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Abstract

This paper considers various aspects of representing arguments and logical argumentation
frameworks. We investigate different approaches to address consistency and minimality within
such frameworks, arguing that these properties can —and in some cases should— be omitted from
the definition of an argument. We analyze the relationship between how consistency is verified
and the selection of attack rules, showing that this choice should align with the underlying logic.
Based on these results, we propose compact representations of logical argumentation frameworks
and examine methods for transforming one framework into another (e.g., a more concise version)
without losing logical entailments.

1 Introduction and Motivation

Logic-based argumentation [6] 22] is a formal discipline for defining, evaluating, and deriving accepted
logical arguments emerged from knowledge-bases, grounded in the relationships between arguments
and a specified semantics. Logical argumentation has been shown useful in a wide range of domains,
such as conflict resolution in complex domains such as medicine [47], law [54] and ethical reasoning |20}
59]; modeling of defeasible reasoning [21] [53]; epistemic theories [49]; decision making [60]; database
systems [40]; logic programs [42]; and bridging Philosophy with AT [19].

In this paper, we examine four fundamental and interrelated aspects of representing logical ar-
gumentation frameworks. These aspects correspond to four core principles: minimality, consistency,
compactness, and logical preservation. We begin by outlining the key representational issues under
consideration and illustrating how each of these principles plays a role in addressing them.

How should arguments be represented?

Selecting an appropriate representation of arguments is a central concern in structured argumentation
in general, and in logic-based argumentation in particular, since each approach imposes its own view of
what counts as an argument. In ASPIC, for instance, an argument is modeled as a pair (S, 1) in which
the support S is a tree-shaped derivation of the conclusion 1, constructed with respect to an underlying
logic and proof calculus from strict and/or defeasible premises and rules (see the surveys of Modgil
and Prakken [50} [51]). Assumption-Based Argumentation (ABA) [30] 62] is likewise deductive, but
arguments are determined implicitly by their sets of supporting assumptions; the framework’s attack
relation is then defined directly over those sets. Besnard and Hunter’s logic-based approach [24] [26]



also treats an argument as a pair (S, %), but here S must be a subset-minimal and logically consistent
set of formulas that entails ¥ in the chosen base logic.

The principles of minimality and consistency are thus integral to some formalisms and deliberately
dropped in others. Sequent-based argumentation frameworks [9], for instance, relax these requirements
as far as possible: drawing on the proof-theoretic notion of a sequent [43], it is only required that
1 is entailed from S. A similar approach in the context of dialogical argumentation is taken also
by D’Agostino and Modgil in [38], B9], where this time the support of an argument is divided to two
(disctinct) sets of formulas: those that are accepted as true (the ‘commitments’) and those that are
assumed to hold for the sake of the argument (the ‘suppositions’). Thus, an argument according to
[38, 39] is a trple (S, S’, 1), where again the only requirement is that ¢ logically follows from S U §'.

This ‘liberal’ treatment greatly simplifies the construction and verification of arguments, facilitat-
ing straightforward analyses of their properties [7, [§]. Yet, such freedom calls for some precautions
for avoiding anomalies. For instance, lifting the consistency requirement can lead to an explosion
of arguments whenever the underlying logic is non-paraconsistent (i.e., when inconsistency trivializes
derivability). Likewise, abandoning minimality risks padding supports with irrelevant information,
thereby exposing an argument to avoidable counter-attacks.

How should attacks between arguments be described?

Relations between arguments and their counterarguments are captured by attack rules. Because these
rules depend on both the chosen representation of arguments and the underlying logic used to build
them, we examine this interplay and its impact on formulating attacks. In particular, we revisit
the earlier principles of minimality and consistency, and contrast two strategies for enforcing these
principles in logic-based argumentation:

1. incorporating them directly into the definition of an argument, and
2. guaranteeing them indirectly via suitably designed attack rules.

Theorems [1| and |2| present our main results, showing how consistency and minimality in arguments’
supports can be traded for carefully chosen attacks. We further demonstrate that the adequacy of
such rules depends critically on the base logic.

How can argumentation frameworks be represented compactly?

An effective way to compare different forms of representations of arguments and attack relations
is through their integration into argumentation frameworks [41]. To facilitate this, it is helpful to
represent such frameworks in both compact and modular ways. This relates to the third principle
examined in the paper: compactness. The importance of compact representation becomes especially
clear given that argumentation frameworks are expected to be deductively closed, or at least to support
sound (and often complete) logical inferences. These requirements pose significant challenges in terms
of computational resources. We therefore study compact representations of logical argumentation
frameworks and prove that, whenever the set of premises is finite and the attacks depend solely on
the supports of the arguments, the frameworks can be translated into finite, equivalent ones. These
results are formalized in Theorem [3] the paper’s third main contribution.

How can we move between frameworks while preserving their inferences?

A compact representation sometimes calls for switching from one base logic to another, either to shrink
the set of arguments or to obtain a more suitable setting. Our fourth topic addresses when such tran-
sitions are possible without sacrificing the framework’s inferential power. Here the guiding principle
is logical preservation. We identify conditions on the attack rules that guarantee the preservation of



logical properties across frameworks built over different but comparable logics (Theorem ). As an
illustration, we show how frameworks based on three-valued logics — Bochvar’s B3, Kleene’s K3, and
Priest’s LP — can be translated into equivalent frameworks over classical logic (Corollaries [6{H{10]).

The remainder of the paper is organized as follows. In Section [2] we review the background on
logic-based argumentation, including alternative definitions of arguments, common attack forms, and
the construction of argumentation frameworks. In Sections [3| and [4] we analyze the principles of
consistency and minimality (respectively) in relation to representations of arguments and the choice
of attack relations. In Section [5| we investigate how the suitability of attack rules depends on the
underlying logic. Compact representation and the preservation of inferences are respectively treated
in Sections [6] and [7} In Section [§] we discuss related work. In particular, Theorem [5]in that section,
shows how our framework corresponds to assumption-based argumentation. Finally, in Section [0] we
conclude[l]

2 Preliminaries

For defining logical argumentation frameworks, and arguments in particular, one first has to specify
what the underlying logic is. We therefore start with a general definition of a (Tarskian, [61]) logic.

Definition 1 (logic). A (propositional) logic is a pair £ = (L, ), where L is a propositional language,
and F is a consequence relation for £, that is: a binary relation between sets of formulas and formulas
in £, satisfying the following conditions:

Reflexivity: if ¢ € S then S - 1,
Monotonicity: if S+ and § € S’ then &' + 9,
Transitivity: if S 1 and 8,4 — ¢ then S, S’  ¢.
In addition, it is usual to assume that + is:
Structural: for every substitution 6, it holds that S I ¢ implies that 0(S) - 6(v).
Non-Trivial: p I+ q for every two atomic formulas p, q.
Finitary: if S 1, there is a finite set S’ € S such that S’ - ).
In what follows we denote by Cn._(S) the —-transitive closure of S, that is: Cni(S) = {¢p | S - ¢}

Structurality means closure under substitutions of formulas. Non-triviality is convenient for ex-
cluding trivial logics (i.e., those in which every formula follows from every theory, or every formula
follows from every non-empty set of assumption). Finitariness is often essential for practical reasoning,
such as being able to form arguments (based on a finite number of assumptions) for entailments with
possibly infinite number of premises, or for being able to produce finite proofs for entailments from
an infinite sets of assumptions.

In the sequel, unless referring to a specific language (as in the illustrations in Section , we
shall assume that the language £ contains at least the following (primitive or defined) connectives
and constant:

ISections [3| and [4] revise and extend [10], including full proofs, additional results, and examples that highlight how
various semantics differ with respect to minimality (see Examples @ and . Moreover, while the results in [I0] apply
to grounded, preferred, and stable semantics, we now cover a broader spectrum of Dung-type semantics, including semi-
stable, eager, stage, and ideal semantics (Definition . Sectionssigniﬁcantly extend the material in [I1], providing
complete proofs, further illustrations, and more detailed discussion.



a -negation —, satisfying: p £ —p and —p £ p (for every atomic p),
a -conjunction A, satisfying: S+ ¢ A ¢ iff S+ ¢ and S + ¢,

a -disjunction v, satisfying: S,¢o v o ifft S,¢ o and S,¢ - o,
a -falsity F, satisfying: F % for every formula @ZJE|

The set of (well-formed) formulas of £ is denoted WFF(L). In some examples we shall also assume
the availability of a (deductive) -implication D, satisfying: S,¢ + ¢ iff S + ¢ D 1. In such cases
we shall abbreviate (¢ D ¥) A (¢ D ¢) by ¢ < . For a finite set of formulas S we shall denote
by AS (respectively, by \/S) the conjunction (respectively, the disjunction) of all the formulas in S.
We shall also denote by p(S) (by gfin(S)) the set of the (finite) subsets of S. We shall say that S is
F-consistent, if S (£ F.

2.1 Logic-Based Arguments

A standard way of viewing an argument A in logical (or, deductive) argumentation frameworks is as a
pair A ={(S,1), where ¢ (the conclusion of A) is a formula that follows, according to the underlying
(base) logic, from the set of formulas S (called the support of A) (see [0] for a survey on the subject).
Most of the works on the subject concentrate on classical logic (CL) as the base logic, and since the
latter is trivialized in the presence of inconsistency, it is usual to assume that S is consistent. Also, in
order to keep the support as relevant as possible to the conclusion, § is kept minimal with respect to
the subset relation (see, e.g., [24], 26]). These considerations lead to the following definition of what
we call classical-con-min arguments.

Definition 2 (CL-con-min argument). A CL-con-min argument is a pair A = {(S,1), where S is a
CL-consistent and S-minimal finite set of formulas that entails, according to CL, the formula 1/JE|

Definition [2|is at the heart of many approaches to logic-based argumentationﬂ However, as noted
in the introduction and, e.g., in [9], the consistency and minimality requirements on the supports of
the arguments cause some complications in the construction and the identification of valid arguments,
and so it is desirable to lift them, if possible. Moreover, in some reasoning contexts non-classical logics
may better serve as the underlying logics of the intended argumentation frameworks, and in some cases
(e.g., agent-based systems or deontic systems) the standard propositional language should be extended
(e.g., with modal operators), which again means that in those cases classical logic is not adequate.
Indeed, many approaches to structured argumentation like those that are based on ASPIC systems [50]
and extensions of assumption-based argumentation frameworks [45], do not assume anymore that the
underlying logic is necessarily classical logic. Alternatives to classical logics have also been considered
in the literature on logical argumentation, including deductive systems that are based on conditional
logic [23], default logic [57], and arbitrary propositional (Tarskian) logics, e.g., in the context of
sequent-based argumentation frameworks [9]. [

The next definition is a generalization of Definition[2] to every propositional logic, and in which the
consistency and minimality requirements are avoided. The intuition behind this generalization is that
the only criterion for the validity of an argument should be a logical one, namely: that its conclusion
follows, according to the underlying logic, from its support set.

2In particular, F is not a standard atomic formula, since F — —F.

3In order words, if F denotes the falsity operator and ¢ is the consequence relation of classical logic, then S is a
finite set of formulas such that S ¢ 9, S t£cL F, and there is no 8’ € S such that &’ ¢ .

4For more details and references see, e.g., [26} 27, [44].

51t is interesting to note that, in some cases, even the minimalist requirement, that an argument’s conclusion logically
follows from its support set, is dropped. This is the case, for instance, in [46], where an approximate argument is defined
simply as a pair {(S,1), where S is a set of formulas and 1 is a formula. Of course, for an approximate argument to
have logical significance, a range of different constraints must be imposed (see [46]).



Definition 3 (argument). Given a logic £ = (L, ), an £-argument (an argument for short) is a pair
A ={8,v¢), where S (the support of A) is a finite set of L-formulas and 1 (the conclusion of A) is an
L-formula, such that S + ¢ (i.e., ¥ € Cn(S)). We denote: Supp({S,¥)) = S and Conc({(S, 1)) = 1.
Arguments of the form (¥, 1) are called tautological.

Example 1. The pairs {&,p v —p), {{p},p) and {{p, —p},p), are all L-arguments for £ = CL. The
first argument is tautological. Note that the last tuple is not an CL-con-min argument, for two reasons:
its support set is neither CL-consistent nor S-minimal.

2.2 Logic-Based Argumentation Frameworks

Arguments may attack and counter-attack each other according to pre-defined attack rules. Some of
the better known ones are listed in Table Each rule R in this table is equipped with a set Cx
of conditions (presented on the rightmost column of the table), the satisfaction of which enables the
application of the rule. For instance, according to the rule named Defeat, an argument of the form
(81,11 attacks an argument of the form (Ss U 8, ¥o), if 1 - = AS2 (that is, the conclusion of the
attacking argument implies the negation of (part of) the support set of the attacked argument)ﬁ

Rule Name Acronym Attacking Attacked Attack Conditions
Argument Argument

Defeat Def (S1,11) (S uShbey | Y1 = = AS2
Full Defeat FullDef (S1,11) (Sa, ) 1 = AS2
Direct Defeat DirDef (81,1 ot v i) | Y1 e
Undercut Ucut (81,1 (SauShbay | V1 —=AS2, “AS2+ 1
Full Undercut FullUcut (Sy,11) (82, 12) 1 = AS2, = AS2 -
Direct Undercut DirUcut (S1,91) et U S50 | Y1 =@, —p 1
Compact Undercut CompUcut (81, = AS2) | {Sa U S5,
Compact Full Undercut CompFullUcut | {S1, = AS2) | {S2,12)
Compact Direct Undercut | CompDirUcut | (S1, —p) Ao} u S 1)
Consistency Undercut ConUcut (B, = NS | {Sa U S5,y
Rebuttal Reb (S1,U1) (Sa,12) Y1 =, —he 1y
Defeating Rebuttal DefReb (S1,91) (Sa,12) Y1 g

Table 1: Some attack rules. The support sets of the attacked arguments are assumed to be nonempty
(to avoid attacks on tautological arguments).

Clearly, the rules in Table[I] are not unrelated, and some of them are weaker or stronger than some
others (see [0, Remark 7]). Further attack rules are considered, e.g., in [9, [44] 59].

Logical argumentation frameworks are now defined follows:

Definition 4 (logical argumentation framework). Let £ = (£,}) be a logic and A a set of attack
rules with respect to £. Let also S be a set of L-formulas. The (logical) argumentation framework for
S, induced by £ and A, is the pair AFe 4(S) = (Arga(S), Attack(A))E] where Argq(S) is the set of

6In the presence of a deductive —-implication D, this condition may be expressed as: - 11 D = ASa.
"In what follows we shall usually omit the subscripts and write just AF(S) for (Arga(S), Attack(A)).




the £-arguments whose supports are subsets of S, and Attack(A) is a relation on Arge(S) x Arga(S),
defined by (A1, As) € Attack(L) iff there is some R € A such that A; R-attacks Ay (that is, the pair
(A1, Ay) is an instance of the relation R).

A logical argumentation framework may be associated with a directed graph, in which the nodes
are arguments (the elements in Argq(S)) and the edges represent attacks between arguments (the
elements in Attack(A); See for instance Example [2| below). The outcome of a logical argumentation
framework, and in particular what can be deduced from it, may be defined in terms of Dung-style
semantics [41] and the corresponding entailment relations. These notions are defined in the next two
definitions.

Definition 5 (extension-based semantics). Let AF(S) = (Argo(S), Attack(A)) be a logical argumen-
tation framework, and let £ € Arga(S). Below, maximality and minimality are taken with respect to
the subset relation.

e We say that £ attacks an argument A, if there is an argument B € £ that attacks A (that is,
(B, A) € Attack(A)). The set of arguments that are attacked by £ is denoted £1. The set ELET
is called the range of £. We say that & defends A, if £ attacks every argument that attacks A.

e The set & is called conflict-free with respect to AF(S), if it does not attack any of its elements
(i.e., ET nE = F). A set that is maximally conflict-free with respect to AF(S) is called a naive
extension of AF(S). A set £ whose range (£ U £T) is C-maximal among the conflict-free sets
of AF(S) is a stage extension of AF(S). A conflict-free set £ whose range is equal to Arga(S)
is a stable extension of AF(S).

e An admissible extension of AF(S) is a subset of Arga(S) that is conflict-free with respect to
AF(S) and defends all of its elements. A maximally admissible extension of AF(S) is called a
preferred extension of AF(S). The ideal extension of AF(S) is the S-maximal admissible set
that is included in each preferred extension.

e A complete extension of AF(S) is an admissible extension of AF(S) that contains all the
arguments that it defends. The minimally complete extension of AF(S) is called the grounded
extension of AF(S). A semi-stable extension of AF(S) a complete extension with a S-maximal
range, and the eager extension of AF(S) is the C-maximal admissible set that is included in
every semi-stable extension[f]

We denote by Adm(AF(S)) [respectively: Cmp(AF(S)), Grd(AF(S)), Prf(AF(S)), Stb(AF(S)),
Sstb(AF(S)), Stg(AF(S)), IdI(AF(S)), Egr(AF(S))] the set of all the admissible [respectively: com-
plete, grounded, preferred, stable, semi-stable, stage, ideal, eager] extensions of AF(S).

Definition 6 (extension-based entailments). Let AF(S) = (Arga(S), Attack(A)) be a logical argu-
mentation framework, and let Sem € {Adm, Cmp, Grd, Stb, Prf, SStb, Stg, Idl, Egr}. We denote:
o SEZ 4 if there is an argument (T', ) € U Sem(AF(S)),

uSem

o SREA 4 if there is an argument (T, ¥)) € () Sem(AF(S)),

nSem

S |~%’5“2m ¥ if for every £ € Sem(AF(S)) there T'e € S such that (Tg, ) € &.

8 As is shown in [41l Theorem 25|, the grounded extension of AF(S) is unique. Also, in the same paper it is shown
that preferred extensions are maximally complete and that every stable extension is also preferred. By this, it is also
immediate from their definitions, that every stable extension (if exists) is also semi-stable and stage, and that the ideal
and the eager extensions are complete. For some further facts and definitions of other extensions, see e.g., [14} [15].




The entailments in the first bullet of Definition [6] are sometimes called credulous, since a formula
is inferred according to them when it is the conclusion of an argument in some Sem-extension of the
framework. The other two types of entailment relations are called skeptical, since a formula is inferred
according to them when it is the conclusion of arguments in every Sem-extension of the framework.
The difference between the two skeptical entailments is that one of them requires the same argument
to occur in every extension, whereas the other allows different arguments in different extensions,
provided that they share the same conclusion. By their definitions, then, |~i’§§m ~%’§2m |~§’S’2m.

In what follows, when the framework is clear from the context, we shall sometimes write S|~ g, ¥
instead of S |~£’A

Zem ¥ (and similarly for the other two entailments above).

Example 2. We demonstrate the notion above by a simple example. Let £ = CL (classical logic) and
S = {p, —p,q}. Some of the elements in Arga(S) are considered in Example [I} Suppose now that A
consists of Undercut and Consistency Undercut. Part of AF¢ 4(S) is presented in the figure below.

//_\

W
Ao, —p, a4}, ~@)

\ W <Q,pv—'p>

It is not difficult to verify that, in this figure, the tautological argument (&, p v —p) defends {q, ¢)
from any possible attacker, thus the grounded extension £gq of the figure above consists of these
two arguments. The preferred (and [semi]-stable) extensions in this figure are Egq U {{p,p)} and
Egra W {(—p, )}

When the whole framework AFe 4(S) is considered, the corresponding grounded extension is
Arga({q}) and the preferred/[semi-]stable extensions are Arga({q,p}) and Arge({q, —p}). Since the
grounded extension is also the ideal and the eager extension in this case, it follows that g is entailed
by S according to all the entailments in Definition |§| and for every Sem € {Cmp, Grd, Stb, Prf, SStb,
Stg, Idl, Egr}, as expected.

{—p, —p) {p,p)

{q, )
{dp, —p}, —@)

3 Consistency Preservation

In the previous section, we encountered two approaches to handling inconsistency in logical argumen-
tation frameworks. The first approach enforces a consistency requirement directly on the supports
of arguments (see Definition . The second approach adopts a more permissive notion of argument
(Definition [3)) and relies on tailored attack, rules such as the Consistency Undercut, to target argu-
ments with problematic (e.g., contradictory) supports. In this section, we examine the relationship
between these two approaches. To do so, we introduce the following definitions:

Definition 7 (S*). Recall from Definition[5] that Argy(S) is the set of arguments that are attacked
by some A € Argq(S). In what follows we shall also denote this set by St.

Example 3. The set @t consists of the arguments that are attacked by tautological arguments (i.e.,
by those whose support set is empty).

Definition 8 (J-normality). We call a set of attack rules gf-normal if it excludes attacks on tauto-
logical arguments.



@-normal attack rules reflect the intuition that tautological arguments are the most solid ones,
and as such should not be attacked. This kind of rule is needed for Theorem [I] (as shown in Example
below).

Example 4. By their definitions, all the rules in Table [I| are F-normal, since they exclude attacks
on arguments with empty sets of supports. In [Direct] Undercut and [Direct] Defeat, this also follows
from the attack conditions, and in Consistency Undercut this follows from the form of the attacking
and the attacked arguments.

The main result of this section is the following:

Theorem 1. Let AF(S) = (Arge(S), Attack(A)) be a logical argumentation framework for S, based
on a logic £ = {L,+) and a set A of &-normal attack rules. For & S Argo(S) n gt and A* <
A such that Attack(A*) < (Arg () x &), we let AF*(S) = (Arga(S)\E, Attack(A\A*)). Then
Sem(AF(S)) = Sem(AF*(S)) for every Sem € {Adm, Cmp, Grd, Prf, Stb, SStb, Idl, Egr}.

Note 1. Intuitively, the set £ in Theorem [1] consists of the ‘contradictory’ S-based arguments (cf.
Example|3)) and A* consists of the rules that allow to attack the elements in £. What T heorem says,
then, is that if ‘contradictory’ arguments are not allowed (as in Definition [2)) then attack rules in the
style of A* may be avoided, and vice-versa: In case that no restrictions are posed on the arguments’
supports (as in Definition [3|) then A*-type attack rules are needed.

Proof. We distinguish between the different cases of Sem.

e Sem = Adm: Let H € Adm(AF(S)). We first observe that H € Arg,(S)\E. Indeed, if there were
an argument A € 1 in H, there would be an argument B € Arg, () A-attacking A, and by the
@-normality of A there would not be an attacker of A in H, contradicting the admissibility of H in
AF(S).

Clearly, H is conflict-free in AF*(S). Suppose now that there is some A € Argq(S)\E that (A\A*)-
attacks some B € H. Since H € Adm(AF(S)), there is a C' € H that A-attacks A. Since A is gf-normal,
A has non-empty support. Since Attack(A*) € (Argo(F) x E) and A ¢ £, C also (A\A*)-attacks A.
This shows that H € Adm(AF*(S)).

Let now H € Adm(AF*(S)). Clearly, H S Arga(S). Assume for a contradiction that there are
A, B € H such that A A-attacks B. By the admissibility of # in AF*(S), A does not (A\A*)-attack
B. Thus, A A*-attacks B. However, then B € &, since Attack(A*) S (Arge(F) x £). This is a
contradiction to H S Arga(S)\E. Thus, H is conflict-free in AFe(S).

Suppose now that some B € Argq(S) A-attacks some A € H. If this is an (A\A*)-attack, by the
admissibility of H in AF*(S) there is a C' € H that A-attacks B. Assume, then, that this is an A*-
attack. Then A € &, since Attack(A*) € (Arge(F) x £). This is a contradiction to H S Arge(S)\E.
Thus, H € Adm(AF(S)).

e Sem = Prf: This follows immediately from the fact that Adm(AF(S)) = Adm(AF*(S)), since

preferred extensions are the maximally admissible ones.
e Sem = Idl: By the facts that Prf(AF(S)) = Prf(AF*(S)) and Adm(AF(S)) = Adm(AF*(S)).

e Sem = Stb: Let H € Stb(AF(S)). Assume first for a contradiction that H n & # &. Let
A e H nE. Then there is a B € Argo(() that (A\A*)-attacks A. Since A is @f-normal, there is no
C € H that A-attacks B. By the stability of H, B € H, which contradicts the conflict-freeness of H.
Thus, H n & = & and so H S Arga(S)\E.

Clearly, H is (A\A*)-conflict-free since it is A-conflict-free. Suppose that A € Arga(S)\(€ U H).
Then A € Argo(S)\H and so there is a B € H that A-attacks A. Since Attack(A*) € (Argo () x &)
and A ¢ &, B also (A\A*)-attacks A. Thus, H € Stb(AF*(S)).

Suppose now that H € Stb(AF*(S)). Assume for a contradiction that H is not conflict-free in
AF(S). Thus, there are A, B € H such that A A-attacks B. Since H is conflict-free in AF*(S), A



does not (A\A*)-attack B, and so it A*-attacks B. Since Attack(A*) € (Arge () x £), B € £, which
contradicts the fact that H € Arge(S)\E. Thus, H is conflict-free in AF(S).

Suppose now that B € Arga(S)\H. If B € Argo(S)\E, there is an argument A € H that A-
attacks B. Otherwise, B € £, thus there is an A € Arga(F) that A-attacks B. Since A is @-normal,
A € Argo(8S)\€ and, since H is stable in AF*(S), A € H. Altogether, this shows that H € Stb(AF(S)).

e Sem = Cmp: Suppose that H € Cmp(AF(S)). As shown above, H € Adm(AF*(S)). Suppose
now that H defends B € Arg,(S)\E in AF*(S) and that A € Arg,(S) A-attacks B. Assume for a
contradiction that A A*-attacks B. But then B € £, which is impossible. So A (A\A*)-attacks B.
Thus, there is a C' € H that A-attacks A. It follows that H also defends B in AF(S), and so B € H.
Thus, H € Cmp(AF*(S)).

Suppose that H € Cmp(AF*(S)). As shown above, H € Adm(AF(S)). Suppose now that H
defends A € Argy(S) in AF(S). Note that A ¢ £ by the ¢f-normality of A. Suppose that some
B € Argo(S)\E (A\A*)-attacks A. Then, there is a C € H that A-attacks B. Since B ¢ &, C also
(A\A")-attacks B. Thus, H defends A in AF*(S), and so A € H. This shows that H € Cmp(AF(S)).

e Sem = Grd: This case immediately follows in view of Cmp(AF(S)) = Cmp(AF*(S)) and the
fact that the grounded extension is the S-minimal complete extension.

e Sem = Sstb: Let H € Sstb(AF(S)). In particular, H € Cmp(AF(S)), and since Cmp(AF*(S)) =
Cmp(AF(S)), H € Cmp(AF*(S)). To see that H € Sstb(AF*(S)) it remains to show that H has a
maximal range (i.e., that H U H ' is S-maximal) in Cmp(AF*(S)). Indeed, let H' € Cmp(AF*(S)).
Since Cmp(AF*(S)) = Cmp(AF(S)), we have that H' € Cmp(AF(S)), and so H' VH'T € HUHT
w.r.t. AF(S). Now, if H' € H, then H'" € HT also over Argo(S)\E, and so H' v H'T € HU HT
w.r.t. AF*(S) as well. Otherwise, for every A € H'\H it holds that A € H*. Since A is @-normal,
A ¢ &, and for every attacker B € H it holds that (B, A) € Attack(A\A*). Thus, for every A € H'\H
it holds that A € H* where the attacks are already in AF*(S). It follows that H' O H'T € H U HT
w.r.t. AF*(S) in this case as well, therefore H € Sstb(AF*(S)).

The proof of the converse is similar: Suppose that H € Sstb(AF*(S)). Thus, H € Cmp(AF*(S)),
and since Cmp(AF*(S)) = Cmp(AF(S)), H € Cmp(AF(S)). It remains to show that H has a maximal
range in Cmp(AF(S)). Indeed, let H' € Cmp(AF(S)). Since Cmp(AF(S)) = Cmp(AF*(S)), we have
that H' € Cmp(AF*(S)), and so H' UH'T € HUH' wrt. AF*(S). Now, if H' € H, then H't € H*
also over Arga(S), and so H' VH'T € H U HT wr.t. AF(S) as well. Otherwise, for every A € H'\H
it holds that A € H™ when the attacks are over A\A*. Clearly, such attacks still hold over a superset,
i.e., over A, thus for every A € H'\H it holds that A € HT where the attacks are in AF(S). It follows
that H' v H'T € H U HT wr.t. AF(S) in this case as well, therefore H € Sstb(AF(S)).

e Sem = Egr: This case immediately follows in view of Sstb(AF(S)) = Sstb(AF*(S)), and that
admissibility carries over AF(S) and AF*(S) (and vice-versa). O

Note 2. In the notations of Theorem [l when the arguments in Arga(S) n @t (i.e, those with
inconsistent supports) cannot attack other arguments, the conflict-free sets of AF(S) and of AF*(S)
coincide. In this case, Theorem [T holds also for Sem = Stg. Indeed, the fact that a set has a maximal
range over the conflict-free sets in AF(S) iff it has a maximal range over the conflict-free sets in
AF*(S) can be shown like the proof for semi-stable extensions (where the complete extensions are
replaced by conflict-free sets).

As a particular case of Theorem (1} we have the following corollary (where Consistency Undercut
is regarded as the attack rule for preserving consistency):

Corollary 1. Let AF(S) = (Arge(S), Attack(A)) be a logical argumentation framework for S,
based on a logic £ = (L,F) and a set A of F-normal attack rules that contains ConUcut. Let
also AF"(S) = (Arg?"(S), Attack(A*)) be a logical argumentation framework in which A* = A —



{ConUcut} and Argg"(S) is the subset of Arga(S) that consists only of \¢-consistent arguments
(i.e, whose supports are \g-consistent). Then Sem(AF(S)) = Sem(AF<"(S)) for every Sem €
{Adm, Cmp, Grd, Stb, Prf, SStb, Idl, Egr}.

Proof. Follows from Theorem since Attack(ConUcut) € Argq () x Arg'a®"(S), where Arga®(S) =
Arge(S)\Arge" (S). -

Note 3. The use of ConUcut for attacking arguments that are based on inconsistent supports goes
beyond the standard interpretation of inconsistency as in classical logic. For instance, according to
logics of formal inconsistency (LFIs, see [33 34]) S; = {v, —¢} is not considered inconsistent, but
rather Sy = {1, =), 01p} (where o is the consistency operator, thus ot is intuitively understood as a
claim that ‘¢ is consistent’). Indeed, when an LFT is the base logic, an argument whose support is Sy
is not ConUcut-attacked, while an argument whose support set contains Sy is ConUcut-attacked (by
(B, = () A =1 A o1h))). We shall return to this issue in Section

We note that Theorem [I] and Corollary [I] crucially depend on A being @-normal. To see this,
consider the following example.

Example 5. Let AF be a logical argumentation framework, based on classical logic with the following
premises S = {p A —p, ¢}, and with a more radical form of Rebuttal that does not follow the restriction
that only arguments with non-empty supports may be attacked. Then, although {p A —p, —q) is
ConUcut-attacked by (&, =(p A —p)), the latter is Rebut-attacked by {p A =p,p A —p) (given our
more radical form of Rebuttal). Thus, e.g., the grounded extension of AF will be empty in the
presence of the radical form of Rebuttal, even in the presence of ConUcut. However, after filtering out
inconsistent arguments, it is easy to see that (¢, ¢) will be an argument in the grounded extension.

Corollary 2. Let AF(S) and AF*(S) be as in Theorem [} Then AF(S) |~ jgom ¢ iff AFX(S) I ggem ¥
for every o € {u, n,M} and Sem € {Adm, Cmp, Grd, Stb, Prf, SStb, Idl, Egr}ﬂ

Proof. Immediate from Theorem [I] and Definition [6] O

4 Support Minimization

We now address the second condition in Definition [2 namely the subset minimality of argument
supports. Our main finding regarding this condition is given in Theorem [2} showing that the condition
is not strictly necessary. To establish this result, we first introduce several definitions and a supporting
lemma.

Definition 9 (support ordering). Let AF(S) = (Argy(S), Attack(A)) be a logical argumentation
framework. A support ordering for S is a preordeﬂ < on Pfin (S)B

Example 6. The subset relation € is the most natural support ordering in our context. However,
there are other candidates to be a support ordering <, among which are the following;:

o For A, T € pin(S) we define A <, Tiff T' = AA.

e Suppose that S is stratified into a partition (Si,...,S,), where intuitively formulas in S; are
considered more reliable than formulas in S; when i > j (see [32]). We let < be the lexicographic
ordering, i.e., for A = (Ay,...; A,y and T' = (T'y,..., T (with A;,T; € pfin(S;) for each
1 <4 < n), we define: A <o T iff either (i) for all 1 <4 < n, A; € T, or (ii) there is an
1<k<nsuchthat A; =T, foralll <i<kand A, cT.

9Here we abuse a bit the notations of Deﬁnition@to emphasize the relations between the argumentation frameworks.
10T e., a reflexive and transitive order.

11We will denote by < the strict version of <, that is: if < is a preorder on some domain D, then for all d,d’ € D,
d=<d iffd<d and d' £ d.
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Definition 10 (Arg™, Attack™™, A%in AF2in gwiny Lot AF(S) = (Arga(S), Attack(A)) be a log-
ical argumentation framework and let < be a support ordering for S. We let

o ArgZ™"(S) = ming (Argo(S)),
o Attack™™(A) = Attack(A) n (Arg%™(S) x ArgZ™(S)) and
o AFZIN(S) = (Arg™(S), Attack™™ (A)).

Thus, viewed as a graph, AF2™(S) is the subgraph of AF(S) whose nodes are only the arguments in
Argq(S) with <-minimal supports. Additionally, for an argument A € Arg¢(S) and a set of arguments
€ € Argo(S), we denote:

o A" = {B e Arg?™(S) | Conc(A) = Conc(B)} and
o EUIM = (A e Argl™(S) | I(B e &)(Ae BH)).

Example 7. Let £ = CL (classical logic) and < = < (the subset relation). For & = {{{p,q},p v ¢},
we have that £1X™ = {(p.p v @.{¢.p v @)}

Example 8. Let £ = CL (classical logic) and < = < (Example[§). For & = {(p A ¢.p), {p, 7}, 9},
we have that &2 = {(p, p)}.

Note 4. In the cases of Examples [f] to [8] it holds that if A, B € Arg(S) have the same conclusion
and Supp(A) < Supp(B), it makes sense to consider B argumentatively more vulnerable, since its
support gives more points of attack: Either it contains more formulas (when < = C), or because its
support contains stronger ‘logical commitments’ thus its set of conclusions is bigger (when < = <, ), or
because its support contains stronger logical commitments relative to their reliability as demonstrated
in Example |§| (when < = <¢). In that sense, demanding <-minimal support from arguments means
demanding minimal argumentative vulnerability.

Definition 11 (<-normality). A set of attack rules A is called <-normal, if for every R € A the
following conditions hold:

1. If A R-attacks B and Supp(A’) < Supp(A) and Conc(A) = Conc(A’), then A’ R-attacks B.
2. If A R-attacks B and Supp(B) < Supp(B’) and Conc(B) = Conc(B’), then A R-attacks B’'.

Note 5. The two conditions in Definition [L1{resemble rules R; and Ry (respectively) in [II, Definition
12], except that [I] refers only to the supports of the attacking and the attacked arguments, and uses
only the subset relation. Also, in rule Ry of [I] the condition on the supports are reversed (that is, R,
refers to attacking super-arguments and Rs refers to attacked super-arguments). In our case the two
conditions assure, respectively, that attacks are closed under <-stronger attacking rules and <-weaker
attacked rules[™]

Our primary result concerning support minimization is given next.

Theorem 2. Let AF(S) = (Argo(S), Attack(A)) be a logical argumentation framework, where A is
a <-normal set of attack rules with respect to some support ordering < for S. Let also A]-"g’in(S) =
(Arg™™(S), Attack™(A)) be the support-minimized framework induced from AF(S) as in Defini-
tion Then the following conditions are equivalent for every Sem € {Adm, Cmp, Grd, Stb, Prf, Idl}:

1. £ € Sem(AFZ™(S)).

12An argument A is a super-argument of B, if Supp(B) S Supp(A). If Supp(B) < Supp(A) and Conc(B) = Conc(A),
we say that B is stronger than A (or that A is weaker than B).
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2. There is £ € Sem(AF(S)) for which & = £2in,

Proof. In the proof we make use of the ‘characteristic function’ [41] F: p(Arge(S)) — p(Arga(S)),
where for every £ € Arga(S), F(E) is the set of arguments that are defended by & in AF(S).
First, we show the following lemma:

Lemma 1. Let £ € Argo(S) and A € Argo(S).
1. If € attacks A, then 521111 attacks A.
2. F(EZin) = F(E).
3. If € defends A then £ defends every A’ € Amin,
4. If £ € Cmp(AF(S)) then ETIN C €.
5. If £ € Cmp(AFZ™(S)) then F(E)2in = €.

6. If £ € Cmp(AFZ™(S)), then F(E) € Cmp(AF(S))

Proof of Lemmal[l Let £ and a be as in the lemma.

Item 1. Suppose that there is a B € £ that attacks A. Thus, there is a B’ € £2" with Conc(B’) =
Conc(B) and Supp(B’) < Supp(B). By <-normality, B" attacks A.

Item 2. Follows immediately from Item 1.

Item 3. Suppose that £ defends A and let A’ € A2, If an argument B € Argq(S) attacks A’
then, by <-normality, B also attacks A. So, £ attacks B, and therefore defends A’.

Item 4. Let £ € Cmp(AF(S)). Suppose that some A € Argq(S) attacks some B € £2. There
is a B’ € £ with Conc(B’) = Conc(B) and Supp(B) < Supp(B’). By <-normality, A also attacks B’.
Therefore £ attacks A and therefore defends B. By completeness, B € £. Thus, Egﬂ“ cé.

TItem 5. Let & € Cmp(AF%Z™(S)). Suppose that & defends A € ArgZ™(S) in AF(S) (that is,
A€ F(E) n Arg2™(S)). Suppose also that B € Arg™™(S) attacks A. Thus, & attacks B, and so £
defends A in AF;‘i”(S). By the completeness of £, A € £. Thus, F(£)2" € £. For the other direction,
suppose that A € £ and that B € Arg(S) attacks A. Let C € B?in. By <-normality, C' also attacks
A. Since £ € Cmp(AF2™(S)), € attacks C. By <-normality again, £ also attacks B. So, € defends
Ain AF(S). Thus, £ C F(£)2in,

Item 6. Let & € Cmp(AFZ™(S)). For conflict-freeness, consider A, B € F(E) and assume for a
contradiction that A attacks B. So, there is a C' € £ that attacks A. Analogously, there is a D € £
that attacks C. This is a contradiction to the conflict-freeness of £.

For admissibility, consider a B € F(€) and suppose that A € Arga(S) attacks B. Then there is a
C € & that attacks A, and so F(€) defends itself in AF(S).

For completeness, suppose that F(E) defends some A € Arga(S). Assume that B € Argq(S) attacks
A. So, there is a C' € F(€) that attacks B. Let C’ € C¥™". By Lemma (Ttem 3), & defends C’, and
so C' € £. By <-normality, C’ attacks B. Thus, £ defends A, thus A € F(&). O

The proof of Theorem [2| now proceeds as follows:

o Let Sem = Adm. Suppose first that &' € Adm(AFZ™(S)). Let & = £, Trivially, £ is conflict-free
in AF(S). For admissibility, suppose that some A € Arg.(S) attacks some B € £. Thus, there is
a A’ € A% and by <-normality, A’ attacks B. Since &' € Adm(AFZ™(S)), & attacks A’ and by
<-normality it attacks A. So, £ attacks A and is therefore admissible in AF(S).

I3Recall that by its definition, F' is applied in the context of AF(S).
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Suppose now that & € Adm(AF(S)). Let & = £2. For conflict-freeness assume there are
A, B € &£ such that A attacks B. So, there is a B’ € £ such that Conc(B) = Conc(B’) and Supp(B) <
Supp(B’). By <-normality, A attacks B’. Since £ € Adm(AF(S)), £ attacks A. There is an A’ € £
for which Supp(A) < Supp(4’). By <-normality, £ attacks A’. This is a contradiction to the conflict-
freeness of £. So, &' is conflict-free.

For admissibility, suppose that some B attacks A, where A € &'. So, there is an A’ € £ with
Supp(A) < Supp(A’). By <-normality, B attacks A’. By admissibility, £ attacks B. So, A € F(£) and,
by Lemma [} A € F(E"). Thus £’ is admissible.

o Consider Sem = Cmp. Let first & € Cmp(AFZ"(S)) and let £ = F(£'). By Lemma (Ttem 6),
£ € Cmp(AF(S)) and by Lemma [1] (Ttem 5) & = £2in,

For the converse, let £ € Cmp(AF(S)) and & = 2. So & = F(£). By Lemma [1] (Item 2),
£ = F(E"). We have to show that & € Cmp(AFZ™). Since by Lemma || (Ttem 4), &' € &, conflict-
freeness follows trivially.

For admissibility let A € £ and suppose that B € Arg?in(S) attacks A. So, there is a C € £ that
attacks B. Let C' € C2*. By <-normality, C’ attacks A. So, £’ defends itself.

For completeness, suppose that £ defends some A € /-\rg;nin(S). Then £ defends A in AF(S), and
so Ae&. Since Ae & nArg?™(S), Ae &P e, Ae &

o Consider Sem = Stb. Let first £’ € Stb(AF2™(S)) and let £ = F(£’) (where again F is applied
in the context of AF(S)). By Lemma [l] (Item 6), £ € Cmp(AF(S)). Let A € Argo(S)\E. We have
to show that £ attacks A. Since & = F(£’), A is not defended by &', and so there is a B € Argq(S)
that attacks A and that is not attacked by £’. Let B’ € B2i". Note that £ does not attack B’ either,
since otherwise it also attacks B by <-normality. By the stability of £, B’ € £’ and by <-normality,
B’ attacks A. Since by Lemma (Items 4 and 5), &' = £21" < £, this shows that also € attacks A.

Let now & € Stb(AF(S)) and let & = 21", We already know that & € Cmp(AFL™(S)). Let
Ae Arg?i“(S)\S’. Thus, A ¢ £, and therefore £ attacks A. By Lemma (Ttem 1), &' attacks A.

e Consider Sem = Grd. Suppose first that £’ is the grounded extension of A]:;“in (S). By Lemma
(Item 6), & = F(€’) is complete in AF(S) and by Lemma [1| (Item 5) £ = 2. It remains to show
C-minimality. Consider a set & € Cmp(AF(S)) such that & € €. Then &2 € Cmp(AFZ(S)).
By the groundedness of £, £&%™ 2 &’. By the monotonicity of F, F(&2™) 2 F(£'). By Lemma
(Ttem 2), F(E2) = F(E22™) = &. So, & 2 & and therefore £ = £. Tt follows that & is grounded in
AF(S). .

Let now & be the grounded extension of AF(S). We already know that & = £2'™ is complete
in AF2(S). Assume for a contradiction that there is a £ € Cmp(AF2"(S)) for which & ¢ &
and let A € £'\E}. Thus, F(E,) € Cmp(AF(S)) and since € is grounded, F(£,) 2 £. By Lemma,
(Item 5), & = F(&’). So, by the monotonicity of F', F(£)) € £ and therefore £ = F(E}). We note that
A ¢ F(E}) since & does not defend A in AFZ™(S) and thus also not in AF(S). Hence, A € E\F(E))
which is a contradiction (to & = F(&5)). Thus, &' is grounded in AFZ™(S).

o Consider Sem = Prf. Suppose first that & € Prf(AFZ™(S)) and let & = F(£'). By Lemma
(Item 6), & € Cmp(AF(S)) and by Lemma [1] (Item 5) £ = £2". We have to show C-maximality of
€ in Cmp(AF(S)). Consider a & € Cmp(AF(S)) for which & 2 €. We have to show that & = £.
We know that £&2™ € Cmp(AFZ™(S)). By Lemma (Ttems 2 and 5), & = F(&) = F(E&2™). So,
& = F(&2™) 2 F(E') = €. Thus, F(&2™)min  F(£)2", By Lemma [ (Item 5), F(&2™)2n =
5221111 and F(&)2n = &', So, Eg?n 2 &’ and by the S-maximality of &', 52?“ = &', Tt follows that
Ey=F(&EE™) =F(&) =¢€.

For the converse, let £ € Prf(AF(S)) and let £’ = E2. We already know that & € Cmp(AFZ™(S)).
By Lemma [I] (Items 2 and 5), & = F(E) = F(£’). Consider a set & € Cmp(AF2™(S)) for which
&y 2 &'. We have to show that & = £'. By the monotonicity of F, F(&) 2 F(&') = £. We know
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that F(&) € Cmp(AF(S)). By the maximality of £, F(&) = £. So, F(&)Dn = £0in = [(&)win,
By Lemma (Item 5), F(E)2 = & and F(E')2" = & and so & = &’. Thus, £ is a S-maximally
complete extension, i.e. a preferred extension of AFZ"(S)).

e Consider Sem = Idl. We first show the following two items:

(a) If Z is ideal in AFZ™(S) and & € Prf(AF), then F(Z) S €.

(b) If Z is ideal in AF(S) and & € Prf(AFZ™), then T2 C €.

Item (a). Let Z be ideal in AFZ™(S) and let & € Prf(AF). Since Z is complete in AFZ™(S),
F(Z) € Cmp(AF(S)). Assume towards a contradiction that there is an A € F(Z)\E. Since £ is
complete, there is a B € Argq(S) that attacks A and that is not attacked by €. Since A € F(Z), B is
attacked by Z. By Lemma (Item 1), B is also not attacked by Egli“, and so I\é’g‘i“ # . We know
that £21" € Prf(AFZ"™(S)), hence Z € €21, a contradiction. Thus, F(Z) € £.

Ttem (b). Let Z be ideal in AF(S) and let £ € Prf(AFZ™). Assume for a contradiction that there
is an A € 7%"\&. By Lemmal| (Item 4) and since Z is complete in AF(S), A € Z. When proving the
case Sem = Prf, we have shown that F(E) € Prf(AF(S)). Since £ is complete in AFZ™(S), there is a

B e Arg"(S) that attacks A but is not attacked by £. By Lemma (Item 2), B is also not attacked
by F(&). Since F(E) € Prf(AF(S)), F(E) does not defend A, and so A € Z\F (). By the ideality of
Z,7 < F(£). But this is a contradiction (to A € Z\F(&)).

Based on the items above, we now show the proposition for ideal semantics.

Let Z be ideal in AF2™(S). By Item (a), F(Z) is contained in every preferred extension of AF(S).
Since Z is complete in AF%™(S), by Lemma (Item 6), F(Z) is complete in AF(S). Let Z’ be ideal in
AF(S). Hence, F(T) € T'. Assume for a contradiction that there is an A € Z/\F(Z). By Item (b) 7'
is contained in every preferred extension of AFZ™(S). Also, we know that Z' ;nin € Cmp(AFZ™(S)).
By the maximality of Z, I’Zﬂn € Z. By the monotonicity of F, F(I’;nin) C F(ZI). However, by
Lemma (Item 2) and since F(Z') = Z' (because Z' is complete in AF(S)), we have 7' = F(I’Ein).
Thus, Z' € F(Z). This is a contradiction (to A € Z\F(Z)). So, Z' = F(ZI).

Let now Z be ideal in AF(S). By Item (b), I is contained in every preferred extension of
AF2I(S). Also, we know that T2 € Cmp(AF2™(S)). Let Z’ be ideal in AF2™(S). So, T2 < 7',
Assume for a contradiction that there is an A € I"\Z2™. So, I¥™ does not defend A and therefore
there is a B € ArgZ™(S) that attacks A and that is not attacked by Z2". By Lemma (Item 1), B is
also not attacked by Z and so A ¢ Z. We know that F'(Z') is complete in AF(S), and by Item (a) it is
contained in every preferred extension of AF(S). By the maximality of Z, F(Z') € Z. Since A € 7',
by Lemma|l} A € F(Z')\Z, a contradiction (to F(Z') € Z). Thus, I = 2. O

Theorem [2| indicates that, for every Sem € {Adm,Cmp, Grd, Stb, Prf,Idl}, £ € Sem(AF(S)) iff
Ein e Sem(AFL"™(S)). We therefore have the following corollary:

Corollary 3. Let AF(S) = (Arga(S), Attack(A)) be a logical argumentation framework, where
Ais a <-normal set of attack rules w.r.t. some support ordering < for S. Then for every Sem €
{Adm, Cmp, Grd, Stb, Prf, Idl} it holds that: Sem(AFZ"™(S)) = {E2I" | € € Sem(AF(S))}.

Like the case of consistency preservation (cf. Corollary , we have the following corollary of
Theorem 2

Corollary 4. Let AF(S), and AFT"(S) be as in Theorem [2 Then for every o € {u, n,M} and for
every Sem € {Adm, Cmp, Grd, Stb, Prf, Idl} it holds that AF(S) |~ gem ¥ iff AFZ"(S) P osem 1/1

14 Again, here we abuse a bit the notations in Deﬁnition@to emphasize how the argumentation frameworks are related.
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Theorem [2| does not hold for semi-stable, eager and stage semantics, as the following examples
show.

Example 9. We take KD as the as underlying logic with the modality O, interpreted deontically as
ought-to-be operatorﬁ Here, attacks model the Kantian ought-implies-can principle, where facts are
considered inalterable. According to it, (S, —¢) attacks {(Ss, 1) iff ¢ has no occurrences of O, and
{(82,0¢) is derivable.

Consider the following set of assumption:

Op1 A —=p2 Opz A —p3 Ops A —p1
S = Op1 A —=pa AOu  Opa A —p3 A Ou Ops A —=p1 A Ou
—u A Os A —t —s A Ot

Additionally, we let < = <, . We have, for instance, the following arguments:

o A:{(Op1 A —=pa A Ou, —pg)y and A" : {Opy A —pa, —p2)

B : {Opy A —p3 A Ou, —p3) and B’ : {Ops A —p3, —p3)

C :<{Ops A =p1 A Ou, —p1y and C" : {Ops A —p1, —p1)
e D:{(—unOsnA—t, ~uyand D': (—~u A Os A —t, —t)
e £:{(—snO0Ot, —s)

A fragment of AF(S), containing the arguments above, is given in Figure

Figure 1: Part of the argumentation framework for Example O Double circled nodes represent argu-
ments in ArgZ™"(S). Highlighted are the two semi-stable extensions of AFZ"(S).
Consider the set {F}. The range of {E} in both AF2™(S) and AF(S) is {F, D', D}. Now, consider
{D,D'}. Tts range in AFZ"™(S) is also {E, D', D}, but its range in AF(S) is {E,D’, D, A, B, C}.
More generally, we have two semi-stable extensions in AFZ"(S), namely:

o & = ArgZ™({—=s A Ot}) = Arggp({—s A Ot}) (including argument E, black nodes in Fig.
and

15This logic is also known as SDL (Standard Deontic Logic, [3]), incorporating the modal axioms K and D.
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o & = Arg?({=u A Os A —t}) = Arggp({—u A Os A =t}) (including the arguments D and D,
gray nodes in Fig. .
However, only & is semi-stable in AF(S), unlike & (whose range w.r.t. AF(S) is strictly smaller

than that of &). This shows that Theorem [2[ does not hold for semi-stable semantics.

Our analysis also implies that & is eager in AF(S), but not in AFZ™(S). Therefore, Theorem
also does not hold for eager semantics.

Finally, & = {E, A A',...} = Argrﬁ“i“({—us A Ot, Opy A —pa A Ou, Opy A —pa}) is a stage extension
in AFZ"™(S). However, there is a conflict-free set of AF(S) whose range is bigger than that of &,

namely {D, D', A’...} = Arg®({=u A Os A —t, Op1 A —pa}), illustrating that Theorem [2| fails for
stage semantics as well.

Example 10. A slight variant of our previous example also show that not every semi-stable [resp. stage]
set in AF(S) has a corresponding semi-stable [resp. stage] in AFZ™(S). For this we alter S to

S = (S\{—s A Ot}) U {—=s A Ot A =q1, Oq1 A —q2, Og2 A —q3, Oqz A —q1}
Besides the arguments A, ..., D, A’,..., D" we also have:
o £:{(—sAOtA—q1,—8y, E':{(=8AOtA—q,—qyand E" : (—=s A Ot A —q1,0t)
o I':{0q1 A —q2,~q2), G :{Oq2 A —q3,—~q3) and H : {Oq3 A —=q1, —~q1).

Figure [2]is an excerpt of the resulting argumentation framework.

Figure 2: Part of the argumentation framework for Example Double circled nodes represent
arguments in ArgZ™"(S). Highlighted are the two semi-stable extensions of AF(S), where only the
black one is also semi-stable in AFZ"(S).

We note that the set
{D,D',...} = Argxp({Op1 A —p2, =u A Os A —t})
is semi-stable in AF(S’), but not in AFZ™(S’). The reason is that

{E,E'E",G,...} = Argxp({—s A Ot A —q1, Oq2 A —q3})
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is semi-stable in AF2™(S’) (and also in AF(S’)) and it has a larger range. Similarly,
{D,D' A" F,...} = Argxp({Op1 A —p2 A Ou, Op1 A —pa, —u A Os A —t, Ogy A —ga})
is stage in AF(S’), but it is not stage in AFZ"(S’).

Note 6. When Stb(AF(S)) # & it holds that Stg(AF(S)) = Stb(AF(S)), and when Stb(AF(S)) =
Prf(AF(S)) we have that SStb(AF(S)) = Stb(AF(S)). In such cases, Theorem [2| is also applied,
respectively, to stage and semi-stable semantics. We note that these are rather common prerequisites
and refer to [8] for some conditions on the argumentation frameworks that guarantee the satisfaction
of these prerequisites.

5 Attack Rules, Revisited

The previous sections show that the handling of inconsistency and minimality in logical argumentation
frameworks may be shifted from arguments to the attack rules. Apart of the obvious advantage of
a considerable simplification in the construction and the identification of valid arguments, we believe
that representing these consideration is more appropriate in the rule-based level. Indeed, in real-life
arguments are not always based on minimal evidence, avoiding inconsistency sometimes means loss of
information, etc.

The use of attack rules for maintaining inconsistency and conflicts among arguments should be
taken with care, though, especially when non-classical logics are used as the base logic of the frame-
work. In this section we consider the conditions under which the attack rules in Table [1 can be
successfully applied. Below, we distinguish among the different rules, and show that for some logical
setting some of them need to be reformulated.

5.1 Consistency Undercut

Corollary [1] indicates that, among others, ConUcut may replace the support consistency requirement.
However, in some base logics the use of ConUcut may not be appropriate or even meaningful. This
may happen mainly due to the following reasons:

e No attacking arguments: Consider, for instance, Kleene’s 3-valued logic K3 with the connectives
=, A, v (and their usual 3-valued interpretations) [48]. This logic has no valid tautological
arguments, because in Kleene’s logic no formula follows from the emptyset. This means that
Consistency Undercut is not applicable in such a logic.

e No attacked arguments: For instance, in Priest’s 3-valued logic LP [55] [56] with the connectives
—, A, Vv, every set is satisfiable, thus, again, the use of Consistency Undercut is problematic.

Dunn-Belnap’s four-valued logic of first-degree entailment (FDE, [I7, [18]), combining K3 and LP,
suffers from both problems, namely it does not have tautological arguments and every set is satisfiable.
However, if the language of —, A, v is extended with a detachable implication connective (2, see []),
both tautological and contradictory (unsatisfiable) arguments may be introduced, in which case it
makes sense to incorporate consistency undercut.

Note 7. It worth noting that in many cases (e.g., when the underlying logic is CL), ConUcut follows
either from Defeat or from Undercut (see [8, Note 6]). Next, we consider these rules.
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5.2 [Direct, Full] Defeat

It may happen that certain attack rules need to be adjusted to specific base logics. We demonstrate
this with the logics of formal (in)consistency (LFIs, [33] [34]), mentioned in Note 3| and the [Direct,
Full] Defeat attack rules (see Table [I). According to these rules, the argument ({—t}, =) should
attack ({0}, ). However, for frameworks that are based on LFIs such an attack is more problematic,
since the set {¢, =1} is not considered inconsistent, unless 1 is known to be consistent (i.e., ot can
be inferred)m

In the presence of a propositional constant F for falsity, a reformulation of the attack condition of
[Full] Defeat could be, then, that 1, S2 - F, ensuring that the conclusion of the attacking argument
together with the support of the attacked argument form an inconsistent set, as indicated in Table m

Rule Name Acronym | Attacking | Attacked Attack Condition
Inconsistency Defeat IncDef {(S1,U1) (SauSh ey | 1,8 —F
Inconsistency Full Defeat IncFullDef | {S1,1) (Sa, 12y 1,82+ F
Inconsistency Direct Defeat | IncDirDef | (S1,¢1) | o} v Sh¢2) | 1,0 —F

Table 2: Attacks by defeat, revisited (again, we assume that supports of the attacked arguments are
nonempty).

Note that the revised conditions in the rules of Table [2| avoid the use of conjunction and are
suitable for logics such as LFI as well: While according to LFI {{—}, =) should not attack ({1}, ¥)
(although =1 + —t), the argument {({—}, —9)) can be used for attacking, by Inconsistency [Full]
Defeat, the argument ({ov), 1}, 1), and the latter attack is perfectly justifiable in the context of any
LFI, since the attacked argument is based on the assumption that not only its conclusion  holds,
but it is also consistent.

One may think of several variations of the rules in Table [2| following different intuitions. Below
are some options:

Intuition 1: Attacks based on a consistency assumption of the attacker.
In this case, e.g., {{op, p}, p) should attack {—p, —p), but not vice versa.
Indeed, the support {op,p} of the attacking sequent together with the conclusion —p of the
attacked sequent are LFI-inconsistent, while this is not the case concerning the support {—p} of
the attacked sequent and the conclusion p of the attacking sequent.

Intuition 2: Attacks based on a consistency conclusion of the attacker.
According to this intuition, {{op, p}, op A p) attacks {—p, —p), but {{op, p}, p) should not attack
(=p, =p)-
Here, again, {op A p} u {—p} is LFI-inconsistent thus the attack is justified, while {p, —p} is not
LFI-inconsistent, thus the other attack is not justified.

Intuition 3: Attacks based on a consistency assumption of the attacked argument.

In this case, e.g., (—p, —p) attacks {{op, p}, py, but not vice versa.

16Tn LFI, the consistency operator o is represented by a primitive connective, while in other logics it may be a defined
connective (e.g., —=(¢ A —)).

17In logics with a conjunction and where the usual contraposition law holds, or when the negation is defined by
—¢ = ¢ D F for a deductive implication D, this reformulation is even equivalent to the original one.
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The intuitions above may be captured by extending the conditions of the rules of Table For
instance, variations of inconsistency defeat may be the following:

LFI-based variation of Intuition 1 for Inconsistency Defeat:
LFI-IncDef-1: <Sl, 1/}1> attacks <82 U Sé, 1/}2> iff Y1 _‘/\82 and S1 + O/\Sl.

LFI-based variation of Intuition 2 for Inconsistency Defeat:
LFI-IncDef-2: {(S1,11) attacks (Sa U S, o) iff 11 - = AS2 and 11 - o)y

LFI-based variation of Intuition 3 for Inconsistency Defeat:
LFI-IncDef-3: (81,11 attacks {Sa U 8, o) iff 1 - = AS2 and So - o ASs.

The additional condition in each case above just expresses the consistency assumption of the
corresponding intuition. In these conditions, ot is intuitively read by ‘¢ is --consistent’.

Note 8 (should minimality be enforced?). The examples in this section provide another reason to
avoid the minimality requirement in Definition [2 For instance, the support set of A = {{¢, o}, ) is
not minimal, as indeed o is not necessary for the conclusion of the argument, but it is necessary for
enabling the rule of A on B = {{—}, —9), reflecting Intuition 1 aboveE

5.3 [Direct, Full] Undercut and [Defeating] Rebuttal

When the conditions in terms of negation are traded for consistency requirements, the Undercut rules
coincide with the corresponding Defeat rules. Regarding the Rebuttal rules, conditions in the spirit
of the previous section could be that the conclusions of the attacking and the attacked arguments are
mutually inconsistent, that is: ¢1,%s — F. Like before, variations of these rules may involve extra
conditions, expressing further consistency assumptions.

In Section [7] where we discuss the logical preservation property, we shall consider further cases
in which attack rules are adapted to the underlying logic. See, in particular, the rules in Table
concerning the logics B3 and K3, and the rules in Table ] concerning the logic LP, substituting various
forms of Defeat attacks for those logics.

6 Compact Representations of Logical Frameworks

Minimizing the supports of arguments, as discussed in Section [4] results in more compact logical argu-
mentation frameworks. This raises the question of whether such frameworks can be further reduced in
their representation, and in particular, whether a finite equivalent representation is achievable. In this
section, we show that if the set of premises is finite and attacks depend solely on the support sets of
the attacked arguments, then logical frameworks can indeed be translated into equivalent frameworks
with a finite number of arguments.

The next definition refers to attack rules that are triggered only by the content of the support of
the attacked argument. This includes all the rules in Table [I} except of the rebuttal attacks.

Definition 12 (support-driven attack rules). An attack rule R is said to be support-driven, if its con-
dition (if any) refers only to the support of the attacked argument (apart of the attacking argument),
and it is satisfied provided that that support is non-empty. Thus, if R is support-driven, (S, 1)
R-attacks (Sz2,12) if a condition Cg(S1,v1,Ss2) holdsB and for every set S; u {¢]} of formulas,
Cr(S1, ¥, D) does not hold.

18 According to this attack rule ({—}, =1 is also attacked by ({1, 01}, % A 01), which meets the minimality criterion,

but the latter assumes the availability of a conjunction, while {{1, 01}, 1> holds only by reflexivity and monotonicity.
YFormally, Cr is a function from pf,(S) x WFF(L) x pfin(S) to {true, false}.
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Note 9. Some remarks are in order here:

1. The function Cx in Definition allows to abstractly represent support-driven attacks, which
exclusively depend only on the supports of the attacking and the attacked arguments, and
the conclusion of the attacking argument. This function reduces questions of attacks between
specific arguments to relations between equivalence classes representing supports sets that are
logically equivalent (see also Note below). As we shall show in what follows, this enables
finite representations of support-driven attacks.

2. It is interesting to observe the following difference in the requirements from support-driven rules
(Definition and <-normal ones (Definition : While the first condition in Definition [11|can
be expressed in terms of the <-anti-monotonicity property of the first argument of the support-
driven condition (If Cxr(S1,%1,S2) holds and S§ < &; then Cr(S], 11, S2) holds as well), the
second condition in Definition [11]is irrelevant to the conditions of support-driven rules, since it
takes into consideration the conclusion of the attacked argument.

3. We focus on attacks on the supports of arguments, since in logical argumentation frameworks,

conclusion-based attacks (rebuttas in particular) are known to be problematic. To illustrate
this, reconsider the set & = {p, —p, ¢} in Example As shown in that example, employ-
ing support-driven attacks rule yields the expected outcome, including tautological arguments
(such as (&, p v —p)) and arguments supported by ¢ (e.g., {q,¢)), which is not involved in the
inconsistency of S. However, once rebuttal attacks are introduced, neither {q, ¢y nor {&,pv —p)
belong to the grounded extension. Indeed, both these arguments are rebutted by {{p, —p}, —¢)
and {{p, =p}, ~(p v —p)).
A further difficulty is, e.g., that for S = {p, ¢, —=(p A q)} with rebuttal attacks there is a complete
extension containing the arguments {p, p, {q,q), and {(=(p A q),—(p A q)). This extension is
inconsistent, in the sense that is the set {Conc(s) | s € £} is inconsistent. For a systematic
study of how combinations of attack rules affect the properties of the extensions and the overall
framework, see, e.g., [g].

Definition 13 (support-induced frameworks). Let AFe 4(S) = (Arga(S), Attack(A)) be an argumen-
tation framework in which all the rules in A are support-driven. The support-induced argumentation
framework (SAF), based on the logic £, the attack rules A, and the set of premises S, is the framework
SAFe A(S) = {phin(S), S-Attack(A)), where (S1,S2) € S-Attack(A) iff there is an attack rule R € A
such that Cr(S1,1,S2) holds for some 7 such that (S1,11) € Argo(S) and S2 S S.

Example 11. The support-induced argumentation framework that corresponds to the argumentation
framework in Example [2] is represented in the figure below. To simplify the figure, we grouped the
nodes {—p, ¢} with {—p}, and {p, ¢} with {p}, into two outer nodes, since the inner nodes within each
group share the same incoming and outgoing edges. The node with the empty label represents the
empty set J.
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Note that while the graph of AFe 4(S) is not finite, the graph of SAF¢ 4(S) contains only eight
nodes (the size of the power-set of §). Thus, for instance, all the arguments of the form {(p A —p, )
for some formula ¢ are reduced to one node (that of {p, —p}) in the graph of SAFe 4(S).

Note 10. We note that the support-induced argumentation framework SAFg 4(S) gives rise to a
quotient structure for AFg 4(S) under a simple translation. To see this, let ~ S Argq(S) x Arge(S)
be defined by A ~ A’ iff Supp(A) = Supp(A’). Tt is easy to see that ~ is an equivalence relation on
Arga(S). Let Arga(S)~ be the set of equivalence classes induced by ~. Let 7 : Arge(S) — p(S) be
defined by [A] — Supp(A). Due to the reflexivity of ¢, 7 is a bijection, if £ has theorems (that is, if
Cn (&) # F). Let ([A]~,[A]~) € Attack(S) . iff (A, A") € Attack(S). Then, (Args(S)~, Attack. ) is
a quotient structure for AFg 4(S). The latter is isomorphic to SAFg 4(S), in case £ has theorems@

Note that, given a finite set S of premises, and assuming that the rules in A are support-driven, the
support-induced argumentation framework SAFg 4(S) is finite. It is therefore interesting to check
whether AFe 4(S) and SAFg 4(S) give rise to the same extensions (under the translation which
associates arguments of the form (§’,¢) € Arg(S) with their support S’). This is confirmed by the
next theorem 2]

Theorem 3. Let AFe 4(S) = (Arga(S), Attack(A)) be an argumentation framework in which all
the rules in A are support-driven, and let SAFe A(S) = {pfin(S), S-Attack(A)) be its corresponding
support-induced logical argumentation framework. For every Sem € {Cmp, Grd, Prf, Stb, SStb, Idl, Egr,
Stg}, it holds that:

1. if €€ Sem(AF¢ 4(S)) then {Supp(A) | Ae &} v {T} € Sem(SAFe 4(S)), and
2. if 2 € Sem(SAFe 4(S)) then {A € Arga(S) | Supp(A) € E} € Sem(AFg 4(S)).

For the proof of Theorem [3| we need the next lemma. It shows that if a (complete or stage)
extension of an argumentation-framework based on support-driven attack rules includes an argument
{A, ), then it includes all other arguments based on the same support set A.

Lemma 2. Let AFe 4(S) = (Arga(S), Attack(A)) be an argumentation framework such that all the
rules in A are support-driven, and let £ € Cmp(AFg 4(S)) u Stg(A.Fg7A)(S)lf| If (A, 6),{A 6"y €
Arga(S) and (A, 6y € &, then also (A, ") e E.

Proof of Lemma[4 Suppose that (,60) € Argy(S) R-attacks the argument (A, ') for some R € A.
Then, Cz (0,0, A) holds, and so (O, 6) also R-attacks (A,d) € E.
Suppose first that € € Cmp(AFg 4(S)). Since € is admissible, there is an argument (A, A) € £ that
R’-attacks (0, 8) for some R’ € A. Thus, £ defends (A, ") and by the completeness of £, (A, ") € £.
Suppose now that £ € Stg(AFe 4(S)). So, (0,0 ¢ £ by the conflict-freeness of £. Thus, £ U
{(A, ">} is conflict-free. By the S-maximality of £, (A, ) € &. O

Proof of Theorem[3 We divide the proof according to the different semantics

e Suppose that £ € Cmp(AF(S)). We show that & = {Supp(A) | A € £} U {F} € Cmp(SAF(S)).
Let ©,A € €. Then there are 8, ¢ such that (A,8),(0,¢) € £. Assume for a contradiction that ©
attacks A in SAF(S). Thus, there is a R € A such that Cz(0,60,A) holds for some § € Cn(O).
Thus, {0, ) € Argo(S) R-attacks (A, ) in AF(S). By Lemma |2} (0,0) € £ (since (O, ¢y € £). This
contradicts the conflict-freeness of £ in AF(S).

201f £ has no theorems,  is injective with the co-domain E(S)\{@Z}. Note that by the reflexivity of g, (S’, ) is an
argument for every & # S’ € S and ¢ € §'. In this case (Arg,(S)~, Attack~ ) is isomorphic to {p(S)\{ &}, S-Attack(A)~
(P(SMDD.

21Tn what follows, whenever possible we shall omit the subscripts from the notations of the argumentation frameworks.

22By Footnote 8] this covers all the semantics in Theorem

21



Suppose that some A € @i (S) attacks some © € €. Thus, there is a formula 6 such that (©,6) € £
and there is an R € A such that Cz(A, \,0) holds for some A € Cn_(A). Hence, (A, \) R-attacks
{©,6). By the admissibility of £, there is an argument (A, ) € £ that R'-attacks (A, ) for some
R’ € A. Hence, A € €, and A attacks A in SAFe A(S), since Cr/ (A, d, A) holds. Thus, £ is admissible
in SAFs 4(S).

Suppose now that € defends some © € pfin(S). We need to show that if @ # O, then there
is a formula @ such that (©,0) € £ (and so © € £). Indeed, let € ©. By -reflexivity, (0,6 €
Arga(S). Suppose that some argument (A, A) R-attacks (O, ) for some R € A. Then A attacks O in
SAFe A(S), since Cr(A, A, ©) holds. Thus, there is a A € € that attacks A in SAFg A(S), in view
of Cri(A, 48, A), for some R’ € A, and some &' € Cn_(A). Since A € &, there is a formula § such
that {(A,d) € £. By Lemma 2| (A,d") € &, therefore £ defends (O, §). By the completeness of £ in
AFe 4(S), we have that (0,0) € £. Thus © € &, and so & is a complete extension in SAFg A(S).

We turn now to the converse. Suppose that & € Cmp(SAFe 4(S)) and let € = {Arga(S) |
Supp(A) € E}. We have to show that £ € Cmp(AFg 4(S)). Let <O,0),(A,d) € &£, and suppose for
a contradiction that (©, ) R-attacks (A, d) for some R € A. Thus, Cg(0,0,A) holds. But then ©
attacks A in SAFe 4(S), which contradicts the conflict-freeness of £ in SAFe 4(S).

Suppose now that {0, ) € £ and that some argument (A, d) € Argq(S) R-attacks (O, ) for some
rule R € A. Thus, Cr(A,d, ©) holds, and so A attacks © in SAFe 4(S). By the admissibility of E,
there is a set A € = that attacks A in SAFe 4(S) in view of a rule R’ € A and the satisfaction of the
condition Cg/(A, A, A) for some A € Cn(A). Thus, (A, Ay R’-attacks (A,d). Since A€ Z, (A, \)e &
and so £ defends (O, 0). Thus, £ is admissible in AFg 4(S).

Suppose now that £ defends in AFg 4(S) some argument {0, ) € Arga(S). Suppose that some
A € p6n(S) attacks © in SAFe 4(S). Then there is an attack rule R € A and a formula A € Cni_(A)
such that Cg (A, A\, ©) holds. Thus, (A, ) € Arg.(S) R-attacks (6, 6). Since £ defends (O, ), there
is an argument (A, ¢y € £ that R’-attacks (A, \) for some R’ € A. Hence, Cr/(A,d, A) holds, and
so A attacks A in SAFg 4(S). Since A € Z, this means that = defends ©, and so © € = by the
completeness of Z. It follows that (6, 6) € £, and so £ is a complete extension in AFg 4(S).

e For Sem € {Grd, Prf} the theorem follows immediately from he previous case, since Grd [resp. Prf]
is C-minimal [resp. are S-maximal] complete.

o We consider now Sem = Stb. Let £ € Stb(AFg 4(S)). Since stable extensions are also preferred
(see [41] and Footnote7 & € Prf(AFe 4(S)). By the previous case, then, we have that £ = {Supp(A) |
Ae &} u{P} e Prf(SAFe 4(S)), and therefore & is conflict-free in SAF ¢ 4(S). Let A € pgin(S)\E.
So, (A,8) € Argo(S)\E, where § € A. By the stability of &, there is a (0,0) € £ and a R € A such
that (O, ) R-attacks (A,8>. So, Cx(©,0,A) holds and therefore © S-Attacks A. Since © € £ this
shows that € is stable in SAFe 4(S).

For the other direction suppose that Z € Stb(SAF¢ 4(S)). Again, this implies that necessarily
E € Prf(SAF ¢ 4(S)), and by the previous case & = {A € Argo(S) | Supp(A) € =} € Prf(AFe 4(S)).
Thus, £ is conflict-free in AFg 4(S). Suppose that (0,0) € Arga(S)\E. So, © € psn(S)\Z and
therefore there is a A that S-Attacks ©. So, there are 6 and R € A such that (A, §) € Argo(S) and
Cr(A,6,0) holds. Since (0, 0) € £ and {0, ) R-attacks (A, d), this shows that £ € Stb(AFe 4(S)).

e Let now Sem = Sstb. Suppose that & € Sstb(AFg 4(S)). Since semi-stable extensions are
preferred, £ € Prf(AFe 4(S)). Thus, by what we have shown previously, & = {Supp(4) | A €
E} U {D} € Prf(SAFe 4(S)). Assume for a contradiction that £ is not semi-stable in SAFe 4(S).
Thus, there is a semi-stable set =, whose range is a strict superset of the range of E. Let & = {Ae
Argg(S) | Supp(4) € E}. X

We show that the range of £’ contains the range of € in AFg¢ 4(S). Let (A,0) € E. Then A€ &.
Since the range of = contains that of £, A is either in = or there is a © € = that S-Attacks A. In
the first case (A,d) € . In the second case, there is a § and a R € A such that (0,0) € & and
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Cr(©,0,A) holds. Thus, (O, 0) R-attacks (A, ). Let now (A, d) be such that there is a R € A and
a {0,0) € £ that R-attacks (A, d). Thus, © S-Attacks A. So, either A € = or A is S-Attacked by
some A € Z. In the former case (A, §) € £'. In the second case, there are ¢ and R’ € A such that
Cr/(A,0,A) holds. So, (A,o) € & R'-attacks (A,d). This suffices to show that the range of £ is
contained in the range of £’.

Since the range of = is a strict superset of the range of &, there is a A in the range of = that is
not contained in the range of €. Then either A € = or A is S-attacked by some © € Z. Then in the
former case, A # ¢ since (J € €. Also in the latter case, A # @ since Cr (0,0, &) does not hold for
all R € A and all 6. So, (A, ) € Argq(S), where § € A. Clearly, (A, ) ¢ £ since otherwise A € £.
Also, there is no (A, \) € € and no R € A such that (A, \) R-attacks (A, d), since otherwise A € &
and A S-Attacks A. So, (A, ) is not in the range of £. Hence, the range of £’ is a strict superset of
the range of £, a contradiction to the semi-stability of £ in AFg A(S).

The other direction for Sem = SStb is similar and left to the reader.

e We now consider Sem = Idl. Suppose that IdI(AF¢ 4(S)) = {€} and let € = {Supp(A) | A €
E}u{@}. Recall that £ € Cmp(AFe 4(S)) (see Footnote[§), hence, by what we have shown previously,
& is complete in SAFs 4(S). Let now Z € Prf(SAFe 4(S)). Then {A € Argy(S) | Supp(A) € B} €
Prf(AFe 4(S)). Thus £ C {A € Argo(S) | Supp(A) € E}, and so £ € E (Note that (¥ is contained in
every complete extension of SALg 4(S) since it has no attackers.) Let IdI(SAFe 4(S)) = {F}. We
know that {A € Argqa(S) | Supp(A) € F} is complete in AFe 4(S). Let & € Prf(AFe 4(S)). Then
E" = {Supp(A) | A € &'} U {D} € Prf(SAFe4(S)), and so & 2 F. Thus, & 2 {A € Argg(S) |
Supp(A) € F}. By the S-maximality of & we therefore have that & = {A € Argy(S) | Supp(4) € F}.
It follows that & = F, that is: IdI(SAFe 4(S)) = {E}.

The other direction and the proof for Sem = Egr are analogous and left to the reader.

e Suppose finally that £ € Stg(AF(S)). We show that & = {Supp(A) | A € & u {D} €
Stg(SAFe 4(S)). Assume for a contradiction that ©, A € £ are such that © attacks A in SAFe 4(S).
Then, C(©,0,A) holds for some 6 € Cn_(©). Since ©,A € &, there are (0,60, (A, ) € €. Also,
(0,6 € Argo(S) R-attacks (A, ). By Lemma |2} (O, 6 € £. But this contradicts the conflict-freeness
of £ Thus, & is conflict-free. We now show that it is C-maximally conflict-free. Consider for this
some © € p(S)\é' Let @ € ©. Then, by -reflexivity, (0,0 € Argo(S)\E. By S-maximality of &,
there is a (A, d) € € for which {0, §) R-attacks (A, d) or (A, ) R-attacks (©,6). Thus, Cr(A,d,O)
or Cr(0©,6,A) holds, and so © attacks A or A attacks © in SAFe 4(S). Hence, € is C-maximally
conflict-free and so € € Stg(SAFe A(S)).

We now show the converse. Let = € Stg(SAFe 4(S)) and € = {A € Arga(S) | Supp(4) € E}.
Let (A,0),{0,0) € £. So, A,© € Z. By the conflict-freeness of E, Cr(A,d,0) and Cr(0,0,A) do
not hold for any R € A. So, (A, d) and (O, 6) do not R-attack each other for any R € A. Thus, &
is conflict-free in AFg 4(S). Suppose that there is a & D £ that is also conflict-free. So, there is a
(A Ay e ENE. Thus, A ¢ . Since = is maximally conflict-free, there are Q € =, w and R € A such
that Cr(€,w, A) holds and (Q,w) € £. But then (Q,w) € & and it R-attacks (A, \) in contradiction
to the conflict-freeness of £’. Thus, £ is maximally conflict-free in AFe 4(S). O

Example 12. Consider again the support induced framework of Example By Theorem [3| and
Example 2| we get that the grounded, ideal and eager extension in this case is {&F, {¢}}, while the
preferred, stable, semi-stable and stage extensions of the framework are {&,{q},{p}, {¢,p}} and

{D,{a}, {—p} {q, —p}}-

We conclude this section by noting that the problem of reducing the size of logic-based argumen-
tation frameworks has already been addressed in the literature (see, e.g., [2]). Such reductions are
often formulated using equivalence classes (cf. Note [10| and the discussion in [5 Section 4.3]), and
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are typically applied to specific casesﬁ Here, we consider broad settings (in terms of base logics,
argumentative semantics, and attack rules) and the reductions in our case are stricter, in the sense
that the resulting frameworks contain a finite number of arguments (and not only finite number of
attacks per argument, as in [2]).

7 Argumentative Preservation of Logical Inclusion

Given two logics with the same language £ = (£, ¢,) and £o = (£, ¢,), where £; is included in £9
(that is, g, S+ QZ)E it is natural to ask whether, and under what circumstances, this inclusion is
preserved when reasoning argumentatively with these logics. For instance, when does a non-monotonic
entailment induced by the stronger logic £ include a non-monotonic entailment induced by the weaker
logic £17 Similarly, the ability to compactly represent logic-based argumentation frameworks raises
questions about the equivalence of such representations for £; and £,.

More precisely, given a semantics Sem, we ask for which kind of attacks .A; and Ay do we get
the following two properties for a set S of L-formulas and the respective argumentation frameworks

AF e, 4,(S) = (Argsg (S), A1) and AFe, 4,(S) = (Argsg,(S), A2):
Incl: If £ € Sem((AFe, 4,(S)) then €T € Sem(AF ¢, 4,(S)) and
Inc2: If £ € Sem(AF g, 4,(S)) then EY € Sem(AF e, 4,(S)),

where:

N = {A e Argy,(S) | 3B € & such that Supp(A) = Supp(B)}, and
&V ={A € Argg (S)| 3B € & such that Supp(A) = Supp(B)}.

The conditions Incl and Inc2 above reflect the idea that, for every semantics Sem, the selections of
arguments according to the Sem-extensions of the argumentation frameworks induced by £; and £o
correspond with respect to the supports of the included arguments. Accordingly, we define:

Definition 14 (argumentative inclusion). We say that a logical framework AFe, 4,(S) is argumen-
tatively included, for a semantics Sem, in a logical framework AFe, 4,(S), if £; is included in £5 and
Conditions Incl and Inc2 above hold for S.

Note 11 (preservation of logical entailments). From a logical point of view, a primary benefit of
argumentative inclusion is that it allows for a preservation of logical entailments inclusion, namely: If
for every S it holds that AFe, 4,(S) is Sem-argumentatively included in AFg, 4,(S) then |~L1’A

oSem —
L2 4 g1 every o € {U, n, M} (recall Definition @

|~oSem ’

In terms of the last notion, then, if £1 is included in £9, we check the conditions on attacks sets
A; and A, that guarantee, for a semantics Sem, that AFg, 4,(S) is Sem-argumentatively included
in AFg, 4,(S). For this, we consider the following relation between the two support-driven attack

relations R, and R, relative to two base logics £1 and £5, and a set of formulas S.

Attl: If A Ri-attacks B for some A, B € Argg (S), then there is an A’ € Argg (S) with Supp(4) =
Supp(A’) and A’ Rs-attacks B.

Att2: If A Ry-attacks B for some A, B € Argg, (S), then there is an A’ € Argg (S) with Supp(4) =
Supp(A’) and A’ R¥-attacks B.

23For example, [2] focuses exclusively on classical logic, direct undercut attacks, stable semantics, and arguments with
supports that are subset-minimal and classically consistent.
241n this case, £2 is sometimes called an extension of £1 (see [13]).
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In Condition Att2, the requirement A’ Ri—attacks B denotes that Cx,(Supp(4’), Con(A’), Supp(B))
holds. We do not require that A’ Ri-attacks B, since it may happen that B ¢ Argg (S).

Definition 15 (corresponding attacks).

e We say that Ry and Rs are corresponding attacks relative to £1 and £, if Condition Attl
and Att2 hold for every set of formulas S.

e The pairs (£1, A1) and {£5, A2) have corresponding attacks, if A; and As are sets of support-
driven attacks, and for each R € A; there is a corresponding attack R’ € Ay (relative to £; and
£5), and vice versa.

We now show that having corresponding attacks is a sufficient criterion for argumentative inclu-
sion relative to all standard semantics. For this we show that the support-induced argumentation
frameworks of AF; and AF5 coincide.

Proposition 1. Let £1 be included in L9 and suppose that {£1, A1) and {La, A2) have corresponding
attacks. Then, for every set of formulas S it holds that SAFg, 4,(S) = SAFe, 4,(S).

Note 12. When £, is strictly included in £5 (that is, when ¢, & Fg,), there are sets S of formulas
for which Argg (S) & Arge (S), in which case the corresponding logical argumentation frameworks
are not the same (AFg, 4,(S) # AFe, 4,(S)). Yet, what Proposition [1| indicates is that when the
sets of attacks of the two logical frameworks are corresponding, the compact representations of these
frameworks are the same. (The connection between the argumentation frameworks in this case will
be considered in Theorem [4] below.)

Proposition [If follows directly from the following lemma.

Lemma 3. Using the notations and assumptions in Proposition let R1 € A1 and Re € Ay be
corresponding attacks. For every T',© € pn(S) it holds that T Rq-attacks © iff T Ra-attacks ©.

Proof. Suppose that I' Ri-attacks ©. Then there are A,B € Argg (S) such that Supp(4) = T,
Supp(B) = 0, and Cg, (T', Conc(A), ©) holds. Thus, A R;-attacks B. By Attl, there is an argument
A" € Argg (S) with Supp(A’) = Supp(A), and A’ Ry-attacks B. So, Cg,(I', Conc(A’), ©) also holds,
and therefore I' Ry-attacks ©.

Suppose now that I" Ro-attacks ©. Thus, there are A, B € Argg, (S) such that Supp(4) = T,
Supp(B) = O and Cg,(T,ConcA),O) holds. So, A Ro-attacks B. By Att2 there is an argument
A’ € Argg (S) with Supp(A’) = Supp(A) and A’ Ri-attacks B. Let B} = (©, ¢, where ¢ € © (Note
that © # &, so by the reflexivity of -¢,, B' € Argg (S)). Then, Cg, (I, Conc(A4’), ©) also holds, and
therefore I' R;-attacks ©. O

Keeping corresponding attacks between the settings (£, A) of two argumentation frameworks,
where one’s base logic includes the other’s base logic, is therefore a key condition for the preservation
of the argumentative inclusion of such frameworks. This is shown in the next theorem.

Theorem 4. Suppose that £ is included in Lo and that (L1, A1) and (L2, A3y have corresponding
attacks. Then, for every S, AFe, a,(S) is argumentatively included in AFg, 4,(S), for every Sem €
{Adm, Cmp, Grd, Stb, SStb, Prf, Idl, Egr, Stg}.

Proof. We have to show that Conditions Incl and Inc2 are satisfied. Below, we show the first
condition (the proof of the other one is similar). Suppose that £ € Sem(AFg, 4,(S)). By Item 1
of Theorem [3| {Supp(A) | A € £} U {T} € Sem(SAFe, 4,(S)). By Proposition [1 {Supp(4) | A €
EY v {} e Sem(SAFg, 4,(S)). By Item 2 of Theorem {AeArgg,(S) | Supp(A) € {Supp(A) | A e
EYu{T}} € Sem(AFe, 4,(S)). Note that {A € Argg,(S) | Supp(A) € {Supp(4) | Ae £} v {P}} = ET,
thus we have shown that €T € Sem(AFg, 4,(S)). O
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As a corollary of Theorem [4] we have the following results:

Corollary 5. Suppose that £1 is included in Lo and that (£1, A1) and (s, As) have corresponding
attacks. Then, for every set S of formulas and semantics Sem € {Adm, Cmp, Grd, Stb, SStb, Prf, Idl, Egr,

Stg},
LSRR, if {0] S ok 6} e, ¥
- Shpzai v, if {¢| Shasal ¢} e, ¥
- Sk s i € Usesem(ars, 4y (s Cnea {0 |3, 0) € €1

. S |~21’A1 Y, if there is an argument (I',¢)) € [|Sem(AFe, 4,(S)) N Argg (S).

nSem

IS

o

B

5. S |~%IS’£11 Y, if for every £ € Sem(AFe, 4,(S)) there is an argument (') € £ N Argg (S).

6. S |~£1’A1 ¥, if there is an argument (T, ) € (| JSem(AF ¢, 4,(S))) n Argg (S).

uSem

Next, we demonstrate the results above in three cases. In each case one starts with a framework
based on a 3-valued logic: Bochvar [29], Kleene [48], and Priest [56]. This framework is used for
generating essential conclusions from a concise setting, and only then a transformation is made to a
more conventional framework, based on classical logic. As guaranteed by our results, a careful choice
of (corresponding) attack rules in each case allows to preserve the argumentative inclusion between
the resulting logical frameworks.

7.1 Application 1: From Bochvar’s 3-Valued Logic to Classical Logic

Bochvar 3-valued logic B3 [29] (also known as weak Kleene logic, as opposed to the well-known strong
Kleene logic [48] that is considered in the next section) can be represented by the two classical truth
values t, f (representing, respectively, truth and falsity) and a third intermediate element i (intuitively
representing uncertainty), together with the following truth tables for disjunction, conjunction, and
negation:

Thus, on {t,f} the truth table coincide with those of classical logic, while the third element i has an
“infectious” effect: compound formulas are assigned the value i iff at least one of their subformulas
has the value i.

Accordingly, (S,v¢) is a B3-argument (thus S t-g3 ®), if every B3-interpretation that assigns t
to every formula in S, also assigns t to 1. Thus, for instance, {{p, ¢}, p) and {{p,¢},p v ¢) are B3-
arguments (and ClL-arguments), but the CL-argument {{p},p v ¢) is not a B3-argument (consider a
B3-interpretation that assigns t to p and i to q)

Note 13. In general, it is easy to see that if Atoms(y)) € Atoms(S) (namely: every atomic formula
that appears in ¢ appears also in one or more formulas in S) and if S is classically consistent, then
S g3 Y iff S cL ¥, and otherwise S t£g3 ¥. Moreover, S is classically consistent iff it is B3-consistent.
These properties render B3 particularly interesting for applications in argumentation. B3-inferences
are classical as long as the reasoner “stays on topic”, while it disallows arguments that go off-topic
([16]). Clearly, concluding p v g from {p} constitutes such a case: the disjunct ¢ has nothing to do with
the given premise p. In contrast, {{p,q},p A ¢) and {({p, q},p v ¢) are both valid B3-based arguments.

25Tntuitively, the reason for the latter is that the conclusion of {({p}, p v ¢) involves an assertion (¢) that is not relevant
to (i.e., does not appear in) the support of the argument.
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Let’s compare now argumentative frameworks that are induced by B3 and CL.
Example 13. Consider S = {p A ¢, —p}. Then,

o A={pndq}—p)eArgc(S) N Argg;(S), but

o B ={{—p}~(p A q))€ Arge (5)\Arggs(S).

Thus, for instance, in frameworks that are induced either from B3 or CL, and having Direct Defeat
as the sole attack rule, A DirDef-attacks C' = {—p, —p), but only in frameworks that are induced
from CL, C can be defended (e.g., by B) from this attack. In fact, it holds that Argc ({—p}) €
Stb(AF ¢ pirpef} (S)), while Arggs({—p}) ¢ Stb(AF g3 (pirper}(S)). This seems undesired. As indi-
cated in Note B3 is a compelling formalism for argumentation due to its close resemblance to
classical logic. This raises the question: Can B3 be employed as a base logic for argumentation in a
way that preserves argumentative inclusion (Definition relative to classical logic?

For the purpose of utilizing B3 as a base logic for argumentation we enhance B3 with a verum
constant T that is always interpreted as t@ We call the resulting logic B3t and refer to the language
without T by £ and to the language with T by Ly. Clearly, Note [I3] also applies to B3t whenever
Su{y} € L. But it is violated for the richer language L1: For instance, g3, T v ¢ (thus B3t admits
conclusions that do not necessarily ‘stay on topic’). The main difference between the two logics is
summarized in the following fact.

Fact 1. Let £ be the language of {—, v, A} and L1 be the language £ together with the propositional
constant T. Let also B3 and B3t denote, respectively, Bochvar’s logics for £ and L'Tm Then:

1. B3 has no theorems, that is t£g3 ¢ for all ¢ € L.

2. Fp3; T and g3, @ implies that ¢ € L1\L.

3. If S U {¢} S L s.t. Atoms(¢) S Atoms(S), then S ¢ ¢ iff S -3, ¢. Otherwise, S /g3, ¢
4. If S U {¢} € L1 and Atoms(¢) < Atoms(S), then S ¢ ¢ iff S g3, ¢.

5. If § € L1, then S is Fci-inconsistent iff S is g3 -inconsistent. In case that the set S is
FcL-inconsistent, it holds that S g3, ¢ for every ¢ € L.

6. The logics B3 and B3t are both included in CL.
We now consider cases where logical inclusion is preserved when trading B3t by CL.

Definition 16 (reductio attacks). Table [3|introduces another family of attack rule, called reductio.

Rule Name | Acronym | Attacking | Attacked Attack Condition
Reductio Red (81,1 (SauSh, ey | So b —1hy
Full Reductio FullRed | {S1,v1) (8o, 12> Sy + —y
Direct Reductio | DirRed | (S1,¢1) | e} v Shv2) | ¢ = =y

Table 3: Reductio attacks

261f £ has a —-falsity F in the language, T can be defined by —F.
27Clearly, a similar distinction is not necessary for CL, since T is definable in it (e.g., by p v —p).
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Reductio attacks have the form of an argumentum ad absurdum (also known as reductio). To see
this, consider the direct variant where A = (S,) attacks B = {{¢} u &', ¢’ and ¢ -+ — holds. A
establishes that 1 is true, thus ¢ — — expresses that from one of the premises of argument B a
contradiction follows, namely that 1) is false. Therefore, B has to be rejected. Note that all the new
attack rules in Table [3[are also support driven (in the sense of Definition .

Note 14. The conditions of the reductio attacks in Table [3]simplify those of the reductio attacks rules
considered in [1I]. For instance, in [II] the condition for Reductio is that {11} U Sa  —; rather
than Sy - —1 in our case (and similarly for the other rules). As we show below, these simplifications
do not affect the results in [I1].

Next, we show the correspondence between the various reductio attacks in Table [3| and variations
of defeat attacks (Table . Before doing so, we observe that the reductio attacks in the style of
undercuts (see again Table can be expressed by substituting + with - (that is, by replacing
entailments with logical equivalences) in the attack condition. In such cases, our results below may
be generalized accordingly.

Lemma 4. Consider the following two cases: (i) £1 = B3t and £ = CL, (i1) £ = CL and £5 = CL.
In both cases, we have that:

1. Direct Reductio and Direct Defeat are corresponding attacks relative to £ and £,
2. Reductio and Defeat are corresponding attacks relative to £1 and £2,
8. Full Reductio and Full Defeat are corresponding attacks relative to £1 and £4.

Proof. Let S be a set of Lr-formulas and let 1,8 € S. We paradigmatically show the lemma for
Item 1 and Case (i) (respectively, Case (ii)).

For Attl, suppose that A = (S1,v1) DirRed-attacks B = {(Sz2 U {p},12), where A, B € Argg;_(S)
(respectively, where A, B € Argc (S)). Then ¢ g3, —1 (respectively, ¢ FcL —%1). In any case,
by Item [6] of Fact [T} ¢ cL —91. So, ¥1 ke —¢ and thus A directly defeats B.

For Att2, suppose that A = {(S1,41) directly defeats B = {(S2 U {®},¥2). Then ¥1 FcL —.
Let (¢1) Lo be the formula that is obtained by computing the disjunctive normal form of ¥, and
then removing from each disjunct of that formula each literal that is based on an atom that does
not appear in ¢. Clearly, ¥1 Fci (¥1)}4, and by the construction of (¢1),, since ¥1 FcL —¢, also
(¥1)1p FcL —p. By contraposition, ¢ Fci —(11) 4, and so ¢ Fg3; —(¥1)}, (using Item 3 in Fact .
It follows, then, that A = {51, (¢1),,,) DirRed-attacks B = (Sz u {¢}, 12). O

Note 15. The reason we enhanced B3 with T is to obtain Att2. Note that, for instance, (&, T)
DirRed-attacks {{p A —p}, ¢) (since p A =p g3, —T), but (&, T) is not an argument according to B3
(since & t£g3 T). So, Lemma [4] fails for B3.

By Theorem [4] and since B3 is included in CL, we have the following corollaries:

Corollary 6. Let A1 € {Red,FullRed, DirRed} and As € {Def, FullDef, DirDef} be two non-empty
sets of attacks that correspond relative to B3t and CL as described in Lemmal[]l For every set of for-
mulas S and semantics Sem € {Adm, Cmp, Grd, Stb, SStb, Prf, Idl, Egr, Stg}, it holds that AFgs; a,(S)
is Sem-argumentatively included in AFci a,(S).

Example 14. Consider again Example where B3+ is the underlying logic, but this time DirRed
is the attack rule (instead of DirDef). We still have that A and C are in Arggz (S), but now C
defends itself from the attack of A, since it DirRed-attacks A. It follows that Arggs ({—p}) €
Stb(AF g3, (pirpef} (S)), as intuitively expected (and as is the case when B3t is traded by CL). As
shown in the last corollary, this is not a coincidence.
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In summary, argumentative reasoning with CL can be maintained when moving to a logic that
enforces relevance of a particular type, namely: adherence to the topic. This aligns with insights from
informal argumentation [28].

We conclude this case study by highlighting another corollary of Theorem 4| and Lemma |4 The
reductio-based attacks are also argumentatively equivalent to defeat-based attacks in the context of
classical logic.

Corollary 7. Let A; € {Red, FullRed, DirRed} and As € {Def, FullDef, DirDef} be two non-empty
sets of attacks that correspond relative to CL and CL, as described in Lemmal[f) For every set of formu-
las S and semantics Sem € {Adm, Cmp, Grd, Stb, SStb, Prf, Id|, Egr, Stg}, it holds that AFci 4,(S) and
AFci 4,(S) are Sem-argumentatively equivalent, namely: each one is Sem-argumentatively included
in the other.

7.2 Application 2: From Kleene’s 3-Valued Logic to Classical Logic

(Strong) Kleene’s logic K3 [48] is perhaps the best-known 3-valued logic. It’s negation connective is
the same as that of Bochvar’s logic, while the conjunction A and the disjunction v are defined by the
minimum and the maximum relative to the ordering f <i < t.

t f
t f
f f
i f

i -
i t|t
f f
i i

As before, (S, is a K3-argument (thus S k3 v¥), if every K3-interpretation that assigns t to every
formula in S also assigns t to 9. Like B3, K3 does not have tautologies (hence there are no tautological
K3-arguments), and it is paradefinite: the rule of excluded middle does not hold in it (K£k3 ¥ v —).

To enable tautological arguments, and improve the suitability of K3 for argumentative inclusion
in classical logic, we again add to the language the propositional constant T with its usual meaning.
The resulting logic is denoted K3t. We have:

Fact 2. Let £ be the language of {—, v, A} and Lt be the language £ together with the propositional
constant T. Let also K3 and K3t denote, respectively, Kleene’s logics for £ and L+. Then:

1. K3 has no theorems, that is l£x3 ¢ for all ¢ € L.

2. k3, ¢ implies ¢ € L7\L.

3. 8§ € L is bcL-inconsistent iff it is Fks-inconsistent.
4. § € Lt is -cL-inconsistent iff it is k3, -inconsistent.
5. K3 and K3t are included in CL.

The logic K3 is strictly stronger than B3. For instance, p k3 p v ¢ while p t£g3 p v q. The same
holds for K3t and B3r.

Lemma 5. Relative to K31 and CL, we have the following correspondences:
1. Direct Reductio corresponds to Direct Defeat,
2. Reductio corresponds to Defeat,

8. Full Reductio corresponds to Full Defeat.
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Proof. Let S be a set of £ -formulas and let 51,52, € S. We paradigmatically show the lemma for
Item 1.

For Att1, suppose that A = (S1,v1) DirRed-attacks B = (S U {¢}, ¢2), where A, B € Argys_ (S).
Then, ¢ k3, ~¢1. By Fact 2| (Ttem 5), ¢ FcL —1. So, ¢1 FcL —¢ and thus A directly defeats B.

For Att2 suppose that A = {(S1,%1) directly defeats B = {(S2 u {©},1¥2). Then ¢1 FcL —.
Let (1) Lo be the formula that is obtained by computing the disjunctive normal form of v; and then
removing from each disjunct of that formula each literal that is based on an atom that does not appear
in . Clearly, ¥1 FcL (1) 4, and by the construction of (1), since ¥1 FcL ¢, also (¥1) 4 FcL —¢.
By contraposition, ¢ Fci —(¥1) 14, and so ¢ Fks; —=(¢1),. (To see the latter, note that by Item 3 in
Fact |1} ¢ cL —(¢n1)y, implies that ¢ g3, — (1)}, and since K37 is strictly stronger than B3, we
get ¢ Fk3r —(¥1)e). It follows, then, that A = (51, (1), DirRed-attacks B = (Sy u {¢},12). O

By Theorem [} and since K3 is included in CL, we have:

Corollary 8. Let A; € {Red, FullRed, DirRed} and Ay € {Def, FullDef, DirDef} be two corresponding
non-empty sets of attacks relative to K3t and CL, as described in Lemmal[3. For every set of formulas
S and semantics Sem € {Adm, Cmp, Grd, Stb, SStb, Prf, Idl, Egr, Stg} it holds that AFks 4, (S) is Sem-
argumentatively included in AFci a,(S).

7.3 Application 3: From Priest’s 3-Valued Logic to Classical Logic

Priest’s 3-valued logic LP [55] 56]@ has the same truth tables for the basic connectives {—, A, v}
as those of strong Kleene’s 3-valued logic. The difference is that in LP the middle element (i) is
designated. Thus, (S, ) is an LP-argument (and so S - p v), if every LP-interpretation that assigns
either t or i to every formula in S also assigns t or i to 1. This implies, in particular, that LP (unlike
K3 and B3) is not paradefinite (Fp ¥ v ﬂ/}ﬂ but it is paraconsistent, i.e., avoids logical explosion:
p, —p K£Lp ¢ (consider for this a valuation in which p is assigned i, while ¢ is assigned f).

Some facts on the relations between LP and CL and given below.

Fact 3.
1. LP is included in CL.
2. St oiff Skwp o v V{(yv —v)|ve O} for some © C S.
3. IS¢ v V{lyv—)|ve O} for some © € WFF(L), then S ¢ ¢.

Example 15. Consider § = {p v ¢, —p, —q}. Note that {p v ¢, —p}, ), {p v ¢, ~q},p) ¢ Arg p(S).
This is due to the fact that disjunctive syllogism does not hold for LP. For instance, when Direct
Defeat is the sole attack rule, the only stable extension of the corresponding LP-based argumentation
framework for S is Arg p({—p, —q}), since {{—p, —q}, —~(p v ¢)) attacks every argument with p v ¢
among its premises. This is an undesired asymmetry since one also expects Arg, p({p v ¢, —p}) and
Arg p({p v q,—q}) to be stable sets.

To avoid the problem in the last example, we introduce another family of attack rules for LP:
Definition 17 (LP defeats). The family of LP-defeat rules in presented in Table |4 below.

Note that the conditions of the LP-defeat rules augment the standard conditions of the Defeat
rule with disjuncts of the form \/{(¢ A —¢) | ¢ € S1}. This is necessary for the correspondence
between LP-based frameworks and CL-based frameworks, since while in LP, every set of formulas in
the language of {—, v, A} is satisfiable, this is not the case in CL. Moreover, CL is explosive, enabling
any argument with an inconsistent support.

28 Also attributed to Asenjo [12].
29In fact, the theorems of LP are exactly those of CL; see e.g. [13].
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Rule Name | Acronym | Attacking | Attacked Attack Condition

LP-Defeat LPDef | (S1,91) | {(S:0S5u) |k =AS: v Vilpr—p)|peS)

Full LP-Defeat FullLPDef | {(S1,%1) | {S2,%2) = AS v V{lpAr—p)|peSi}

Direct LP-Defeat | DirLPDef | {S1,91) | o} uSs, 02y | v1 - —p v V{{p A—p)|peSi}

Table 4: LP Defeats

Lemma 6. Consider the following two cases: (i) £1 = LP and £ = CL, (i) £, = CL and £5 = CL.
In both cases, we have that:

1. LP-Defeat corresponds to Defeat, relative to £1 and £o,
2. Full LP-Defeat corresponds to Full Defeat, relative to £1 and £4,
8. Direct LP-Defeat corresponds to Direct Defeat, relative to £1 and £o.

Proof. Let S be a set of L-formulas and let S1,82,85 € S. We paradigmatically prove Item 1 for
Case (i). To see Attl, let A = {51,191y LP-defeat B = {(Sy U S},1), where A, B € Arg p(S). So,
1 e ~AS2 v V{(y A =) | ve S} By Fact (Item 3), ¥1 FcL — /\'S1 and so A defeats B.
For Att2 assume that A = {(S;, 1) defeats B = (Sy U S5, 12>, where A, B € Argc (S ) So, Y1 FcL
= A'S> and hence, S; c — A Sa. By Fact [3 (Item 2), 4’ =(S1, = AS v V{(y A=) [yeSi})e
Arg p(S). Also, by the same item in Fact[3] B = (S2uS), 2 v \V{(y A=) | v € S2uSh}) € Arg p(S).
So, A" LP-defeats B’. Thus, Crppet,Lp(Supp(A), Conc(A’), Supp(B)) holds, which assures Att2. [

By Theorem 4] and since LP is included in CL, we have:

Corollary 9. Let A; € {LPDef, LPFullDef, LPDirDef} and Ay € {Def, FullDef, DirDef} be two non-
empty sets that correspond relative to LP and CL as described in Lemmal6l For every set of formulas
S and semantics Sem € {Adm, Cmp, Grd, Stb, SStb, Prf, Id|, Egr, Stg}, it holds that AFip 4,(S) is Sem-
argumentatively included in AFci a,(S).

Example 16. Consider again the set S = {pv ¢, —p, —q} from Example where LP is the underlying
logic. When DirLPDef is the attack rule we avoid the problem described in that example, since this
time, as followed from the last corollary, Arg p({—p, —q}), Arg.p({p v ¢, —p}) and Arg p({p v ¢, —q})
are all stable extensions of AF|p (pir.pper}(S)-

Finally, we note that LP-defeat-based attacks are also argumentatively equivalent to defeat-based
attacks in the context of classical logic.

Corollary 10. Let A; € {LPDef, LPFullDef, LPDirDef} and Ay < {Def, FullDef, DirDef} be two
non-empty sets that correspond relative to CL and CL as described in Lemma [ For every set of
formulas S and semantics Sem € {Adm, Cmp, Grd, Stb, SStb, Prf, Idl, Egr, Stg}, it holds that AFci a,(S)
and AFcL 4, (S) are Sem-argumentitatively equivalent.

8 Further Remarks and Related Work

In this section we consider some issues that are related to the topics in this paper and refer to related
works where they are discussed in greater detail.
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8.1 Incorporation of Strict Assumptions

In many formalisms for structured and logic-based argumentation (e.g., ASPIC [50], ABA [62], and
sequent-based argumentation [31]) it is common to distinguish between two types of supports for an
argument: strict and defeasible. Generally, the difference between the two types is that the formers are
formulas that are taken for granted, and therefore cannot be attacked, while the latter are assumptions
that may be retracted and so arguments may be attacked on their basis

So far, when the attack rules are support-driven, arguments could be attacked based on any
subset of their supports. This means, in particular, that all the formulas in a set S, on which a
logical argumentation framework AJF(S) is based (Definition , are defeasible. Yet, our setting may
accommodate also strict premises in a rather straightforward way. For instance, using the method
in [8], logical argumentation frameworks may be extended with a (consistent) set of strict assumptions
X as follows (cf. Definition :

Definition 18 (logical AF with strict assumptions). Let £ = {L,) be a logic and A a set of
attack rules with respect to £. Let also X and S be two distinct sets of L-formulas, where X is
F-consistent. The (logical) argumentation framework for X and S, induced by £ and A, is the
pair .A}"é(’A(S) = (Args (S), Attack™(A)), where Args (S) = {(S",¢) | X,8' -+ ¢ and 8’ € S} and
Attack™(A) is a relation on Argg (S) x Argg (S), defined by (A, Ay) € Attack™ (L) iff there is some
R € A such that A; Ry-attacks As.

Thus, an argument in A]—"g 4(8) is still a pair A = {S’, 1), whose support &’ is a subset of S, but
now the conclusion v logically follows from S’ together with the underlying set X’ of strict assumptions.
The fact that the elements in X’ are not attacked is captured in the rules in AttackX(A). For instance,
a variation Defeaty of the Defeat rule (Table , taking into consideration also the strict assumptions
in X, may look as follows:

Rule Name Acronym | Attacking Attacked Attack Conditions
Direct Defeaty | DirDefy | {(Si,v1) | o} v Sh, 1) X1 -—p, p¢ X

Thus, based on the formulas in X, the conclusion 7 of the attacking argument entails the negation
of some formula in the support of the attacked argument, provided that this formula is not a strict
assumption (that cannot be attacked). Clearly, Definition |4]is a particular case of Definition (18 when
X = & (and DirDef is the same as DirDefy).

8.2 Relations to Assumption-Based Argumentation

The introduction of strict premises together with Theorem [3| allow us to relate logical argumentation
frameworks to other common approaches to structured argumentation. The relation to sequent-based
argumentation [9] is straightforward, associating an argument (S, 1) with the sequent S = 1. Next,
we consider the relations of logical argumentation frameworks to assumption-based argumentation
frameworks (ABFs) [30] [62], and their extension to simple contrapositive ABFs [45].

Definition 19 (simple contrapositive ABFs). An assumption-based framework (an ABF, for short)
is a tuple ABF = (£, X, S, ~), where:

e £={L,}-)is a propositional Tarskian logic.

o X (the strict assumptions) and S (the candidate/defeasible assumptions) are distinct (countable)
sets of L-formulas, where the former is assumed to be -consistent and the latter is assumed to
be nonempty.

32



e ~:8 > (L) is a contrariness operator, assigning a finite set of L-formulas to every defeasible
assumption in S, such that for every consistent and non-tautological formula ¢ € S\{F} it holds

that ¢ t# A~ and A~ ¥ 9.
A simple contrapositive ABF [45] is an assumption-based framework ABFg (S) = (£, X, S, ~), where
e for every ¢ € S it holds that ~¢ = {—}, and

e the logic £ is an explosive (i.e., for every L-formula ¢ the set {1, =9} is -inconsistent) and
contrapositive (i.e., (a) = —F and (b) for every nonempty I' and ¢ it holds that T' -+ — iff
either 1) = F or for every ¢ € I' we have that I'\{¢}, ¥ - —¢).

Let ABFQ((S) be a (simple contrapositive) ABF, A;0 € S, and ¢y € S. We say that A attacks 9
iff X, A+ ¢ for some ¢ € ~. Accordingly, A attacks © if A attacks some ¥ € ©. By this, Dung
semantics for (simple contrapositive) ABFs is defined in the standard way, analogously to Definition
(see also [45]).

Example 17. The (simple contrapositive) assumption-based argumentation framework (CL, &, {p, —p,
q}, — is the same as the support-induced framework in Example [11| and has the same extensions as
of the latter, as specified in Example [TI] Theorem [f] below shows that this is not a coincidence.

Suppose now that ¢ is a strict assumption. The revised ABF is then {CL, {¢}, {—p,p}, ). Its
attack diagram is represented in the figure belowm

Note that, since ¢ appears in every extension of the original ABF as a defeasible assumption, treating
it as a strict assumption does not alter the set of conclusions derived from the ABF.

Now, the following result follows from Theorem

Theorem 5. Let £ be explosive and contrapositive logic, and let A = {DirDefy}. Given a logical
argumentation framework AF;A(S) (Definition w , let SA]-";A(S) be the corresponding support-

induced argumentation framework (Definition , and let AB]—"SE(S) be the corresponding simple
contrapositive ABF' (Definition @) Then, for every Sem € {Cmp, Grd, Prf, Stb, SStb, Id|, Egr, Stg},

Z e Sem(SAFZ 4(S)) iff E e Sem(ABFE(S)).
Moreover, for every such =, it holds that:
{A e Argo(S) | Supp(A) € Z} € Sem(AF 4(S)).

Additionally, for every € € Sem(.A]:;jA(S)), we have:

30 Again, nodes sharing identical incoming and outgoing edges are grouped as inner nodes within a single outer node,
for simplicity of the figure.
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{Supp(A) | A€ €} U {F} € Sem(ABFz (S)),
{Supp(A) | A€ £} U {T} € Sem(SAFE 4(S)).
Proof. By the definitions of SAFs and ABFs, as since the attack relation of the latter is Direct Defeat,

it is easy to see that

(1) Sem(SAFg 4(S)) = Sem(ABFZ (S))

for every semantics Sem as in the theorem. In fact, these structures are isomorphic, since they have
the same nodes (arguments) and edges (attacks). Indeed, for every 1,82 € S,

S attacks Sp in SAng(S) iff

(S1,82) € S-Attack(A), iff

Y1 88481, 91) € Argo(S) and Cpirpety (S1, 11, S2) holds, iff
X,851 1 and X, 91 = —p for some p € Sy, iff

X, 81  —p for some p € Sy, iff

S attacks Sy in ABFZ (S).

Let now £ € Sem(A}'iy’A(S)). By Item 1 ofTheorem {Supp(A) | Ae E}u{T} € Sem(SAf{\EA(S))

and by (1), also {Supp(A) | A € £} U {F} € ABFZF(S)). The converse follows similarly from Item 2
in Theorem Bl O

Example 18. Consider again the two ABFs in Example (i.e., where ¢ is either defeasible or
strict assumption). By Example [11| and the last theorem we get that the grounded, ideal and eager
extension of these ABFs is {¢F, {¢}}, while the preferred, stable, semi-stable and stage extensions of

the frameworks are {(J, {q}, {p}, {¢,p}} and {J,{q}, {—p}, {q, ~p}}.

To summarize the results in this section, we have obtained a correspondence among three forms
of argumentative frameworks:

1. logic-based argumentation frameworks with strict assumptions,
2. the related support-induced argumentation frameworks, and
3. the corresponding assumption-based argumentation frameworks.

This correspondence is shown with respect to the Undercut rule, since this is the rule traditionally
used for attacks in ABFs. However, under some straightforward modifications it is not difficult to
show further results, similar to those of Theorem [5] with respect to other attack rules.

8.3 Logical Properties of the Attack Rules

In this work, we mainly considered the way attack rules should be formulated, taking into account
the underlying logic, as well as some other representation considerations (such as minimality and
consistency of the support sets). In the literature, several other aspects of the attack rules are
studied. For instance, in [44] some rationality postulates and the relations among the attack rules are
investigated, and in [36] various logical properties of the attack rules are introduced (see also [37]).
Below, we refer to the work in [36] in some more details.

31Theorem [3] does not take into account strict assumptions, but it is not difficult to extend the result to this case as
well.
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Definition 20 (logical properties). Given an attack rule R, below are some logical properties con-
cerning the introduction (I) and elimination (E) of conjunction and disjunction in the conclusion of
the attacked arguments. Below, we write A ww»g B to denote that argument A R-attacks argument
B. Also, we add the subscript ’c’ to indicate that the primary formulas of the rules are those in the
conclusion of the arguments.

(ADe: IELSy, 1h) wor (Spys 1) 0 (Syy ¥) wor (Spy, P2), then (Sy, 1) wor (S, nias 01 A 2)
(AB)e: TE {8y ) R (Spy niar 1 A P2, then (Sy, 1) vwor (e, 1) 01 (S, ) wWor (Spy s 02)
(VDe: T {8y, 1) wor (Spy s 1) and (Sy, ) wor (Sp, s 02, then (Sy, ) vwor {Sp vips, 1 v 02)
(VE)e: I (Sy, ) or (Spivis 1V p2), then (Sy, 1) wor (Sp,s 1) and (Sy, ) wor (Spys )

The rules above refer to the conclusions of the attacked arguments. In [36] there are some other
rules for the introduction and elimination of the negation and implication connectives in the conclu-
sions of the attacked arguments, as well as dual rules for the attacking arguments. These principles
are then checked w.r.t. attack rules like those given in Table |1, where classical logic (CL) is taken as
the base logic. Next, we give an example the results concerning Full Defeat:

Proposition 2. [36] Let AF be a logical argumentation framework based on classical logic and FulDef
as the sole attack rule (namely: (Si, 1) attacks (Sz U 8, 12) if ¥1 = = /AS2). Then:

o (Al)c is satisfied if Sy, € Sy npy OF Sy S Sy nps
o (AE)c is satisfied if Sy, apy S Sy OF Sy ngy S Sy
o (Vi) is satisfied if Sy, © Sy, v, OF Spy © Spy v,
o (VE)c is satisfied if Sy, v, S Sy, N S,

While not considered in [36], the logical properties in Definition [20| (as well as the other properties
in [36]) have interesting counterparts that refer to the supports of the arguments. Below, we consider
some of these duels principles (subscripted by ’s’ to indicate that the primary formulas of the rules
are those in the support of the arguments):

(ADs: IE(Sy, Yy o {S1u{dr}, 1) or (Sy, Yy wor(Sau{da}, @2), then (Sy, Yy r (SU{d1 Ada}, @)
(/\E)s: If <81b71/}>w")72 <8 o {¢1 N ¢2}7 §0>7 then <81/17¢> YWY R <S o {¢1; ¢2}7 90/>
(Vl)S: If<8¢7 ¢>W\’)R<SU{¢1}7 901> and <S¢7 ¢>WR<SU{¢2}7 @2>7 then <Sw7 ’(/}>WV)73<SU{¢1 V¢2}7 <P>

(VE)s: If (S, ) o (S U {g1 v 2}, ), then (Sy, ) wor (S1 U {¢1}, p1) and (Sy, ) wor (S U
{p2}, 02)

As an illustration, we check some of these properties w.r.t. FullDef (and classical logic):

Proposition 3. Let AF be a logical argumentation framework based on classical logic and FullDef
as the sole attack rule (namely: {(Si, 1) attacks (Sa U 8, sy if 1 = —=AS2). Then:

o (Al)s is satisfied if S; U S © S.
e (AE)s is always satisfied.

e (vl)s is always satisfied.

(
(
(
* (

VvE)s is satisfied if S € &1 n Ss.
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Proof. Concerning (Al)s, suppose without loss of generality that (S, ¢) FullDef-attacks {S1u{¢1}, p1)-
Then ¥ + = A(S1 v {¢1}), and so ¢ — — A(S1 U {¢1 A ¢2}). Since S; = S, it follows that
Y = A(S U {d1 A p2}), thus (Sy, ¢y FullDef-attacks (S U {¢1 A ¢a}, ).

Concerning (AE)s, a stronger property holds: (S, ) FullDef-attacks (S u {¢1 A ¢a}, ) iff ¢ -
B /\(8 Y {¢1 A ¢2})7 iff == /\(S Y {d)lv ¢2})7 iff <Swa ¢> FullDef-attacks <S Y {¢1a ¢2}7 30/>'

To see (vl)s, suppose that (Sy, 1) FullDef-attacks both (S U {¢1},¢1) and (S U {¢2}, p2). Then
v = AS U {p}) and Y - = A(S U {¢2}), which implies that ¢ - — A(S U {#1 v ¢2}), and so
{Sy, ) FullDef-attacks (S U {¢1 v ¢2}, ¢).

Finally, to see (VE)s, suppose that {(Sy, ) FullDef-attacks (S U {¢1 v ¢2},¢). Then ¢ - = A(Su
{1 v ¢2}), and so Y - = A(S U {¢1}) and ¥ = = A(S U {¢2}). Since S € S; and S € S, as have
v = A(S1u{p}) and ¥ = = A(S2 U {¢2}). It follows, then, that (Sy,) FullDef-attacks both
(S1 U {d1} 1) and (S2 U {2}, p2). O

9 Summary and Conclusion

We have shown that logical argumentation frameworks do not have to be confined to arguments whose
supports are already minimal or whose supports are consistent, even when the underlying logic is not
paraconsistent. More specifically, we have considered the following issues:

1. Consistency: Rather than building consistency directly into the definition of an argument,
one can instead assure consistency through carefully chosen attack rules. Clearly, if no such
“consistency-tolerant” rules are provided, consistency must still be enforced at the argument
level.

2. Minimality: For any framework AF(S) with the <-normal attack rules (in the sense of Def-
inition , there is a direct correspondence with the framework AFZ"(S) that contains only
arguments whose supports are minimized w.r.t. ﬁ@ Every extension £™" of the latter is ob-
tained by minimizing the supports of the arguments in some extension £ of the former, and
vice-versa.

We refer also to [38],[39], where these items are considered in the context of dialectical argumentation.

As consistency and minimization are computationally difficult to verify in practice{g and moreover
these properties are not natural when stating arguments in everyday-life situations, the results above
indicate that it is often desirable to ‘lift’ these requirements from the arguments to the level of the
argumentation frameworks, by means of appropriate attack rules. This led us to a discussion on
the suitability of different attack rules in maintaining consistency and minimality, which calls upon
a comparison of logical argumentation frameworks differing in their attack rules. In doing so, we
obtained further useful results concerning compact representations of such frameworks:

3. Compactness: Logical argumentation frameworks that are based on finite sets of premises and
support-driven attack rules can be equivalently represented by their (finite) support-induced
frameworks, in the sense that the two frameworks have corresponding extensions under basic
semantics. Moreover:

4. Preservation: The compact representations by finite support-induced frameworks preserve
logical inclusion, in the sense that two logical frameworks that are based on two underlying

32The most common instance of < is the subset relation, in which case the supports are C-minimized.

33Deciding whether the support set of a given argument is consistent is in general (and depending on the underlying
logic) an NP-complete decision problem [25], and determining whether it is minimal is a H%—complete problem for CL
and at least as hard for many other logics [52].
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logics, one included in the other, and whose attack rules are corresponding (in the sense of Def-
inition , have the same support-induced representations. Such a correspondence is demon-
strated in this paper for classical logic and three different 3-valued logics: Bochvar B3, Kleene
K3 and Priest LP.

Consistency, minimality, compactness and preservation are demonstrated in the three primary
results of the paper (Theorems respectively) for the main Dung-style semantics of logical argu-
mentation frameworks. Minimality may be violated in case of semi-stable, eager and stage semantics,
as demonstrated in Examples [J] and Yet, as indicated in Note [6] these are rather rare cases.

The interaction between the base logic and the formulation of the attack rules has already been
noted in the literature (see, e,.g., [35, B0, B7] and [58]). Our reformulations in Section |5| show that
attacks may express considerations that are not reflected by the pure logical consequences depicted
by arguments. For instance, the reason for the attack according to Intuition 1 in Section [5.2] is not
sufficiently explicated by the conclusion of the attacking argument, since the consistency constraint is
not contained in it. Thus, a logical condition only in terms of entailments by the latter (as expressed
by the defeat rules) will not do in this case. This brings up a new bunch of questions, such as if (and
how) it is possible to reformulate specific attack rules to preserve basic properties such as support
minimization without violating the intended argumentation semantics. Some of these questions are
addressed in Section [5] and in Section [8.3] where we refer to related papers, but a full exploration of
this remains a subject for future work.
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