used for defining three-valued and well-founded
semantics for propositional theories [57], logic programs with forks [1], and disjunctive default logics [14,33].

Non-deterministic approximation fixpoint theory has already been applied in order to obtain a generalization of abstract dialecti-
31

cal frameworks (ADFs) to conditional abstract dialectical frameworks. In a nutshell, abstract dialectical frameworks consist of sets of

Artificial Intelligence 331 (2024) 104110J. Heyninck, O. Arieli and B. Bogaerts

KK-state

lfp⪯𝐴
𝑖
(′)

Well-founded state

lfp⪯𝐴
𝑖
(𝑆()′)

Fixpoint of ndao

(𝑥, 𝑦) ∈(𝑥, 𝑦)

Total Fixpoint of ndao

(𝑥,𝑥) ∈(𝑥,𝑥)

Stable interpretation

(𝑥, 𝑦) ∈ 𝑆()(𝑥, 𝑦)

Total Stable interpretation

(𝑥,𝑥) ∈ 𝑆()(𝑥,𝑥)

Fixpoint of operator

𝑥 ∈𝑂(𝑥)

Fig. 3. Relations between various fixpoints introduced in this paper. The arrows have the following meaning: full arrows mean that every instance of the first block
(i.e., at the outgoing end of the arrow) is an instance of the second block (at the ingoing end of the arrow). Dotted arrows mean that all instances of the first block are
approximated by the second block. Dashed arrows mean that every instance of the first block is more precise than every instance of the second block. The relations
are shown in Theorem 3 and Theorem 5.

arguments or atoms, in which every atom 𝑝 is assigned a Boolean acceptance condition 𝐶𝑝, which codifies under which conditions
an atom can be accepted. Heyninck and co-authors [40] generalized ADFs to allow for acceptance conditions to be assigned to any,
i.e. possibly non-atomic, formulas. This necessitated the generalization of the so-called Γ-operator to a non-deterministic operator,
which was done in the framework of non-deterministic approximation fixpoint theory as presented here.

Our framework lays the ground for the generalization to a non-deterministic setting of various interesting concepts introduced
(or adapted) to AFT, such as ultimate approximations [22] (already generalized to non-deterministic AFT by Heyninck and Bo-

gaerts [39]), grounded fixpoints [12], strong equivalence [56], stratification [60] and argumentative representations [37]. Extensions
to DLP with negations in the rules’ heads and corresponding 4-valued semantics [50] can also be considered.

Another issue that is worth some consideration is a study of the complexity of computing different types of fixpoints of non-

deterministic approximation operators, in the style of Strass and Wallner [54].

CRediT authorship contribution statement

Jesse Heyninck: Conceptualization, Funding acquisition, Investigation, Methodology, Writing – original draft, Writing – review
& editing. Ofer Arieli: Funding acquisition, Investigation, Methodology, Writing – original draft, Writing – review & editing. Bart
Bogaerts: Funding acquisition, Investigation, Methodology, Writing – original draft, Writing – review & editing.

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing
interests: Jesse Heyninck reports financial support was provided by German National Science Foundation (DFG-project KE-1413/11-

1). Ofer Arieli reports financial support was provided by Israel Science Foundation (Grant 550/19). Jesse Heyninck reports financial
support was provided by Fonds Wetenschappelijk Onderzoek Vlaanderen (Grant G0B2221N). Bart Bogaerts reports was provided by
Flemish Government (FLAIR).

Data availability

No data was used for the research described in the article.

Acknowledgements

We thank the reviewers of the conference version of this paper [38], as well as of this paper, for their diligent reviews and
helpful remarks. The first author was partially supported by the German National Science Foundation (DFG-project KE-1413/11-1).
He worked on this paper while affiliated with the Vrije Universiteit Brussel, the Technische Universität Dortmund, and CAIR South-

Africa, in addition to his current affiliation. The second author is supported by the Israel Science Foundation (Grant 550/19). The first
and last author are supported by the Flemish Government in the “Onderzoeksprogramma Artificiële Intelligentie (AI) Vlaanderen”
programme (FLAIR), and by the FWO Flemish Government project G0B2221N.

Appendix A. Proofs of results on disjunctive logic programming
32

Proposition 2.  is a symmetric ndao that approximates 𝐼𝐶 .

Artificial Intelligence 331 (2024) 104110J. Heyninck, O. Arieli and B. Bogaerts

Proof. It is clear that for any 𝑥 ∈, 𝑙

(𝑥, 𝑥) =𝑢


(𝑥, 𝑥) = HD (𝑥, 𝑥) (as for any 𝜙, (𝑥, 𝑥)(𝜙) ∈ {𝖳, 𝖥}). Thus,  approximates

𝐼𝐶 and is exact. We now show that it is ⪯𝐴
𝑖

-monotonic. For this, consider some (𝑥1, 𝑦1) ≤𝑖 (𝑥2, 𝑦2). We show by induction on 𝜙
that if (𝑥1, 𝑦1)(𝜙) ≥𝑡 𝖢 then (𝑥2, 𝑦2)(𝜙) ≥𝑡 𝖢. The base case is clear as 𝜙 ∈ 𝑥1 and 𝑥1 ⊆ 𝑥2 implies 𝜙 ∈ 𝑥2. For the inductive case,
notice that the cases for 𝜙 = 𝜙1 ∧𝜙2 and 𝜙 = 𝜙1 ∨𝜙2 follow immediately from the inductive hypothesis. Suppose now that 𝜙 = ¬𝜙1.
(𝑥1, 𝑦1)(¬𝜙1) ≥𝑡 𝖢 means that 𝜙1 ∉ 𝑦1. Since 𝑦2 ⊆ 𝑦1, also 𝜙1 ∉ 𝑦2.

We now show ⪯𝐴
𝑖

-monotonicity, which follows immediately from 𝑙

(𝑥1, 𝑦1) ⊆ 𝑙


(𝑥2, 𝑦2). To see the latter, suppose that

Δ ∈𝑙

(𝑥1, 𝑦1), i.e. for some

⋁
Δ ← 𝜙, (𝑥1, 𝑦1)(𝜙) ≥𝑡 𝖢. Then (𝑥2, 𝑦2)(𝜙) ≥𝑡 𝖢 and thus Δ ∈𝑙


(𝑥2, 𝑦2).

We finally show that  is symmetric. For this, we show the following lemma:

Lemma 13. For any 𝑥, 𝑦 ⊆ :

1. (𝑥, 𝑦)(𝜙) = 𝖳 iff (𝑦, 𝑥)(𝜙) = 𝖳,

2. (𝑥, 𝑦)(𝜙) = 𝖥 iff (𝑦, 𝑥)(𝜙) = 𝖥,

3. (𝑥, 𝑦)(𝜙) = 𝖢 iff (𝑦, 𝑥)(𝜙) = 𝖴.

Proof. We show the third item, the first two items are shown similarly. We show this by induction on the structure of 𝜙. For the base
case, let 𝜙 ∈ . Then (𝑥, 𝑦)(𝜙) = 𝖢 iff 𝜙 ∈ 𝑥 ⧵ 𝑦, and, since (𝑦, 𝑥)(𝜙) = 𝖴 iff 𝜙 ∈ 𝑥 ⧵ 𝑦, the base case is proven. For the inductive case,
notice that the cases where 𝜙 = 𝜙1 ∨𝜙2 or 𝜙 = 𝜙1 ∧𝜙2 follow immediately from the inductive hypothesis. Suppose that 𝜙 = ¬𝜙1. Since
(𝑥, 𝑦)(¬𝜙1) = 𝖢 iff (𝑥, 𝑦)(𝜙1) = 𝖢, and (𝑦, 𝑥)(¬𝜙1) = 𝖴 iff (𝑦, 𝑥)(𝜙1) = 𝖴, we obtain by the induction hypothesis that (𝑥, 𝑦)(¬𝜙1) = 𝖢 iff
(𝑦, 𝑥)(¬𝜙1) = 𝖴. ■

From Lemma 13 it follows that 𝑙

(𝑥, 𝑦) =𝑢


(𝑦, 𝑥) and thus 𝑙


(𝑥, 𝑦) = 𝑢


(𝑦, 𝑥). □

Proposition 2.  is a symmetric ndao that approximates 𝐼𝐶 .

Proof. It is clear that 𝖣𝖬𝖳


approximates 𝐼𝐶 , as 
𝖣𝖬𝖳,𝑙


(𝑥, 𝑥) =
𝖣𝖬𝖳,𝑢


(𝑥, 𝑥) = 𝐼𝐶𝖣𝖬𝖳


(𝑥, 𝑥) for any 𝑥 ⊆ . We now show
it is ⪯𝐴

𝑖
-monotonic. Consider some 𝑥1 ⊆ 𝑥2 ⊆ 𝑦2 ⊆ 𝑦1. We show that 

𝖣𝖬𝖳,𝑙


(𝑥1, 𝑦1) ⊆ 
𝖣𝖬𝖳,𝑙


(𝑥2, 𝑦2) and 
𝖣𝖬𝖳,𝑢


(𝑥2, 𝑦2) ⊆


𝖣𝖬𝖳,𝑢


(𝑥1, 𝑦1), which immediately implies that 
𝖣𝖬𝖳,𝑙


(𝑥1, 𝑦1) ⪯𝑆
𝐿


𝖣𝖬𝖳,𝑙


(𝑥2, 𝑦2) and 
𝖣𝖬𝖳,𝑢


(𝑥2, 𝑦2) ⪯𝐻
𝐿


𝖣𝖬𝖳,𝑢


(𝑥1, 𝑦1). To
see that 

𝖣𝖬𝖳,𝑙


(𝑥1, 𝑦1) ⊆
𝖣𝖬𝖳,𝑙


(𝑥2, 𝑦2), consider some Δ ∈
𝖣𝖬𝖳,𝑙


(𝑥1, 𝑦1). Then for every 𝑧 ∈ [𝑥1, 𝑦2], there is some
⋁

Δ ← 𝜙

s.t. (𝑧, 𝑧)(𝜙) = 𝖳. Since [𝑥2, 𝑦2] ⊆ [𝑥1, 𝑦1], also Δ ∈
𝖣𝖬𝖳,𝑙


(𝑥2, 𝑦2). The other claim is analogous. □

Theorem 1. Given a dlp  and a consistent interpretation (𝑥, 𝑦) ∈ (℘())2, it holds that (𝑥, 𝑦) is a weakly supported model of  iff
(𝑥, 𝑦) ∈  (𝑥, 𝑦).

Proof. [⇒] Suppose that (𝑥, 𝑦) is weakly supported. We first show that for every Δ ∈ 𝑙

(𝑥, 𝑦), Δ ∩ 𝑥 ≠ ∅. Indeed, let Δ ∈

𝑙

(𝑥, 𝑦), i.e.

⋁
Δ ← 𝜙 ∈  and (𝑥, 𝑦)(𝜙) = 𝖳 (notice that since (𝑥, 𝑦) is consistent, (𝑥, 𝑦)(𝜙) ≠ 𝖢). Since (𝑥, 𝑦) is a model of  ,

(𝑥, 𝑦)(
⋁
Δ) ≥𝑡 𝖳, and so Δ ∩ 𝑥 ≠ ∅.

We now show that 𝑦 ∩𝑢

(𝑥, 𝑦) ≠ ∅. Suppose for this that (𝑦, 𝑥)(𝜙) ∈ {𝖢, 𝖳} for some

⋁
Δ ← 𝜙 ∈  . We first show the following

lemma:

Lemma 14. For any formula 𝜙 and any 𝑥, 𝑦 ⊆ , (𝑦, 𝑥)(𝜙) ∈ {𝖳, 𝖢} implies that (𝑥, 𝑦)(𝜙) ∈ {𝖳, 𝖴} and (𝑦, 𝑥)(𝜙) ∈ {𝖥, 𝖢} implies that
(𝑥, 𝑦)(𝜙) ∈ {𝖥, 𝖴}.

Proof. We show this by induction on the structure of 𝜙. For the base case, suppose that 𝜙 ∈ . If (𝑦, 𝑥)(𝜙) ∈ {𝖳, 𝖢}, then 𝜙 ∈ 𝑦

and thus (𝑥, 𝑦)(𝜙) ∈ {𝖳, 𝖴}. Likewise, (𝑦, 𝑥)(𝜙) ∈ {𝖥, 𝖢} means that 𝜙 ∉ 𝑥 and thus (𝑥, 𝑦)(𝜙) ∈ {𝖥, 𝖴}. For the inductive case, suppose
that the claim holds for 𝜙 and 𝜓 . If (𝑦, 𝑥)(¬𝜙) ∈ {𝖳, 𝖢}, then (𝑦, 𝑥)(𝜙) ∈ {𝖥, 𝖢}, and with the inductive hypothesis, (𝑥, 𝑦)(𝜙) ∈ {𝖥, 𝖴},
which implies that (𝑦, 𝑥)(¬𝜙) ∈ {𝖳, 𝖴}. The other cases are similar. ■

By Lemma 14 and since Δ ∈ 𝑢

(𝑥, 𝑦) implies there is some

⋁
Δ ← 𝜙 ∈  with (𝑦, 𝑥)(𝜙) ∈ {𝖳, 𝖢}, it follows that for every

Δ ∈𝑢

(𝑥, 𝑦), Δ ∩ 𝑦 ≠ ∅.

It remains to be shown that 𝑥 ⊆
⋃

𝑙

(𝑥, 𝑦), and 𝑦 ⊆

⋃
𝑙


(𝑦, 𝑥) =

⋃
𝑢


(𝑥, 𝑦), which is immediate from the fact that since

(𝑥, 𝑦) is weakly supported, for every atom that is true (respectively undecided) we can find a rule whose body is true (respectively
undecided) that has this atom in the head.

[⇐] Suppose that (𝑥, 𝑦) ∈  (𝑥, 𝑦). We first show that (𝑥, 𝑦) is a model of  . Indeed, suppose that for
⋁
Δ ← 𝜙 ∈  , (𝑥, 𝑦)(𝜙) = 𝖳.

Then Δ ∈𝑙

(𝑥, 𝑦) and thus (since (𝑥, 𝑦) ∈  (𝑥, 𝑦)), Δ ∩ 𝑥 ≠ ∅, i.e., (𝑥, 𝑦)(

⋁
Δ) = 𝖳. The case for (𝑥, 𝑦)(𝜙) = 𝖴 is similar and the

case for (𝑥, 𝑦)(𝜙) = 𝖥 is trivial. We now show that (𝑥, 𝑦) is weakly supported. As 𝑥 ∈ 𝑙

(𝑥, 𝑦), we know that 𝑝 ∈

⋃
𝑙


(𝑥, 𝑦), which
33

implies that there is a
⋁
Δ ← 𝜙 ∈  s.t. (𝑥, 𝑦)(𝜙) = 𝖳. The proof for 𝑝 ∈ 𝑦 is similar. □

Artificial Intelligence 331 (2024) 104110J. Heyninck, O. Arieli and B. Bogaerts

Proposition 10. Consider a dlp  and some 𝑦 ⊆ . Then 𝐶()(𝑦) =min⊆(𝑚𝑜𝑑2(


𝑦
)).

Proof. We first show that 𝑥 ∈ 𝑙

(𝑥, 𝑦) implies 𝑥 ∈𝑚𝑜𝑑2(



𝑦
). Indeed, suppose that 𝑥 ∈ 𝑙


(𝑥, 𝑦) and consider some

⋁
Δ ←

⋀𝑛
𝑖=1 𝛼𝑖∧⋀𝑚

𝑗=1 ¬𝛽𝑗 . If 𝛽𝑗 ∈ 𝑦 for some 𝑗 = 1, … , 𝑚, then (𝑥, 𝑦)(¬𝛽𝑗) ∈ {𝖴, 𝖥} and thus we can ignore this rule. Suppose then that 𝛽𝑗 ∉ 𝑦 for
𝑗 = 1, … , 𝑚. Suppose now that (𝑥, 𝑦)(𝛼𝑖) ∈ {𝖳, 𝖢} for 𝑖 = 1, … , 𝑛, i.e., 𝛼𝑖 ∈ 𝑥 for 𝑖 = 1, … , 𝑛. Then Δ ∈ 𝑙


(𝑥, 𝑦) and thus, since

𝑥 ∈ 𝑙

(𝑥, 𝑦), 𝑥 ∩Δ ≠ ∅.

We now show that 𝑥 ∈ 𝑚𝑜𝑑2(


𝑦
) implies that 𝑥 ∈ 𝑙


(𝑥, 𝑦). Indeed, consider some rule of the form

⋁
Δ ←

⋀𝑛
𝑖=1 𝛼𝑖 ∈



𝑦
, i.e.

there is some
⋁

Δ ←
⋀𝑛

𝑖=1 𝛼𝑖 ∧
⋀𝑚

𝑗=1 ¬𝛽𝑗 ∈  s.t. 𝛽𝑗 ∉ 𝑦 for 𝑗 = 1, … , 𝑚. If 𝛼𝑖 ∉ 𝑥 for some 𝑖 = 1, … , 𝑛 then we can safely ignore the
rule. Suppose thus that 𝛼𝑖 ∈ 𝑥 for some 𝑖 = 1, … , 𝑛. Then (𝑥, 𝑦)(𝛼𝑖) ∈ {𝖳, 𝖢} for 𝑖 = 1, … , 𝑛 and (𝑥, 𝑦)(𝛽𝑗) ∈ {𝖳, 𝖢} for 𝑗 = 1, … , 𝑚 and
therefore, as 𝑥 ∈𝑚𝑜𝑑2(



𝑦
), 𝑥 ∩Δ ≠ ∅. This means we have shown that for every Δ ∈𝑙


(𝑥, 𝑦), Δ ∩ 𝑥 ≠ ∅. Thus, 𝑥 ∈ 𝑙


(𝑥, 𝑦).

We now show that 𝑥 ∈ lfp(𝑙

(⋅, 𝑦)) implies 𝑥 ∈ min⊆(𝑚𝑜𝑑2(



𝑦
)). Indeed, suppose 𝑥 ∈ lfp(𝑙


(⋅, 𝑦)). Since this means that

𝑥 ∈ 𝑙

(𝑥, 𝑦), with the first item, 𝑥 ∈ 𝑚𝑜𝑑2(



𝑦
). Suppose towards a contradiction there is some 𝑥′ ⊂ 𝑥 s.t. 𝑥′ ∈ 𝑚𝑜𝑑2(



𝑦
). Then with

the second item, 𝑥′ ∈ 𝑙

(𝑥′, 𝑦), contradicting 𝑥 ∈ lfp(𝑙


(⋅, 𝑦)).

The proof that 𝑥 ∈min⊆(𝑚𝑜𝑑2(


𝑦
)) implies 𝑥 ∈ lfp(𝑙


(⋅, 𝑦)) is analogous. □

Proposition 12. For any dlp  and any 𝑦 ⊆ ,  (⋅, 𝑦) is downward closed.

Proof. Let {𝑥𝜖}𝜖≺𝛼 be a descending chain of sets of atoms of post-fixpoints of 𝑙

(⋅, 𝑦) for some 𝑦 ⊆ , and let 𝑥 =

⋂
{𝑥𝜖}𝜖≺𝛼 . We

show that  (𝑥, 𝑦) ⪯𝑆
𝐿
{𝑥}. If the chain is finite, this is trivial. Suppose therefore that {𝑥𝜖}𝜖≺𝛼 is infinite.

We first show the following lemma:

Lemma 15. (𝑥, 𝑦)(𝜙) ∈ {𝖳, 𝖢} implies (𝑥𝜖, 𝑦)(𝜙) ∈ {𝖳, 𝖢} for every 𝜖 ≺ 𝛼, and (𝑥, 𝑦)(𝜙) ∈ {𝖥, 𝖢} implies (𝑥𝜖, 𝑦)(𝜙) ∈ {𝖥, 𝖢} for every
𝜖 ≺ 𝛼.

Proof. By induction on the structure of 𝜙. Base case: suppose that 𝜙 = 𝑝 ∈  . If (𝑥, 𝑦)(𝑝) ∈ {𝖳, 𝖢} then 𝑝 ∈ 𝑥 and so 𝑝 ∈ 𝑥𝜖 for
every 𝜖 ≺ 𝛼, thus (𝑥𝜖, 𝑦)(𝑝) ∈ {𝖳, 𝖢} as well. If (𝑥, 𝑦)(𝑝) ∈ {𝖥, 𝖢} then 𝑝 ∉ 𝑦, and so (𝑥𝜖, 𝑦)(𝑝) ∈ {𝖥, 𝖢} as well. Inductive case: the cases
where 𝜙 = 𝑝1 ∧ 𝑝2 and 𝜙 = 𝑝1 ∨ 𝑝2 are straightforward. Suppose now that 𝜙 = ¬𝑝 and (𝑥, 𝑦)(𝜙) ∈ {𝖳, 𝖢}. Thus, (𝑥, 𝑦)(𝑝) ∈ {𝖥, 𝖢} and
by the inductive hypothesis, (𝑥𝜖, 𝑦)(𝑝) ∈ {𝖥, 𝖢} for every 𝜖 < 𝛼, which implies that (𝑥𝜖, 𝑦)(¬𝑝) ∈ {𝖳, 𝖢} for every 𝜖 ≺ 𝛼. The proof of
the other case is similar. ■

Back to the proof of the proposition. We first show that 𝑥 ∩ Δ ≠ ∅ for every
⋁

Δ ← 𝜙 ∈  s.t. (𝑥, 𝑦)(𝜙) ∈ {𝖳, 𝖢}. Indeed, consider
some

⋁
Δ ← 𝜙 ∈  and (𝑥, 𝑦)(𝜙) ∈ {𝖳, 𝖢}. By the lemma above, (𝑥𝜖, 𝑦)(𝜙) ∈ {𝖳, 𝖢} for every 𝜖 ≺ 𝛼. Thus, for every 𝜖 ≺ 𝛼, 𝑥𝜖 ∩Δ ≠ ∅.

Since {𝑥𝜖}𝜖≺𝛼 is an infinite descending chain and Δ is finite, there is a 𝛿 ∈ Δ s.t. 𝛿 is part of an infinite number of sets in {𝑥𝜖}𝜖≺𝛼 .
Since {𝑥𝜖}𝜖≺𝛼 is a ⊆-descending chain, 𝛿 ∈ 𝑥𝜖 for every 𝜖 ≺ 𝛼, and thus 𝛿 ∈ 𝑥.

We can now show that  (𝑥, 𝑦) ⪯𝑆
𝐿
{𝑥}. Indeed, since 𝑥 ∩ Δ ≠ ∅ for every

⋁
Δ ← 𝜙 ∈  , 𝑧 = 𝑥 ∩

⋃
 (𝑥, 𝑦) ∈  (𝑥, 𝑦) and

thus we have found our interpretation 𝑧 ∈  (𝑥, 𝑦) s.t. 𝑧 ⊆ 𝑥. □

Theorem 4. Consider a normal disjunctive logic program  and a consistent interpretation (𝑥, 𝑦) ∈℘() ×℘(). Then (𝑥, 𝑦) is a
stable model of  iff (𝑥, 𝑦) ∈ 𝑆()(𝑥, 𝑦).

Proof. [⇒] Suppose that (𝑥, 𝑦) is a stable model of  . We show that 𝑥 ∈ 𝐶(𝑙

)(𝑦). (The proof that 𝑦 ∈ 𝐶(𝑙


)(𝑥) (thus 𝑦 ∈

𝐶(𝑢

)(𝑥), since  is symmetric) is analogous.) We first show that 𝑥 ∈ 𝑙


(𝑥, 𝑦). Indeed, this immediately follows from the fact

that any stable interpretation is weakly supported and that any weakly supported model is a fixpoint of  (Theorem 1). It remains
to show ⊆-minimality of 𝑥 among the fixpoints of 𝑙


(⋅, 𝑦) and of 𝑦 among the fixpoints of 𝑢


(𝑥, ⋅). Suppose towards a contradiction

that there is some 𝑥′ ⊂ 𝑥 such that 𝑥′ ∈ 𝑙

(𝑥′, 𝑦). We show that (𝑥′, 𝑦) ∈ 𝑚𝑜𝑑(

(𝑥,𝑦)), which contradicts (𝑥, 𝑦) ∈ min≤𝑡 (𝑚𝑜𝑑(


(𝑥,𝑦)))

(the latter follows from the assumption that (𝑥, 𝑦) is stable). Indeed, let
⋁
Δ ←

⋀
Θ ∧

⋀𝑛
𝑖=1 ¬𝛽𝑖 ∈



(𝑥,𝑦) . We consider three cases:

• (𝑥, 𝑦)(¬𝛽𝑖) = 𝖳 for every 1 ≤ 𝑖 ≤ 𝑛. This means that
⋁
Δ ←

⋀
Θ ∧𝖳 ∈ 

(𝑥,𝑦) . Notice that for any 𝛼 ∈ , (𝑥′, 𝑦)(𝛼) ≤𝑡 (𝑥, 𝑦)(𝛼) (since
𝑥′ ⊆ 𝑥). Now,

– If (𝑥′, 𝑦)(
⋀

Θ) = 𝖥, (𝑥′, 𝑦)(
⋁
Δ ←

⋀
Θ ∧ 𝖳) is trivially satisfied.

– If (𝑥′, 𝑦)(
⋀

Θ) = 𝖴, (𝑥′, 𝑦)(
⋀
Θ) ≤𝑡 (𝑥, 𝑦)(

⋀
Θ) ≤𝑡 (𝑥, 𝑦)(

⋁
Δ) implies (𝑥, 𝑦)(

⋀
Θ) ∈ {𝖳, 𝖴} and thus, since (𝑥, 𝑦) is a stable model

of 

(𝑥,𝑦) , (𝑥, 𝑦)(
⋁
Δ) ∈ {𝖳, 𝖴}, i.e. Δ ∩ 𝑦 ≠ ∅. Thus, (𝑥′, 𝑦)(

⋁
Δ) ∈ {𝖳, 𝖴}.

– If (𝑥′, 𝑦)(
⋀
Θ) = 𝖳, then Δ ∈𝑙


(𝑥′, 𝑦) (since 𝑥′ ∈  (𝑥′, 𝑦)), and so (since (𝑥′, 𝑦) ∈ 𝖼𝗈𝗇𝗌


(𝑥′, 𝑦)), 𝑥′ ∩ Δ ≠ ∅.

• (𝑥, 𝑦)(¬𝛽𝑖) ∈ {𝖳, 𝖴} for every 1 ≤ 𝑖 ≤ 𝑛, and (𝑥, 𝑦)(¬𝛽𝑖) = 𝖴 for some 1 ≤ 𝑖 ≤ 𝑛. Then
⋁
Δ ←

⋀
Θ ∧ 𝖴 ∈ 

(𝑥,𝑦) . It can be shown that
34

(𝑥′, 𝑦) satisfies
⋁
Δ ←

⋀
Θ ∧𝖴 just like the previous case.

Artificial Intelligence 331 (2024) 104110J. Heyninck, O. Arieli and B. Bogaerts

• (𝑥, 𝑦)(¬𝛽𝑖) = 𝖥 for some 1 ≤ 𝑖 ≤ 𝑛: trivial.

Altogether, we have shown that (𝑥′, 𝑦) satisfies any
⋁

Δ ←
⋀

Θ ∧
⋀𝑛

𝑖=1 ¬𝛽 ∈ 

(𝑥,𝑦) , contradicting the assumption that (𝑥, 𝑦) ∈

min≤𝑡 (𝑚𝑜𝑑(


(𝑥,𝑦))). We conclude then that 𝑥 is a ⊆-minimal fixpoint of 𝑙(⋅, 𝑦). Analogously, it can be shown that 𝑦 is ⊆-minimal
among fixpoints of 𝑢


(𝑥, ⋅).

[⇐] Suppose now that (𝑥, 𝑦) ∈ 𝑆()(𝑥, 𝑦). We first show that (𝑥, 𝑦) is a model of 

(𝑥,𝑦) . Indeed, by Proposition 14 (𝑥, 𝑦) ∈

 (𝑥, 𝑦), thus by Theorem 1 (𝑥, 𝑦) is a weakly supported model of  . Since any model (𝑥, 𝑦) of  is also a model of 

(𝑥,𝑦) , we

have that (𝑥, 𝑦) is a model of 

(𝑥,𝑦) . For ≤𝑡-minimality, suppose towards a contradiction that there is some (𝑥′, 𝑦′) <𝑡 (𝑥, 𝑦) such that

(𝑥′, 𝑦′) ∈ 𝑚𝑜𝑑(

(𝑥,𝑦)). Since (𝑥′, 𝑦′) <𝑡 (𝑥, 𝑦), either 𝑥′ ⊊ 𝑥 or 𝑦′ ⊊ 𝑦. Suppose first that 𝑥′ ⊊ 𝑥. By Lemma 6, 𝑙

(𝑥′, 𝑦) ⊆𝑙


(𝑥, 𝑦),

and for a similar reason 𝑙

(𝑥′, 𝑦) ⊆ 𝑙


(𝑥′, 𝑦′), thus 𝑙


(𝑥′, 𝑦′) ⊆ 𝑙


(𝑥, 𝑦). We have:  (𝑥′, 𝑦′) = min≤𝑡 (𝑚𝑜𝑑(



(𝑥′ ,𝑦′)) ⊆

min≤𝑡 (𝑚𝑜𝑑(


(𝑥,𝑦))) =  (𝑥, 𝑦). Hence 𝑥′ ∈  (𝑥, 𝑦), but this contradicts the fact that 𝑥 is a ≤-minimal fixpoint of 𝑙

(⋅, 𝑦) (which

follows from the assumption that (𝑥, 𝑦) ∈ 𝑆()(𝑥, 𝑦)). The proof of the case where 𝑦′ ⊊ 𝑦 is similar. □

Theorem 7. For any disjunctive logic program  , 𝖶𝖥() ⪯𝐴
𝑖
𝖶𝖥𝖲𝑑 ().

Proof. By Proposition 10, Γ (𝑋) =
⋃

𝑥∈𝑋 𝐶(𝑙

)(𝑥) for any 𝑋 ⊆℘(). Furthermore, as for any 𝑋, 𝑌 ⊆ , 𝔗𝑌 (𝑋) ⊆𝑋, it holds

that
⋃

𝑥∈𝔗𝑌 (𝑋) 𝑆()(𝑥) ⪯𝐻
𝐿

⋃
𝑥∈𝑋 𝑆()(𝑥). The proposition now immediately follows from these two observations. □

Appendix B. Additional operator-based characterizations of semantics for disjunctive logic programming

In this appendix, we characterise the supported, regular, M-stable and L-stable model semantics for normal disjunctive logic
programs in an operator-based way.

The following represents a three-valued generalization of the supported model semantics introduced by Dix and Brass [15]:

Definition 25. (𝑥, 𝑦) is a supported model of  , if it is a model of  and for every 𝑝 ∈ such that (𝑥, 𝑦)(𝑝) = 𝖳 [(𝑥, 𝑦)(𝑝) = 𝖴], there
is
⋁
Δ ← 𝜙 ∈  such that 𝑝 ∈Δ and (𝑥, 𝑦)(𝜙) = 𝖳 [(𝑥, 𝑦)(𝑝) = 𝖴] and Δ ∩ 𝑥 = {𝑝} [Δ ∩ 𝑦 = {𝑝}].

Example 27 (Example 3 continued). Consider again the dlp  = {𝑝 ∨𝑞← 𝑞} from Example 3. The following are the supported models
of  :

(∅,∅), (∅,{𝑞}), ({𝑞},{𝑞}).

We turn to the operator-based representation of supported models. As supported models allow for the truth of fewer atoms than
the weakly supported models, one might conjecture that supported models are the ≤𝑡-minimal fixpoints of  , but this does not
hold, not even for positive or normal programs:

Example 28. Take  = {𝑝 ← 𝑟; 𝑟 ← 𝑟}. Then ({𝑝, 𝑟}, {𝑝, 𝑟}) and (∅, ∅) are both supported models of  , but ({𝑝, 𝑟}, {𝑝, 𝑟}) is not
≤𝑡-minimal.

The supported models can actually be characterized as the fixpoints of 𝑚


as defined in Remark 7. We refer to our previous
work [38] for more details on how this can be done. However, this operator is not ⪯𝐴

𝑖
-monotonic (as shown in Remark 7). Next, we

show that supported models of a dlp  may also be characterized by the fixpoints of  , but this time together with ⊆-minimization.

Theorem 8. Given a dlp  and a consistent interpretation (𝑥, 𝑦) ∈℘()2. Then (𝑥, 𝑦) is a supported model of  iff 𝑥 ∈min⊆(𝑙 (𝑥, 𝑦))
and 𝑦 ∈min⊆(𝑢 (𝑥, 𝑦)).

Proof. [⇒] Suppose that (𝑥, 𝑦) is a supported model of  and consider some Δ ∈ 𝑙

(𝑥, 𝑦). Since (𝑥, 𝑦) is in particular weakly

supported, by Theorem 1 it follows that Δ ∩ 𝑥 ≠ ∅. We show that 𝑥 ∈min⊆({𝑣 ∣ 𝑣 ∩Δ ≠ ∅ for every Δ ∈𝑙

(𝑥, 𝑦)}. Indeed, suppose

towards a contradiction that there is some 𝑥′ ∈ {𝑣 ∣ 𝑣 ∩ Δ ≠ ∅ for every Δ ∈𝑙

(𝑥, 𝑦)} such that 𝑥′ ⊊ 𝑥. Let 𝛼 ∈ 𝑥 ⧵ 𝑥′. Then, since

(𝑥, 𝑦) is supported, there is a
⋁
Δ ← 𝜙 ∈  such that Δ ∩ 𝑥 = {𝛼} and (𝑥, 𝑦)(𝜙) = 𝖳. But then 𝑥′ ∉ 𝑙


(𝑥, 𝑦), in a contradiction to our

assumption that 𝑥′ ∈ min⊆(𝑙(𝑥, 𝑦)). Analogously, we can show that 𝑦 ∈min⊆({𝑣 ∣ 𝑣 ∩Δ ≠ ∅ for every Δ ∈𝑢

(𝑥, 𝑦)}.

[⇐] Suppose that 𝑥 ∈min⊆(𝑙 (𝑥, 𝑦)) and 𝑦 ∈min⊆(𝑢 (𝑥, 𝑦)). By Theorem 1 it follows that (𝑥, 𝑦) is weakly supported and thus
a model of  .

We now show that (𝑥, 𝑦) is supported. Indeed, let 𝛼 ∈ Δ ∩ 𝑥. Suppose first that there is no
⋁
Δ ← 𝜙 ∈  s.t. (𝑥, 𝑦)(𝜙) = 𝖳. Then

𝑥 ∉ 𝑚𝑖𝑛⊆({𝑣 ∣ 𝑣 ∩ Δ ≠ ∅ for every Δ ∈𝑙

(𝑥, 𝑦)}, since there is some 𝑥′ ⊆ 𝑥 ⧵ {𝛼} such that 𝑥′ ∈ 𝑚𝑖𝑛⊆({𝑣 ∣ 𝑣 ∩ Δ ≠ ∅ for every Δ ∈
35

𝑙

(𝑥, 𝑦)}. Similarly for (𝑥, 𝑦)(𝜙) = 𝖴. The proof of the second condition in the definition of supported models is similar. □

Artificial Intelligence 331 (2024) 104110J. Heyninck, O. Arieli and B. Bogaerts

Finally, we turn to the characterization of some additional variants of the three-valued stable semantics in our framework, namely
the regular [61], M-stable [27] and L-stable semantics [27].

Definition 26. (𝑥, 𝑦) is founded iff 𝑥 ∈min⊆ 𝑚𝑜𝑑2(


𝑦
). (𝑥, 𝑦) is regular iff (𝑥, 𝑦) is a founded model of  s.t. there is no founded model

(𝑥′, 𝑦′) ≤𝑖 (𝑥, 𝑦) of  (i.e. it is a ≤𝑖-maximal founded model of (𝑥′, 𝑦′).32

Definition 27. (𝑥, 𝑦) is an M-stable model of  iff (𝑥, 𝑦) is a three-valued stable model of  and it is ≤𝑖-maximal among the three-

valued stable models of  . (𝑥, 𝑦) is an L-stable model of  iff (𝑥, 𝑦) is a three-valued stable model of  and there is no three-valued
stable model (𝑥′, 𝑦′) of  s.t. 𝑦′ ⧵ 𝑥′ ⊂ 𝑦 ⧵ 𝑥.

In what follows we denote by 𝖲𝖥() the stable fixpoints of  .

Theorem 9. Let a disjunctively normal logic program  be given.

1. A three-valued interpretation (𝑥, 𝑦) is founded iff 𝑥 ∈ 𝐶(𝑢

)(𝑦).

2. A three-valued interpretation (𝑥, 𝑦) is regular iff 𝑥 ∈ 𝐶(𝑢

)(𝑦),  (𝑥, 𝑦) ⪯𝑆

𝑡 (𝑥, 𝑦) and it is ≤𝑖-maximal with these properties.

3. A three-valued interpretation (𝑥, 𝑦) is an M-stable model iff (𝑥, 𝑦) ∈max≤𝑖 (𝖲𝖥()).
4. A three-valued interpretation (𝑥, 𝑦) is an L-stable model iff (𝑥, 𝑦) ∈ arg(𝑥,𝑦)∈𝖲𝖥() min⊆(𝑦 ⧵ 𝑥).

Proof. Item 1. By Proposition 10, 𝐶()(𝑦) =min⊆(𝑚𝑜𝑑2(


𝑦
)) for any 𝑦 ⊆ , which suffices to show the claim.

Item 2. We first note that in the proof of Theorem 1, it is shown that  (𝑥, 𝑦) ⪯𝑆
𝑡 (𝑥, 𝑦) iff (𝑥, 𝑦) is a model of  . Thus, (𝑥, 𝑦) is a

founded model of  iff 𝑥 ∈ 𝐶(𝑢

)(𝑦) and  (𝑥, 𝑦) ⪯𝑆

𝑡 (𝑥, 𝑦), which suffices to show the claim.

Items 3 and 4. Immediate from Theorem 4. □

References

[1] Felicidad Aguado, Pedro Cabalar, Jorge Fandinno, David Pearce, Gilberto Pérez, Concepción Vidal, Forgetting auxiliary atoms in forks, Artif. Intell. 275 (2019)
575–601.

[2] Joao Alcântara, Carlos Viegas Damásio, Luís Moniz Pereira, A well-founded semantics with disjunction, in: Proceedings of ICLP’05, Springer, 2005, pp. 341–355.

[3] Christian Antić, Thomas Eiter, Michael Fink, Hex semantics via approximation fixpoint theory, in: Proceedings of LPNMR’13, in: LNCS, vol. 8148, Springer,
2013, pp. 102–115.

[4] Arieli Ofer, Arnon Avron, Reasoning with logical bilattices, J. Log. Lang. Inf. 5 (1) (1996) 25–63.

[5] Mathieu Beirlaen, Jesse Heyninck, Christian Straßer, Reasoning by cases in structured argumentation, in: Proceedings of SAC’17, 2017, pp. 989–994.

[6] Mathieu Beirlaen, Jesse Heyninck, Christian Straßer, A critical assessment of pollock’s work on logic-based argumentation with suppositions, in: Proceedings of
NMR’18, vol. 20, 2018, pp. 63–72.

[7] Nuel D. Belnap, How a computer should think, in: G. Ryle (Ed.), Contemporary Aspects of Philosophy, Oriel Press, 1977.

[8] Nuel D. Belnap, A useful four-valued logic, in: J.M. Dunn, G. Epstein (Eds.), Modern Uses of Multiple-Valued Logics, Reidel Publishing Company, 1977, pp. 7–37.

[9] Bart Bogaerts, Weighted abstract dialectical frameworks through the lens of approximation fixpoint theory, in: Proceedings of AAAI’19, vol. 33, 2019,
pp. 2686–2693.

[10] Bart Bogaerts, Luís Cruz-Filipe, Fixpoint semantics for active integrity constraints, Artif. Intell. 255 (2018) 43–70.

[11] Bart Bogaerts, Maxime Jakubowski, Fixpoint semantics for recursive SHACL, in: Proceedings 37th International Conference on Logic Programming (Technical
Communications), ICLP Technical Communications 2021, 2021, pp. 41–47.

[12] Bart Bogaerts, Joost Vennekens, Marc Denecker, Grounded fixpoints and their applications in knowledge representation, Artif. Intell. 224 (2015) 51–71.

[13] Bart Bogaerts, Joost Vennekens, Marc Denecker, Safe inductions and their applications in knowledge representation, Artif. Intell. 259 (2018) 167–185.

[14] Daniel Bonevac, Defaulting on reasons, Noûs 52 (2) (2018) 229–259.

[15] Stefan Brass, Jürgen Dix, Characterizations of the stable semantics by partial evaluation, in: Proceedings of LPNMR’95, Springer, 1995, pp. 85–98.

[16] Pedro Cabalar, Sergei Odintsov, David Pearce, Agustín Valverde, Analysing and extending well-founded and partial stable semantics using partial equilibrium
logic, in: Proceedings of ICLP’06, Springer, 2006, pp. 346–360.

[17] Pedro Cabalar, Sergei Odintsov, David Pearce, Agustín Valverde, Partial equilibrium logic, Ann. Math. Artif. Intell. 50 (3) (2007) 305–331.

[18] Angelos Charalambidis, Panos Rondogiannis, Ioanna Symeonidou, Approximation fixpoint theory and the well-founded semantics of higher-order logic programs,
Theory Pract. Log. Program. 18 (3–4) (2018) 421–437.

[19] Patrick Cousot, Radhia Cousot, Constructive versions of Tarski’s fixed point theorems, Pac. J. Math. 82 (1) (1979) 43–57.

[20] Ingmar Dasseville, Matthias van der Hallen, Bart Bogaerts, Gerda Janssens, Marc Denecker, A compositional typed higher-order logic with definitions, in:
Technical Communications of the 32nd International Conference on Logic Programming, ICLP, 2016, pp. 14:1–14:13.

[21] Marc Denecker, Maurice Bruynooghe, Joost Vennekens, Approximation fixpoint theory and the semantics of logic and answers set programs, in: Correct Reason-

ing, Springer, 2012, pp. 178–194.

[22] Marc Denecker, V. Wiktor Marek, Miroslaw Truszczynski, Ultimate approximations in nonmonotonic knowledge representation systems, in: Proceedings of
KR’02, 2002, pp. 177–190.

[23] Marc Denecker, Victor Marek, Mirosław Truszczyński, Approximations, stable operators, well-founded fixpoints and applications in nonmonotonic reasoning, in:
Logic-Based Artificial Intelligence, in: Engineering and Computer Science, vol. 597, Springer, 2000, pp. 127–144.

[24] Marc Denecker, Victor Marek, Mirosław Truszczyński, Uniform semantic treatment of default and autoepistemic logics, Artif. Intell. 143 (1) (2003) 79–122.

[25] Phan Minh Dung, Paolo Mancarella, Francesca Toni, Computing ideal sceptical argumentation, Artif. Intell. 171 (10–15) (2007) 642–674.
36

32 This formulation is an adaptation to our setting of the definition by Eiter et al. [27] shown to be equivalent to the original definition of regular models [61].

http://refhub.elsevier.com/S0004-3702(24)00046-8/bib9B66F0C2215AF1C92B517F712884A086s1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bib9B66F0C2215AF1C92B517F712884A086s1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bibC2293CA2FB8DB9450B661D1FA6DDD6F4s1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bib3799100018EEA592FBE236FD28077694s1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bib3799100018EEA592FBE236FD28077694s1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bib3D866D5801E985DA8898BDEB8E5DDD38s1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bib2974308D8918CC0909CCCD50AA661DC1s1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bib525EE4B890B8DA674D937A2CB2D9662Bs1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bib525EE4B890B8DA674D937A2CB2D9662Bs1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bib42F783EE45F725FB6C337D40AB409661s1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bib9C5354C190CA6B1867D49A380F53E43Fs1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bib232367DDA901871F78F21463E70F9E19s1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bib232367DDA901871F78F21463E70F9E19s1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bib4973E4BA1376C44F646D1D3EB5E303BEs1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bibBBA5969B2234B559AA6199D18F21D068s1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bibBBA5969B2234B559AA6199D18F21D068s1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bib7564650B2E4F86059C03E407EE956B37s1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bibA0F7F18D910ACA251D0FFE653473C19As1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bibD7F02CDD55111FA839DE9286CA59F320s1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bibAB9E405175D4E31F247F370E49BBF92Fs1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bib5F1978229C6EAB0A5F0E7D77DC8C1E64s1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bib5F1978229C6EAB0A5F0E7D77DC8C1E64s1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bib38A1800871A2E1B3BE6B0DE9B0EC8642s1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bib2EF460F17BAD3BDE77E0022AA50728F5s1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bib2EF460F17BAD3BDE77E0022AA50728F5s1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bib78A5ACA7ECB76600B543AD4ECD9F9C09s1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bib5CD0801BB17809CD1A324FA34653E871s1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bib5CD0801BB17809CD1A324FA34653E871s1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bib23F3138885FB92DD704E6273DAF42F83s1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bib23F3138885FB92DD704E6273DAF42F83s1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bibBF68DBEDF5CA060C73F9E0A6B5D4F234s1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bibBF68DBEDF5CA060C73F9E0A6B5D4F234s1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bibCA3CCACA02468435C6366C435EACC64Fs1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bibCA3CCACA02468435C6366C435EACC64Fs1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bibF580DBC69D024C65FB10931FAE6E7CACs1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bib7F7E1F56C92FD9DA1AFBC2D5696BED12s1

Artificial Intelligence 331 (2024) 104110J. Heyninck, O. Arieli and B. Bogaerts

[26] Thomas Eiter, Georg Gottlob, Complexity results for disjunctive logic programming and application to nonmonotonic logics, in: Proceedings of ILPS’93, 1993,
pp. 266–278.

[27] Thomas Eiter, Nicola Leone, Domenico Sacca, On the partial semantics for disjunctive deductive databases, Ann. Math. Artif. Intell. 19 (1–2) (1997) 59–96.

[28] José Alberto Fernández, Jack Minker, Bottom-up computation of perfect models for disjunctive theories, J. Log. Program. 25 (1) (1995) 33–51.

[29] Melvin Fitting, Bilattices and the semantics of logic programming, J. Log. Program. 11 (2) (1991) 91–116.

[30] Melvin Fitting, Bilattices are nice things, in: Self Reference, in: CSLI Lecture Notes, vol. 178, CLSI Publications, 2006, pp. 53–77.

[31] Melvin Fitting, Bilattice basics, IfCoLog J. Log. Appl. 7 (6) (2020) 973–1016.

[32] Michael Gelfond, Vladimir Lifschitz, Classical negation in logic programs and disjunctive databases, New Gener. Comput. 9 (3–4) (1991) 365–385.

[33] Michael Gelfond, Halina Przymusinska, Vladimir Lifschitz, Miroslaw Truszczynski, Disjunctive defaults, in: Proceedings of KR’91, 1991, pp. 230–237.

[34] Matthew L. Ginsberg, Multi-valued logics: a uniform approach to reasoning in artificial intelligence, Comput. Intell. 4 (1988) 256–316.

[35] Pieter Van Hertum, Marcos Cramer, Bart Bogaerts, Marc Denecker, Distributed autoepistemic logic and its application to access control, in: Proceedings of the
Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, 2016, pp. 1286–1292.

[36] Jesse Heyninck, Semantics for logic programs with choice constructs on the basis of approximation fixpoint theory (preliminary report), in: 21st International
Workshop on Non-Monotonic Reasoning, NMR 2023, CEUR-WS, 2023, pp. 74–83.

[37] Jesse Heyninck, Ofer Arieli, Argumentative reflections of approximation fixpoint theory, in: Computational Models of Argument: Proceedings of COMMA 2020,
vol. 326, 2020, p. 215.

[38] Jesse Heyninck, Ofer Arieli, Approximation fixpoint theory for non-deterministic operators and its application in disjunctive logic programming, in: Proceedings
of KR’21, 2021, pp. 334–344.

[39] Jesse Heyninck, Bart Bogaerts, Non-deterministic approximation operators: Ultimate operators, semi-equilibrium semantics, and aggregates, Theory Pract. Log.
Program. 23 (4) (2023) 632–647.

[40] Jesse Heyninck, Matthias Thimm, Gabriele Kern-Isberner, Tjitze Rienstra, Kenneth Skiba, Conditional abstract dialectical frameworks, in: Proceedings of AAAI’22,
AAAI Press, 2022, pp. 5692–5699.

[41] Kazimierz Kuratowski, Une méthode d’élimination des nombres transfinis des raisonnements mathématiques, Fundam. Math. 3 (1) (1922) 76–108.

[42] Fangfang Liu, Jia-Huai You, Alternating fixpoint operator for hybrid MKNF knowledge bases as an approximator of AFT, Theory Pract. Log. Program. 22 (2)
(2022) 305–334.

[43] Jorge Lobo, Jack Minker, Arcot Rajasekar, Foundations of Disjunctive Logic Programming, MIT Press, 1992.

[44] Jack Minker, Dietmar Seipel, Disjunctive logic programming: a survey and assessment, in: Computational Logic: Logic Programming and Beyond, Springer, 2002,
pp. 472–511.

[45] Søren Holbech Nielsen, Simon Parsons, A generalization of Dung’s abstract framework for argumentation: arguing with sets of attacking arguments, in: Proceed-

ings of ArgMAS’06, Springer, 2006, pp. 54–73.

[46] David Pearce, Equilibrium logic, Ann. Math. Artif. Intell. 47 (1) (2006) 3–41.

[47] Nikolay Pelov, Marc Denecker, Maurice Bruynooghe, Well-founded and stable semantics of logic programs with aggregates, Theory Pract. Log. Program. 7 (3)
(2007) 301–353.

[48] Nikolay Pelov, Miroslaw Truszczynski, Semantics of disjunctive programs with monotone aggregates: an operator-based approach, in: Proceedings of NMR’04,
2004, pp. 327–334.

[49] Teodor C. Przymusinski, The well-founded semantics coincides with the three-valued stable semantics, Fundam. Inform. 13 (4) (1990) 445–463.

[50] Chiaki Sakama, Katsumi Inoue, Paraconsistent stable semantics for extended disjunctive programs, J. Log. Comput. 5 (3) (1995) 265–285.

[51] Dietmar Seipel, An alternating well-founded semantics for query answering in disjunctive databases, in: Proceedings of FQAS’98, Springer, 1998, pp. 341–353.

[52] Michael B. Smyth, Powerdomains, in: Proceedings of MFCS’76, Springer, 1976, pp. 537–543.

[53] Hannes Strass, Approximating operators and semantics for abstract dialectical frameworks, Artif. Intell. 205 (2013) 39–70.

[54] Hannes Strass, Johannes Peter Wallner, Analyzing the computational complexity of abstract dialectical frameworks via approximation fixpoint theory, Artif.
Intell. 226 (2015) 34–74.

[55] Alfred Tarski, On the concept of logical consequence, in: Logic, Semantics, Metamathematics, vol. 52, 1936, pp. 409–420.

[56] Mirosław Truszczyński, Strong and uniform equivalence of nonmonotonic theories–an algebraic approach, Ann. Math. Artif. Intell. 48 (3) (2006) 245–265.

[57] Miroslaw Truszczyński, Reducts of propositional theories, satisfiability relations, and generalizations of semantics of logic programs, Artif. Intell. 174 (16–17)
(2010) 1285–1306.

[58] Maarten H. van Emden, Robert A. Kowalski, The semantics of predicate logic as a programming language, J. ACM 23 (4) (1976) 733–742.

[59] Allen Van Gelder, Kenneth A. Ross, John S. Schlipf, The well-founded semantics for general logic programs, J. ACM 38 (3) (1991) 619–649.

[60] Joost Vennekens, David Gilis, Marc Denecker, Splitting an operator: algebraic modularity results for logics with fixpoint semantics, ACM Trans. Comput. Log.
7 (4) (2006) 765–797.

[61] Jia-Huai You, Li Yan Yuan, A three-valued semantics for deductive databases and logic programs, J. Comput. Syst. Sci. 49 (2) (1994) 334–361.
37

[62] Max Zorn, A remark on method in transfinite algebra, Bull. Am. Math. Soc. 41 (10) (1935) 667–670.

http://refhub.elsevier.com/S0004-3702(24)00046-8/bib71C6B5882A6C34D2FB5FD0F496F27E3As1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bib71C6B5882A6C34D2FB5FD0F496F27E3As1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bibDC8C7D946753FCA6908942A03CC58B43s1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bibE4263A20B2DDDA3DEB66E18605ED2571s1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bibBCABE27229B849C11B6DF30CBEBB556Cs1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bib4763BFBDE9C2BAFA510FF23EF6CC34BBs1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bibFBC9B0CE717566F6EC2B540177516ADBs1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bib4E8A497646EEC3F5C85D02DD4FDB3C4Es1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bibD88C3889B292BE2436C3294AAE927C54s1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bib39A2C50F49B54FDB482BE1E876C75EACs1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bibD1E9F6CE63C7F54C1E11B84160EB6CA4s1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bibD1E9F6CE63C7F54C1E11B84160EB6CA4s1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bib594C237EF8E702EBE490089F7E8E5FD0s1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bib594C237EF8E702EBE490089F7E8E5FD0s1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bibD11169F1AD57609ADFBA48969C23788Es1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bibD11169F1AD57609ADFBA48969C23788Es1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bibFF1987BEE13626C0738AE81D37320F3Cs1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bibFF1987BEE13626C0738AE81D37320F3Cs1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bib4B59414142B52F236E2937C6F3B26FCDs1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bib4B59414142B52F236E2937C6F3B26FCDs1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bib366E31A492D546FCE98C7414A7A5EDF3s1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bib366E31A492D546FCE98C7414A7A5EDF3s1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bibB380667414D4BEF334F9919CA5DCCE04s1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bib61E3867642E1DB37359047F72513EFDFs1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bib61E3867642E1DB37359047F72513EFDFs1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bib6EB21684EA82F7C0F7B96687F963271Es1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bib629AD50C29C1390AFFD3CC0925F78303s1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bib629AD50C29C1390AFFD3CC0925F78303s1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bib52D33945474D5E9EB46A051FA7CB3D7Cs1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bib52D33945474D5E9EB46A051FA7CB3D7Cs1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bib1A2353084D030F2331797A365AA37A66s1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bib9A77F5B2FBFF52B872D66676C3B6B385s1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bib9A77F5B2FBFF52B872D66676C3B6B385s1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bibCEDE72184BF3F61AB02A525B0AA63733s1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bibCEDE72184BF3F61AB02A525B0AA63733s1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bib132B099A6A511DFF6BFF13AC2F0FF17Bs1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bibC056A9A3D0CEFABB4C2B52393AF24B9Es1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bib5FE079087ABE98F27A337086B5F1A1F4s1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bibCA172E2EA6A1A7F7087FCB1AEAF1311Fs1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bibA486B470A5CF83174CD28D8291170FD9s1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bib942AB58EB22289F1E7B740B65D373BF6s1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bib942AB58EB22289F1E7B740B65D373BF6s1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bib246C3213827CC72B515F62E28C706417s1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bib82B0968382D08174BE67673BD53FB0D8s1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bibD3DB556E23E1D5C4A5B02E2963BF2387s1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bibD3DB556E23E1D5C4A5B02E2963BF2387s1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bibD0788B5C541E5A0CA13CAB2A84EC8446s1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bib733CE33E953F557533FF6F3EF1852EEAs1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bibD22C39D024A841C3591AD2B4E6A52F60s1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bibD22C39D024A841C3591AD2B4E6A52F60s1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bib959FFB388E50335FEF8760A865E2D0F4s1
http://refhub.elsevier.com/S0004-3702(24)00046-8/bib70936507846D5FC0EBCFFB8EE9B15956s1

	Non-deterministic approximation fixpoint theory and its application in disjunctive logic programming
	1 Introduction
	2 Background and preliminaries
	2.1 Disjunctive logic programming
	2.2 Approximation fixpoint theory

	3 Non-deterministic operators and approximations
	3.1 Non-deterministic operators
	3.2 Non-deterministic approximation operators

	4 Theory of non-deterministic AFT
	4.1 Consistency of approximations
	4.2 Fixpoint semantics and Kripke-Kleene interpretations
	4.3 Kripke-Kleene states
	4.3.1 Preliminaries on convex sets
	4.3.2 Non-deterministic state operators and their fixpoints

	5 Stable semantics
	5.1 Stable interpretation semantics
	5.2 Well-founded state semantics
	5.3 The relationship with well-founded semantics with disjunction

	6 Related work
	7 Summary, conclusion, and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A Proofs of results on disjunctive logic programming
	Appendix B Additional operator-based characterizations of semantics for disjunctive logic programming
	References

