
November 25, 2014 10:57 Argument & Computation n˙ArieliStrasser-tARC

Argument & Computation
Vol. 00, No. 00, Month 2014, 1–28

RESEARCH ARTICLE

Sequent-Based Logical Argumentation

Ofer Arielia∗ and Christian Straßerb

aSchool of Computer Science, The Academic College of Tel-Aviv, Israel
bDept. of Philosophy and Moral Sciences, Ghent University, Belgium

(Received 00 Month 200x; final version received 00 Month 200x)

We introduce a general approach for representing and reasoning with argumentation-based
systems. In our framework arguments are represented by Gentzen-style sequents, attacks (con-
flicts) between arguments are represented by sequent elimination rules, and deductions are
made according to Dung-style skeptical or credulous semantics. This framework accommo-
dates different languages and logics in which arguments may be represented, allows for a
flexible and simple way of expressing and identifying arguments, supports a variety of attack
relations (including those that reflect relevance or quantitative considerations), and is faithful
to standard methods of drawing conclusions by argumentation frameworks. Altogether, we
show that argumentation theory may benefit from incorporating proof theoretical techniques
and that different non-classical formalisms may be used for backing up intended argumenta-
tion semantics.
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1. Introduction

Argumentation is the study of how jointly acceptable conclusions can be reached
from a collection of arguments. In recent years, logic-based approaches for analyzing
and evaluating arguments, sometimes called logical (or deductive) argumentation,
have been largely studied, yielding a variety of formal methods for argumentation-
based reasoning (see, for instance, the reviews in Chesñevar et al. 2000, Prakken
and Vreeswijk 2002). The goal of this paper is to provide an abstract, proof theoret-
ical investigation of logical argumentation. Our starting point is that an argument
is a pair of a finite set of formulas (Γ, the support set) and a formula (ψ, the
conclusion), expressed in an arbitrary propositional language, such that the latter
follows, according to some underlying logic, from the former. This abstract ap-
proach gives rise to Gerhard Gentzen’s well-known notion of a sequent (Gentzen
1934), extensively used in the context of proof theory. Accordingly, an argument
is associated with a sequent of the form Γ⇒ ψ and logical argumentation boils
down to the exposition of formalized methods for reasoning with these syntactical
objects.

This paper is a revised and extended version of (Arieli 2013), where a sequent-
based approach to logical argumentation is realized in the following two aspects:

• Arguments as Sequents.
We show that sequents are useful for representing logical arguments since they
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can be regarded as specific kinds of judgments. This has the obvious benefit that
proof theoretical approaches may be used in the context of argumentation the-
ory. For instance, well-studied sequent calculi may be incorporated for producing
arguments in an automated way. Moreover, some restrictions in previous defini-
tions of logical arguments, like minimality and consistency of support sets (see,
e.g., Besnard and Hunter 2001, 2009), may now be lifted, allowing for a more
flexible way of expressing arguments, which also simplifies their identification.

• Attacks as Sequent Elimination Rules.
We show that interactions between arguments (expressed by attack relations)
can by represented in terms of Gentzen-style rules of inference. This induces a
general and uniform approach not only for introducing arguments, but also for
eliminating them. Furthermore, in addition to known attack relations that are
‘imported’ to our framework (which are discussed in (Arieli 2013)), we also intro-
duce new types of attack relations, like attacks incorporating different kinds of
modal operators, quantitative measurements, and attacks that are based on rele-
vance considerations, implementing the well-known principle of variable sharing
from relevance logics (Dunn and Restall 2002) and applying it for argumentation
reasoning.

Keeping our sequent-based setting generic and modular allows us to accommodate
different types of languages and logics, including non-classical ones. This enables
the use of different substructural logics, including paraconsistent logics (da Costa
1974) that support robust methods of handling conflicts among arguments, and
deontic logics (Aqvist 2002) that incorporate modalities for modeling normative
reasoning and handling problematic cases in which there are conflicts among norms.

The rest of this paper is organized as follows: in the next section we review
some basic notions behind logical argumentation and introduce some related no-
tations. Then, in Sections 3 and 4 we re-examine these notions and suggest some
proof theoretical substitutes. This allows us to introduce, in Section 5, the notion
of sequent-based logical argumentation frameworks, admitting different languages,
logics, and inducing a family of entailment relations. The latter can be used for sim-
ulating existing entailments of logical argumentation and for introducing new ones.
In Section 5 we illustrate reasoning with these entailments in different contexts and
consider (also in the appendix of the paper) some of their basic properties. Finally,
in Section 6 we refer to some related work and in Section 7 we conclude.

2. Logical Argumentation

Logical argumentation (sometimes called deductive argumentation) is a logic-based
approach for formalizing argumentation, disagreements, and entailment relations
for drawing conclusions from argumentation-based settings (see, e.g., Besnard and
Hunter 2001, Pollock 1992, Prakken 1996, Simari and Loui 1992). In logical argu-
mentation arguments are expressed in terms of formal languages and acceptance
of arguments is determined by logical entailments. A wealth of research has been
conducted on formalizing this kind of argumentation. Below we sketch some of the
main notions behind logical argumentation, concentrating on one of the better-
known approaches in this context, introduced by Besnard and Hunter (2001).

Definition 2.1: (Dung 1995) An argumentation framework is a pair AF =
〈Args,A〉, where Args is an enumerable set of elements, called arguments, and A
is a relation on Args×Args whose instances are called attacks.
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Definition 2.2: (Besnard and Hunter 2001, 2009) Let L be a standard propo-
sitional language, S an enumerable set of formulas in L, and `cl the consequence
relation of classical logic (for L). An argument in the sense of Besnard and Hunter
(BH-argument, for short), formed by S, is a pair A = 〈Γ, ψ〉, where ψ is a formula
in L and Γ is a minimally consistent subset of S (where minimization is with re-
spect to set inclusion), such that Γ `cl ψ. Here, Γ is called the support set of the
argument A and ψ is its consequent .

Different attack relations have been considered in the literature for logical ar-
gumentation frameworks (see, e.g. Amgoud and Besnard 2009, 2010, Besnard and
Hunter 2001, Gorogiannis and Hunter 2011, Pollock 1987, 1992). Below we recall
some of the better-known ones.

Definition 2.3: Let A1 = 〈Γ1, ψ1〉 and A2 = 〈Γ2, ψ2〉 be two BH-arguments.

• A1 is a defeater of A2 if ψ1 `cl ¬
∧
γ∈Γ2

γ.

• A1 is a direct defeater of A2 if there is γ ∈ Γ2 such that ψ1 `cl ¬γ.

• A1 is an undercut of A2 if there is Γ′2 ⊆ Γ2 such that ψ1 `cl ¬
∧
γ∈Γ′

2
γ and

¬
∧
γ∈Γ′

2
γ `cl ψ1.

• A1 is a direct undercut of A2 if there is γ ∈ Γ2 s.t. ψ1 `cl ¬γ and ¬γ `cl ψ1.

• A1 is a canonical undercut of A2 if ψ1 `cl ¬
∧
γ∈Γ2

γ and ¬
∧
γ∈Γ2

γ `cl ψ1.

• A1 is a rebuttal of A2 if ψ1 `cl ¬ψ2 and ¬ψ2 `cl ψ1.

• A1 is a defeating rebuttal of A2 if ψ1 `cl ¬ψ2.

Example 2.4 Let S = {p,¬p, q}. Then 〈{¬p},¬p〉 is an BH-argument (formed
by S) which is a (direct) defeater and a (direct and canonical) undercut of the
BH-argument 〈{p}, p ∨ q〉. Note, further, that while q follows according to classical
logic from {p,¬p}, the pair 〈{p,¬p}, q〉 is not a BH-argument, since its support set
is not classically consistent.

Definition 2.5: Let ArgsBH(S) be the (countably infinite) set of BH-arguments
formed by S, and let A be a binary relation on ArgsBH(S), obtained by at
least one of the conditions described in Definition 2.3. Then the pair AF(S) =
〈ArgsBH(S),A〉 forms a (logical) argumentation framework .

3. Arguments As Sequents

In the following sections we re-examine some of the basic concepts behind logical
argumentation. First, in this section, we consider the notion of a logical argument.
We argue that the minimality and consistency requirements in Definition 2.2 not
only cause complications in the evaluation and the construction of arguments, but
also may not be really necessary for capturing the intended meaning of this notion.

• Minimality. Minimization of supports is not an essential principle for defining
arguments, thus there is no real reason to overload arguments with this condition.
In Mathematics, for instance, proofs are usually not required to be minimal in
order to validate their claim, and in some other disciplines like Law, Medicine,
and Rhetoric, it is a common habit to have overlapping supports for backing up
a particular conclusion. To see a more concrete example, consider a framework in
which supports are expressed only by literals (atomic formulas or their negation).
Then arguments like A = 〈{p, q}, p ∨ q〉 are excluded since their supports are
not minimal, although one may consider {p, q} a stronger support for p∨ q than,
say, {p}, since the set {p, q} logically implies every minimal support of p ∨ q.
Moreover, the size of {p, q} is bigger than that of {p}, and this may be relevant
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when quantitative considerations are involved (see Section 4.4). 1 2

• Consistency. The requirement that the support set Γ of an argument 〈Γ, ψ〉
should be consistent may be irrelevant for some logics, at least when consistency
is defined by satisfiability. Indeed, in logics such as Priest’s three-valued logic
(Priest 1989) or Belnap’s four-valued logic (Belnap 1977), every set of formulas
in the language of {¬,∨,∧} is satisfiable.

• Complexity. From a more pragmatic point of view, the involvement of mini-
mally consistent subsets of the underlying knowledge-base poses serious questions
on the computational viability of identifying arguments and generating them.
Indeed, deciding the existence of a minimal subset of formulas that implies the
consequent is already at the second level of the polynomial hierarchy (see Eiter
and Gottlob 1995). For first-order languages the problem is more severe, since
arguments may not be generated in an effective way.

Our conclusion, then, is that what really matters for an argument, is that (i) its
consequent would logically follow, according to the underlying logic, from the sup-
port set, and that (ii) there would be an effective way of constructing and identi-
fying it. In what follows we therefore adhere to the following principles:

(1) Supports and consequents of arguments are solely determined by the logic.
(2) Arguments are syntactical objects that are effectively computable by a for-

mal system that is related to the logic, and are refutable by the attack
relation of the argumentation system.

For the first item we indicate what a logic is (Definition 3.1). The first part of
the second item corresponds to the primary goal of proof theory, so notations and
machinery are borrowed from that area (Definitions 3.2 and 3.3).

We denote by L an arbitrary propositional language having a countably infinite
set Atoms(L) of atomic formulas. In what follows T ,S (possibly primed or indexed)
denote arbitrary theories (sets of formulas) in L, and Γ,∆ (possibly primed or
indexed) denote finite theories in L. Given a language L, we fix a corresponding
logic (sometimes called the base logic or the core logic), defined as follows.

Definition 3.1: A (propositional) logic for a language L is a pair L = 〈L,`〉,
where ` is a (Tarskian) consequence relation for L, that is, a binary relation be-
tween sets of formulas and formulas in L, satisfying the following conditions:

Reflexivity : if ψ ∈ T then T ` ψ
Monotonicity : if T ` ψ and T ⊆ T ′, then T ′ ` ψ
Transitivity : if T ` ψ and T ′, ψ ` φ then T , T ′ ` φ

In the sequel we shall exclude trivial consequence relations, that is, we shall assume
that p 6` q for distinct atoms p and q.

In what follows we assume that L contains the following connectives:

• A unary connective ¬ which is a `-negation: for every atomic formula p of L it
holds that p 6` ¬p and ¬p 6` p,

1Clearly, the argument A above may be split to two BH-arguments, A1 = 〈{p}, p ∨ q〉 and A2 = 〈{q}, p ∨ q〉,
but in general such rewriting requires further processing and might cause a blowup in the number of
arguments.
2Another argument that is sometimes pleaded for set-inclusion minimization is that it reduces the number
of attacks. Again, it is disputable whether set-inclusion minimization is the right principle for assuring
this property, since, for instance, the singletons S1 = {p1} and S2 = {p2 ∧ . . . ∧ pn}, supporting (e.g., in
classical logic) the claim p1 ∨ . . . ∨ pn, are incomparable w.r.t. set-inclusion (and moreover they even do
not share any atomic formula), but it is obvious that as n becomes larger S2 becomes more exposed to
attacks than S1.
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• A binary connective ∧ which is a `-conjunction: for every set T of formulas and
formulas ψ, φ it holds that T ` ψ ∧ φ iff T ` ψ and T ` φ.

Also, when L has an implication connective ⊃, we shall assume that it is deductive
with respect to the base consequence relation:1

• A binary connective ⊃ is called a `-deductive implication if for every set T of
formulas and formulas ψ, φ it holds that T , ψ ` φ iff T ` ψ ⊃ φ.

We shall denote by
∧

Γ the conjunction of all the formulas in (the finite theory) Γ,
and abbreviate the formula (ψ ⊃ φ) ∧ (φ ⊃ ψ) by ψ ↔ φ.

Definition 3.2: Let L be a propositional language, and let ⇒ be a symbol that
does not appear in L. An L-sequent (or just a sequent) is an expression of the form
Γ⇒ ∆, where Γ and ∆ are finite sets of formulas in L.

Proof systems that operate on sequents are called sequent calculi (Gentzen 1934).
A crucial property shared by all the logics considered in this paper is that they
have a sound and complete sequent calculus. For such a logic L = 〈L,`〉, then,
there is an effective way of drawing entailments: T ` ψ iff for some finite subset
Γ ⊆ T there is a proof of the sequent Γ⇒ ψ in the corresponding sequent calculus.

Definition 3.3: Let L = 〈L,`〉 be a logic with a corresponding sequent calculus
C, and let S be a set of formulas in L. An L-argument based on S is an L-sequent
of the form Γ ⇒ ψ, where Γ ⊆ S,2 that is provable in C.3 We denote by ArgL(S)
the set of all the L-arguments that are based on S.

In the notation of Definition 3.3, we have that:

Proposition 3.4: Let L = 〈L,`〉 be a propositional logic. Then Γ ⇒ ψ is in
ArgL(S) iff Γ ` ψ for a finite Γ ⊆ S.

Example 3.5 Consider Gentzen’s sequent calculus LK (Figure 1), which is sound
and complete for classical logic CL. In this case we have, for instance, that the
sequent ψ ⊃ φ⇒ ¬ψ∨φ is derivable in LK and so it belongs to ArgCL(S) whenever
S contains the formula ψ ⊃ φ. Note, however, that this sequent is not derivable
by any sequent calculus that is sound and complete for intuitionistic logic IL (e.g.,
Gentzen’s LJ), thus it is not in ArgIL(S) for any S.

Proposition 3.6: For every logic L = 〈L,`〉 and a set S of formulas in L, the
set ArgL(S) is closed under the following rules:4

S-Reflexivity: For every finite Γ ⊆ S and ψ ∈ Γ it holds that Γ⇒ ψ ∈ ArgL(S)
S-Monotonicity: If Γ⇒ ψ ∈ ArgL(S) and Γ ⊆ Γ′ ⊆ S, then Γ′ ⇒ ψ ∈ ArgL(S)
S-Transitivity: If Γ⇒ ψ ∈ ArgL(S) and Γ′, ψ ⇒ φ ∈ ArgL(S), then also

Γ,Γ′ ⇒ φ ∈ ArgL(S)

Proof : By Proposition 3.4, S-Reflexivity (respectively, S-Monotonicity, S-
Transitivity) follows from the reflexivity (respectively, the monotonicity, transi-
tivity) of `. �

Remark 1 : The set ArgsBH(S) of the BH-arguments is not closed under any rule
in Proposition 3.6. To see this consider for instance the set S = {p, q,¬p ∨ q,¬q ∨
p}. Then 〈{p,¬p ∨ q}, q〉 ∈ ArgsBH(S) and 〈{q,¬q ∨ p}, p〉 ∈ ArgsBH(S), however

1The availability of an implication connective is not required – see Remark 5.
2Following the usual convention, we shall omit set-brackets from the left-hand sides of sequents.
3Obviously, for the definition of an L-argument it does not matter which of the calculi that are sound and
complete for L is chosen.
4Following the usual conventions, we use commas in a sequent for denoting the union operation, and omit
curly brackets of singletons (i.e., we write ψ instead of {ψ}).
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Axioms: ψ ⇒ ψ

Structural Rules:

Weakening:
Γ⇒ ∆

Γ,Γ′ ⇒ ∆,∆′

Cut:
Γ1 ⇒ ∆1, ψ Γ2, ψ ⇒ ∆2

Γ1,Γ2 ⇒ ∆1,∆2

Logical Rules:

[∧⇒]
Γ, ψ, ϕ⇒ ∆

Γ, ψ ∧ ϕ⇒ ∆
[⇒∧]

Γ⇒ ∆, ψ Γ⇒ ∆, ϕ

Γ⇒ ∆, ψ ∧ ϕ

[∨⇒]
Γ, ψ ⇒ ∆ Γ, ϕ⇒ ∆

Γ, ψ ∨ ϕ⇒ ∆
[⇒∨]

Γ⇒ ∆, ψ, ϕ

Γ⇒ ∆, ψ ∨ ϕ

[⊃⇒]
Γ⇒ ψ,∆ Γ, ϕ⇒ ∆

Γ, ψ ⊃ ϕ⇒ ∆
[⇒⊃]

Γ, ψ ⇒ ϕ,∆

Γ⇒ ψ ⊃ ϕ,∆

[¬⇒]
Γ⇒ ∆, ψ

Γ,¬ψ ⇒ ∆
[⇒¬]

Γ, ψ ⇒ ∆

Γ⇒ ∆,¬ψ

Figure 1. The proof system LK

〈{p,¬p ∨ q,¬q ∨ p}, p〉 6∈ ArgsBH(S), since its support set is not minimal. Thus
ArgsBH(S) is not S-transitive. The fact that 〈{p,¬p ∨ q,¬q ∨ p}, p〉 6∈ ArgsBH(S)
(while 〈{p}, p〉 ∈ ArgsBH(S)) also shows that ArgsBH(S) is not S-monotonic and
that it is not S-reflexive.5

Remark 2 : Let L = 〈L,`〉 be a logic and S a set of formulas in L. Then S-
Transitivity can be strengthened as follows:

If Γ⇒ ψ ∈ ArgL(S) and Γ′, ψ ` φ for a finite Γ′ ⊆ S, then Γ,Γ′ ⇒ φ ∈ ArgL(S).

Note that unlike S-Transitivity, in the rule above ψ may not belong to S.

4. Attacks As Sequent Elimination Rules

In order to represent attack relations we introduce rules for excluding arguments
(i.e., sequents) in the presence of counter arguments. We call such rules sequent
elimination rules, or attack rules. The obvious advantage of representing attacks
by sequent elimination rules is that the form of such rules is similar to that of the
construction rules, and both types of rules are expressed by the same syntactical
objects. This allows us to uniformly identify and generate arguments and attacks
by the same sequent-manipulation systems.

Typical conditions of attack rules consist of three ingredients: the attacking ar-
gument (the first sequent in the rule’s prerequisites), the attacked argument (the
last sequent in the rule’s prerequisites), and the conditions for the attack (the other
prerequisites). Conclusions of sequent elimination rules will be the elimination of
the attacked argument. In the sequel, we denote by Γ 6⇒ ψ the elimination (or, the

5Note that ArgsBH(S) is cautiously S-reflexive: 〈{ψ}, ψ〉 ∈ ArgsBH(S) for a consistent formula ψ ∈ S.
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discharging) of the argument Γ⇒ψ. Alternatively, if a sequent is denoted by s, its
discharged counterpart will sometimes be denoted by s.

Definition 4.1: Let ArgL(S) be a set of L-arguments, C a sound and complete
sequent calculus for L. A sequent elimination rule (or attack rule) is a Gentzen-type
rule R of the following form:

Γ1 ⇒ ∆1, . . . ,Γn ⇒ ∆n

Γn 6⇒ ∆n
.

We say that R is ArgL(S)-applicable, alternatively: L-applicable or just applicable
(with respect to θ), if there is an L-substitution θ such that θ(Γ1) ⇒ θ(∆1) and
θ(Γn)⇒ θ(∆n) are in ArgL(S) and for each 1 < i < n, θ(Γi)⇒ θ(∆i) is C-provable.
In this case we shall say that θ(Γ1)⇒ θ(∆1) R-attacks θ(Γn)⇒ θ(∆n).

Note that applicability of a rule is defined with respect to a logic (and a substi-
tution), and it is invariant with respect to a particular calculus C, as long as C is
sound and complete for L.

4.1. Standard Logical Attacks, Revisited

First, we show how the attack relations in Definition 2.3 can be described in terms
of corresponding sequent elimination rules.

Attacks by defeaters. In terms of an arbitrary logic L = 〈L,`〉 and L-arguments
in ArgL(S), an argument Γ1 ⇒ ψ1 is an L-defeater of an argument Γ2 ⇒ ψ2 if
ψ1 ` ¬

∧
Γ2. In the presence of a `-deductive implication ⊃ in L, this means that

` ψ1 ⊃ ¬
∧

Γ2, and so ⇒ ψ1 ⊃ ¬
∧

Γ2 is an L-argument in ArgL(S). It follows that
attacks by defeaters may be represented by the following sequent elimination rule
(relative to L):

Defeat:
Γ1 ⇒ ψ1 ⇒ ψ1 ⊃ ¬

∧
Γ2 Γ2 ⇒ ψ2

Γ2 6⇒ ψ2

In the particular case where the underlying logic is classical logic CL, this rule is
a sequent-based encoding of a defeater attack in the sense of Definition 2.3:

Proposition 4.2: Let A1 = 〈Υ1, σ1〉 and A2 = 〈Υ2, σ2〉 be two BH-arguments.
Then A1 is a defeater of A2 in the sense of Definition 2.3 iff the rule Defeat
defined above is CL-applicable with respect to a substitution θ, where θ(Γi) = Υi

and θ(ψi) = σi, i = 1, 2.

Proof : Since Ai are BH-arguments it holds that Υi `cl σi for i = 1, 2 and so
the sequents Υi ⇒ σi are LK-provable (i = 1, 2). Moreover, since A1 is a defeater
of A2, it holds that `cl σ1 ⊃ ¬

∧
Υ2, thus ⇒ σ1 ⊃ ¬

∧
Υ2 is also LK-provable.

It follows that the rule Defeat is CL-applicable with respect to a substitution θ
such that θ(Γi) = Υi and θ(ψi) = σi (i = 1, 2). Conversely, let A1 = 〈Υ1, σ1〉 and
A2 = 〈Υ2, σ2〉 be BH-arguments and suppose that the rule Defeat is CL-applicable
with respect to a substitution θ such that θ(Γi) = Υi and θ(ψi) = σi (i = 1, 2). Then
the attacking condition of this rule is LK-provable, which means that σ1 `cl ¬

∧
Υ2,

and so A1 is a defeater of A2 in the sense of Definition 2.3. �

Remark 3 : The following sequent elimination rule may be viewed as an equiva-
lent form of Defeat, which moreover does not assume the availability of a deductive
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implication in the language.

Compact Defeat:
Γ1 ⇒ ¬

∧
Γ2 Γ2 ⇒ ψ2

Γ2 6⇒ ψ2

Definition 4.3: We say that an attack rule R1 L-implies an attack rule R2, if
for every set of formulas S, whenever R2 is ArgL(S)-applicable its conclusion is
produced by R1 (with respect to ArgL(S)). Formally: whenever Γ ⇒ ψ ∈ ArgL(S)
R2-attacks Γ′ ⇒ ψ′ ∈ ArgL(S) there is Γ⇒ φ ∈ ArgL(S) that R1-attacks Γ′ ⇒ ψ′.1

The Attack rules R1 and R2 are said to be L-equivalent, if each one of them L-
implies the other.

From an argumentative point of view, the fact that a rule R1 implies a rule R2

intuitively means that any attack that is producible using R2 can be reproduced
using R1 by means of an attacking argument with the same support set.

Proposition 4.4: For every logic L, Compact Defeat is L-equivalent to Defeat.

Proof : To show that Compact Defeat implies Defeat assume that the three con-
ditions of Defeat hold with respect to ArgL(S). Since⇒ ψ1 ⊃ ¬

∧
Γ2 is derivable, it

holds that ` ψ1 ⊃ ¬
∧

Γ2. Thus, since ⊃ is a `-deductive implication, ψ1 ` ¬
∧

Γ2.
This, together with the assumption that Γ1 ⇒ ψ1 is derivable (and so it is an
argument in ArgL(S)), imply by Remark 2 that Γ1 ⇒ ¬

∧
Γ2 is an argument in

ArgL(S), and so by Definition 3.3 it is derivable in the underlying sequent calculus.
It follows that Γ2 6⇒ ψ2 is producible by Compact Defeat, and so Compact Defeat
indeed implies Defeat.

To see that Defeat implies Compact Defeat suppose that the two conditions
of Compact Defeat hold. Since ` is reflexive, ¬

∧
Γ2 ` ¬

∧
Γ2, and so, since ⊃

is a `-deductive implication, ` ¬
∧

Γ2 ⊃ ¬
∧

Γ2. We thus have that the sequent
⇒ ¬

∧
Γ2 ⊃ ¬

∧
Γ2 is derivable in the underlying sequent calculus. It follows that

Γ2 6⇒ ψ2 is producible by Defeat, and so Defeat indeed implies Compact Defeat. �

Attacks by direct defeaters. Direct defeat with respect to an arbitrary logic L =
〈L,`〉 and a set ArgL(S) of L-arguments based on S, means that Γ1 ⇒ ψ1 is an
L-direct defeater of Γ2 ⇒ ψ2 if ψ1 ` ¬γ for some γ ∈ Γ2. Thus, a direct defeat
attack may be expressed by the following sequent elimination rule:

Direct Defeat:
Γ1 ⇒ ψ1 ⇒ ψ1 ⊃ ¬φ Γ2, φ⇒ ψ2

Γ2, φ 6⇒ ψ2

It follows that an argument should be withdrawn in case that the negation of an
element in its support set is implied by a consequent of another argument.

As in the case of attacks by defeaters, we have the following relation between
attacks by direct defeaters in classical logic (Definition 2.3) and the above sequent-
based formalization:

Proposition 4.5: Let A1 = 〈Υ1, σ1〉 and A2 = 〈Υ2, σ2〉 be two BH-arguments.
Then A1 is a direct defeater of A2 in the sense of Definition 2.3 iff the rule Direct
Defeat defined above is CL-applicable with respect to a substitution θ where θ(Γi) =
Υi and θ(ψi) = σi, i = 1, 2.

Proof : Similar to that of Proposition 4.2. �

1Gorogiannis and Hunter (2011) consider a stricter implication between attacks, in which φ = ψ.
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Remark 4 : Again, it is possible to express an equivalent and more compact
form of the rule above, which does not mention an implication connective:

Compact Direct Defeat:
Γ1 ⇒ ¬φ Γ2, φ⇒ ψ2

Γ2, φ 6⇒ ψ2

Proposition 4.6: For every logic L, Compact Direct Defeat is L-equivalent to
Direct Defeat.

Proof : Similar to the proof of Proposition 4.4. �

Similar links to BH-arguments as in Propositions 4.2 and 4.5 may be established
for all the rules to be considered in what follows. Also, all these rules will have
equivalent compact versions like those considered in Remarks 3 and 4. In the sequel,
we shall avoid replicating the links to BH-arguments and formulating equivalent
compact versions of the underlying rules.

Attacks by undercuts. For expressing undercuts with respect to a logic L = 〈L,`〉
we first have to define logical equivalence in L. A natural way to do so is to require
that ψ and φ are logically equivalent in L iff ψ ` φ and φ ` ψ. Using a `-deductive
implication ⊃ and a `-conjunctive connective ∧, this means that ` (ψ ⊃ φ)∧ (φ ⊃
ψ), i.e., that ψ ↔ φ is a theorem of L. It follows that attacks by undercuts are
represented by the following sequent elimination rule:

Undercut:
Γ1 ⇒ ψ1 ⇒ ψ1 ↔ ¬

∧
Γ′2 Γ2,Γ

′
2 ⇒ ψ2

Γ2,Γ′2 6⇒ ψ2

Attacks by direct and canonical undercuts. Using the same notations as those
for attacks by undercuts, and under the same assumptions on the language, attacks
by direct undercuts may be represented by the following elimination rule:

Direct Undercut:
Γ1 ⇒ ψ1 ⇒ ψ1 ↔ ¬γ2 Γ2, γ2 ⇒ ψ2

Γ2, γ2 6⇒ ψ2

Similarly, attacks by canonical undercuts may be represented as follows:

Canonical Undercut:
Γ1 ⇒ ψ1 ⇒ ψ1 ↔ ¬

∧
Γ2 Γ2 ⇒ ψ2

Γ2 6⇒ ψ2

Attacks by rebuttal and defeating rebuttal. By the discussion above it is easy to
see that attacks by rebuttal and defeating rebuttal are also represented by sequent
elimination rules. Indeed, these two attacks are represented as follows:

Rebuttal:
Γ1 ⇒ ψ1 ⇒ ψ1 ↔ ¬ψ2 Γ2 ⇒ ψ2

Γ2 6⇒ ψ2

Defeating Rebuttal:
Γ1 ⇒ ψ1 ⇒ ψ1 ⊃ ¬ψ2 Γ2 ⇒ ψ2

Γ2 6⇒ ψ2

Remark 5 : All of the attack rules discussed previously can be represented in
a language with `-negation and `-conjunction only, that is, the availability of
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`-deductive implication (and a corresponding connective for representing equiva-
lence) may not be assumed. The attack rules in the reduced language are repre-
sented in Figure 2. In these rules the conditions are not necessarily S-arguments,
as the premises of these conditions are not necessarily included in S.1

Defeat: [Def]
Γ1 ⇒ ψ1 ψ1 ⇒ ¬

∧
Γ2 Γ2 ⇒ ψ2

Γ2 6⇒ ψ2

Compact Defeat: [C-Def]
Γ1 ⇒ ¬

∧
Γ2 Γ2 ⇒ ψ2

Γ2 6⇒ ψ2

Direct Defeat: [D-Def]
Γ1 ⇒ ψ1 ψ1 ⇒ ¬φ Γ2, φ⇒ ψ2

Γ2, φ 6⇒ ψ2

Compact Direct Defeat: [CD-Def]
Γ1 ⇒ ¬φ Γ2, φ⇒ ψ2

Γ2, φ 6⇒ ψ2

Undercut: [Ucut]
Γ1 ⇒ ψ1 ψ1 ⇒ ¬

∧
Γ′2 ¬

∧
Γ′2 ⇒ ψ1 Γ2,Γ′2 ⇒ ψ2

Γ2,Γ′2 6⇒ ψ2

Compact Undercut: [C-Ucut]
Γ1 ⇒ ¬

∧
Γ′2 Γ2,Γ′2 ⇒ ψ2

Γ2,Γ′2 6⇒ ψ2

Direct Undercut: [D-Ucut]
Γ1 ⇒ ψ1 ψ1 ⇒ ¬γ2 ¬γ2 ⇒ ψ1 Γ2, γ2 ⇒ ψ2

Γ2, γ2 6⇒ ψ2

Canonical Undercut: [C-Ucut]
Γ1 ⇒ ψ1 ψ1 ⇒ ¬

∧
Γ2 ¬

∧
Γ2 ⇒ ψ1 Γ2 ⇒ ψ2

Γ2 6⇒ ψ2

Rebuttal: [Reb]
Γ1 ⇒ ψ1 ψ1 ⇒ ¬ψ2 ¬ψ2 ⇒ ψ1 Γ2 ⇒ ψ2

Γ2 6⇒ ψ2

Compact Rebuttal: [C-Reb]
Γ1 ⇒ ¬ψ2 Γ2 ⇒ ψ2

Γ2 6⇒ ψ2

Defeating Rebuttal: [D-Reb]
Γ1 ⇒ ψ1 ψ1 ⇒ ¬ψ2 Γ2 ⇒ ψ2

Γ2 6⇒ ψ2

Figure 2. Sequent elimination rules

Note that the compact version of Direct Undercut is the same as Compact Direct
Defeat, the compact version of Canonical Undercut is the same as Compact Defeat,
and the compact version of Defeating Rebuttal is the same as Compact Rebuttal.

As the next proposition shows, the relations between the attacks in Definition 2.3,
indicated in Gorogiannis and Hunter (2011), carry on to our attack rules.

Proposition 4.7: Let L = 〈L,`〉 be a propositional logic, where L has a `-
conjunction ∧. Then: (a) Defeating Rebuttal is L-equivalent to Rebuttal, (b) Un-
dercut L-implies Canonical Undercut and Direct Undercut, (c) Canonical Undercut
is L-equivalent to Defeat, (d) Direct Defeat is L-equivalent to Direct Undercut.

Proof : Part (a) follows from the fact that both rules are L-equivalent to Compact
Rebuttal. Part (b) follows from the fact that Undercut holds in particular when Γ2

is a singleton (in which case Direct Undercut is obtained) and when Γ2 is the whole
support set of the sequent (in which case Canonical Undercut is obtained). Part (c)
follows from the fact that both Canonical Undercut and Defeat are equivalent to
Compact Defeat. Part (d) follows from the fact that Direct Undercut and Direct
Defeat are equivalent to Compact Direct Defeat. �

Remark 6 : Further relations between the elimination rules introduced above
may be obtained under further assumptions on the underlying logics. For instance,

1To reduce the amount of notations, we use the same names for the rules with and without the implication
connective. This will not cause ambiguity in what follows.
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when L is classical logic, Defeat implies Direct Defeat, since in LK the sequent
⇒ ψ ⊃ ¬

∧
Γ is derivable from ⇒ ψ ⊃ ¬γ for any γ ∈ Γ. Similar considerations

show that in this case Defeat also implies Undercut and Defeating Rebuttal.

4.2. Attacks Incorporating Modalities

The fact that our approach is language-independent enables us to apply it in differ-
ent scenarios and for a variety of purposes. One of them, demonstrated in (Straßer
and Arieli 2014), applies sequent-based logical argumentation for modeling norma-
tive reasoning in the context of deontic logic (Aqvist 2002). The idea is to reason
with and about norms such as obligations, imperatives, permissions, etc. This is
usually formalized by the primitive modal operator O that represents obligations
and the defined modal operator P (where P = ¬O¬) that represents permissions.

A paradigmatic instance for normative reasoning is so-called factual detachment,
saying that if ϕ holds, and there is a commitment to ψ conditional on ϕ, then there
is a commitment to ψ. Another instance is aggregation: if there is a norm to bring
about ϕ and another norm to bring about ψ then there should be a norm to
bring about ϕ ∧ ψ. Allowing for unrestricted factual detachment or unrestricted
aggregation is problematic in cases in which norms conflict. As shown in (Straßer
and Arieli 2014) and demonstrated next, attack rules in the context of sequent-
based argumentation are useful for representing and handling such conflicts.

Example 4.8 Consider the following example by Horty (1994):

• When served a meal one ought to not eat with fingers.

• However, if the meal is asparagus one ought to eat with fingers.

The statements above may be represented, respectively, by the formulas m ⊃ O¬f
and (m ∧ a) ⊃ Of . Now, in case one is indeed served asparagus (m ∧ a) we expect
to derive the (unconditional) obligation to eat with fingers (Of) rather than to not
eat with fingers (O¬f). This is a paradigmatic case of specificity : a more specific
obligation cancels (or overrides) a less specific one.

In our setting this may be handled by an attack rule advocating specificity,
according to which the argument {m∧a, (m∧a)⊃Of} ⇒ Of attacks the argument
{m, m⊃ O¬f} ⇒ O¬f . Here, arguments are obtained by a sequent calculus for
standard deontic logic SDL, which extends LK by the following inference rules for
the modal operators: (Below, we denote OΓ for {Oφ | φ ∈ Γ})

KR:
Γ⇒ φ

OΓ⇒ Oφ
DR:

Γ⇒ φ

OΓ⇒ ¬O¬φ

The aforesaid attack rule may be formalized as follows:

Specifity:
Γ, φ ⊃ ψ ⇒ ψ Γ⇒ φ Γ′ ⇒ φ′ φ⇒ φ′ ψ ⇒ ¬ψ′ Γ′, φ′ ⊃ ψ′ ⇒ ψ′

Γ′, φ′ ⊃ ψ′ 6⇒ ψ′

This rule aims at formalizing the principle of specificity. It states that when two
sequents Γ′ ⇒ ψ′ and Γ ⇒ ψ are conflicting, the one which is more specific gets
higher precedence, and so the other one is discharged. Thus, in Example 4.8 for
instance, Specificity allows to discharge the sequent m, m⊃O¬f ⇒ O¬f in light
of the more specific sequent m ∧ a, (m ∧ a)⊃Of ⇒ Of .
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Some variations of Specificity are given below (where NN′ ∈ {OO,OP,PO}):1

NN′-Spec

Γ, φ ⊃ Nψ
⇒ Nψ Γ⇒ φ Γ′ ⇒ φ′ φ⇒ φ′ ψ ⇒ ¬ψ′ Γ′, φ′ ⊃ N′ψ′

⇒ N′ψ′

Γ′, φ′ ⊃ N′ψ′ 6⇒ N′ψ′

NN′-SpecNeg

Γ, φ ⊃ Nψ
⇒ ¬(φ′ ⊃ N′ψ′) Γ⇒ φ Γ′ ⇒ φ′ φ⇒ φ′ ψ ⇒ ¬ψ′ Γ′, φ′ ⊃ N′ψ′

⇒ ψ′′

Γ′, φ′ ⊃ N′ψ′ 6⇒ ψ′′

For instance, PO-Spec models permission as derogation (Stolpe 2010): a permission
may suspend a more general obligation.

4.3. Relevant Attacks

When L is a logic in which any formula follows from a contradiction (in particular, if
L is classical logic, CL), any sequent is attacked according to each rule in Figure 2.
Thus, for instance, when L = CL, S = {p,¬p, q}, and the attack rule is Under-
cut, the sequent q ⇒ q is attacked by the (classically valid) sequent p,¬p ⇒ ¬q,
although – intuitively – q is not really related to the inconsistency in S.

In logics where negated contradictions are theorems, the above phenomenon may
be avoided by having some premise attack rules together with restricted rebuttals
in which the supports of the attacked arguments are not empty. By this, arguments
with inconsistent supports are attacked by arguments with empty supports (whose
conclusions are theorems) and arguments with empty supports are not attacked.

In what follows we describe an alternative way of handling attacks by inconsistent
supports, in which the above assumptions on the underlying logic and the attack
rules are not needed. For this, we follow the primary consideration behind relevance
logics and consider variations of the attack rules, according to which the attacking
sequent should contain information which is relevant to the attacked sequent (see,
e.g., Dunn and Restall 2002). This is enforced by the variable sharing property ,
a principle that in our case requires that the support sets of the attacking and
the attacked sequents should share variables, and so the former is ‘relevant’ for
the latter. Note that by monotonicity, support sets may be artificially extended to
contain allegedly relevant information (e.g., p,¬p, q ⇒ ¬q). To prevent this artificial
enforcement of variable sharing, relevant attacks are performed only by sequents
whose left hand sides contain the ‘most compact support’ for their consequents, as
defined next.

Definition 4.9: Let Γ be a set of formulas and ψ a formula in a language L,
and denote by Atoms(Γ) the set of atomic formulas that appear in (some formula
of) Γ.

a) Γ is relevant to ψ, if Atoms(Γ)∩Atoms({ψ}) = ∅ implies that Γ = ∅. A nonempty
set Γ is irrelevant to a (nonempty) set ∆ if Atoms(Γ) ∩ Atoms(∆) = ∅.

b) Γ is a most compact support for ψ (with respect to a logic L and a set of assertions
S), if Γ⇒ ψ ∈ ArgL(S) and there is no Γ′ with Atoms(Γ′) ( Atoms(Γ) such that
Γ′ ⇒ ψ ∈ ArgL(S).1 We denote by mcs(ψ) the set of all formulas σ ∈ Υ such

1Note that ‘PP-Spec’ or ‘PP-SpecNeg’ variants would not be sensible, since permissions with incompatible
content do not conflict in any intuitive sense.
1Note that this condition does not imply a subset-minimality of Γ, but rather assures that Γ does not
contain information that is irrelevant (in the sense of Item (a)) for its conclusion.
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that Υ is a most compact support for ψ (with respect to L and S).2

c) Let R be an elimination rule in Figure 2, in which Γ1 ⇒ ψ1 attacks Γ2 ⇒ ψ2.
The relevant variant of R is the application of R with the side conditions (i.e., a
restriction on the application of R) that Γ1⊆mcs(ψ1) and Γ1 is relevant to Γ2.

Example 4.10 Relevant Undercut is defined as follows:

[R-Ucut]
Γ1 ⇒ ψ1 ψ1 ⇒ ¬

∧
Γ2 ¬

∧
Γ2 ⇒ ψ1 Γ2,Γ

′
2 ⇒ ψ2

Γ2,Γ′2 6⇒ ψ2

provided that Γ1 is included in mcs(ψ1) and it is relevant to Γ2. Thus, for instance,
when L = CL and S = {p,¬p, q}, each one of the the sequents p, q ⇒ (p ∨ ¬q) and
p, q ⇒ ¬¬(p ∨ ¬q) attacks according to this rule the sequent ¬p, q ⇒ ¬(p ∨ ¬q).
Note, however, that unlike in the case of Undercut, according to Relevant Undercut
p,¬p⇒ ¬q does not attack q ⇒ q, since {p,¬p} is not relevant to q.

Remark 7 : While the variable sharing principle prohibits the possibility that
arguments would attack other arguments which are irrelevant to them, a word of
caution on using relevant attacks (at least according to our definitions) is in order
here. Consider, for instance, the set S1 = {p, p → r, p ∧ q ∧ r,¬r}. In this case,
the sequent ¬r ⇒ ¬r is attacked according to [R-UCut] only by p, p→ r ⇒ r and
not by p ∧ q ∧ r ⇒ r, since the latter is not in mcs(r) relative to S1. Moreover,
the transition from S1 to its clausal form S2 = {p, p→ r, q, r,¬r}, which keeps the
two sets equivalent according to classical logic, has some implications on the attack
relation, since ¬r ⇒ ¬r is now attacked according to [R-UCut] by r ⇒ r and not
by p, p→ r ⇒ r, which in turn does not belong to mcs(r) relative to S2. It follows
that relevant attacks are sensitive to the syntactic structure of the underlying set
of assertions.1 We refer to (Avron 2014) for an in-depth discussion on the relevance
principle and corresponding logics.

4.4. Quantitative Attacks

Attacks between arguments may be triggered also by considerations that are not
necessarily purely logical, but can still be encoded in attack rules. One such consid-
eration is concerned with the amount of formulas that support an argument. Thus,
for instance, as we have already noted, when the left-hand-sides of the sequents
consist only of literals, one may regard p, q ⇒ p ∨ q a stronger argument for p ∨ q
than p⇒ p ∨ q, since the former has a bigger support.

To represent the above considerations in our setting, one may add to the attack
rules side conditions that take into account the cardinality of the support sets of
the attacking and the attacked arguments. Note however, that one has to be careful
with the formalization of such conditions. For instance, a cardinality-based attack
of Γ1 ⇒ ψ on Γ2 ⇒ ¬ψ cannot stem only from the fact that |Γ1| > |Γ2| (where
|Γ| denotes the size of Γ), since in this case the argument p, p → q ⇒ q could be
attacked by an argument like p, p→ r, r → q ⇒ q or even by r, p, p→ q ⇒ q, whose
support sets are bigger, but are certainly not stronger.

Example 4.11 A rebuttal attack rule for capturing ’stronger support due to more

2For instance, when L = CL and S = {p, q}, we haver that p, q ∈ mcs(p ∨ q).
1On the other hand, relevant attack rules have some desirable properties that are not necessarily shared
by other rules, like being invariant with respect to irrelevant information – see Lemma 5.15 below.
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relevant evidence’ may be formalized as follows:

Γ1 ⇒ ψ1 ⇒ ψ1 ↔ ¬ψ2 Γ2 ⇒ ψ2

Γ2 6⇒ ψ2
if |Γ1 ∩mcs(ψ1)| ≥ |Γ2 ∩mcs(ψ2)|

where mcs(ψ) is the set of the most compact supports of ψ, defined in 4.9.

To see an application of this rule, consider the set S = {p, q,¬(p∨q)} and suppose
that the underlying logic is classical logic. Then p, q ⇒ p ∨ q attacks according to
the above rule the sequent ¬(p ∨ q) ⇒ ¬(p ∨ q) (but not the other way around),
since its relevant evidential support for p ∨ q is bigger than the relevant evidence
the other sequent has for supporting ¬(p ∨ q).

We conclude Section 4 with a general observation about its realm.

Remark 8 : Our purpose in this section was to exemplify the wide range of attack
relations that can be expressed by sequent-based rules. How to choose the most
appropriate attacks for specific needs is beyond the scope of this paper (mainly
due to its generality and the fact that many context-dependent considerations are
involved in the study of well-behaved attacks, among which are the language of the
arguments and the type of the underlying logic). However, the suitability of attack
relations for specific settings is an important issue that should be verified when
it comes to applications. To see this we recall Remark 7 and the result by Goro-
giannis and Hunter (2011) that in the scope of standard propositional languages
and classical logic canonical undercuts and rebuttals yield complete extensions (see
Definition 5.2) whose arguments have mutually inconsistent conclusions.

For assuring the well-behavior of attack relations one may need to refer to ra-
tionality postulates tailored to the specific logic under consideration (like those
specified by Caminada and Amgoud (2007)). This may trigger the introduction
of additional machinery such as preference orderings over arguments, as described
e.g. in (Modgil and Prakken 2013)1.

5. Sequent-Based Argumentation Frameworks and Their Entailments

By Sections 3 and 4 we can now consider argumentation frameworks (Definition 2.1)
whose arguments are sequents and whose attacks are obtained by sequent elimina-
tion rules. We call these structures sequent-based logical argumentation frameworks.

Definition 5.1: A (sequent-based) logical argumentation framework for a set of
formulas S, based on a logic L and a set AttackRules of sequent elimination rules,
is the pair AFL(S) = 〈ArgL(S),A〉, where A ⊆ ArgL(S)×ArgL(S) and (s1, s2) ∈ A
iff there is R ∈ AttackRules such that s1 R-attacks s2.

In what follows, somewhat abusing the notations, we shall sometimes identify A
with AttackRules.

We are ready now to use sequent-based logical frameworks for commonsense
reasoning. As usual in the context of abstract argumentation, we do so by incor-
porating Dung’s notion of extension (Dung 1995), defined next.

Definition 5.2: Let AFL(S) = 〈ArgL(S),A〉 be a sequent-based logical argu-
mentation framework (for the set S, based on the logic L), and let E ⊆ ArgL(S).
We say that E attacks an argument (sequent) s if there is an argument s′ ∈ E that

1See also the conclusion of this paper for a short discussion on implementing preferences in sequents.
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attacks s (i.e., (s′, s) ∈ A). The set of arguments that are attacked by E is denoted
E+. We say that E defends s if E attacks every argument s′ that attacks s. The set
E is called conflict-free if it does not attack any of its elements (i.e., E+ ∩ E = ∅),
E is called admissible if it is conflict-free and defends all of its elements, and E is
complete if it is admissible and contains all the arguments that it defends. Now,

• The minimal complete subset of ArgL(S) is the grounded extension of AFL(S),

• A maximal complete subset of ArgL(S) is a preferred extension of AFL(S),

• A complete subset E of ArgL(S) that attacks every argument in ArgL(S) \ E is a
stable extension of AFL(S).

Below, we denote by Cmpl(AFL(S)) (respectively, by Grnd(AFL(S)), Prf(AFL(S)),
Stbl(AFL(S))) the set of all the complete (respectively, all the grounded, preferred,
stable) extensions of AFL(S).

The induced entailment relations are now defined as follows:

Definition 5.3: Let AFL(S) = 〈ArgL(S),A〉 be a sequent-based logical argu-
mentation framework (for the set S of formulas and a logic L), and suppose that
Sem ∈ {Grnd,Prf,Stbl}.

• S |∼∀L,A,Sem ψ if every extension E ∈ Sem(AFL(S)) contains an argument of the

form Γ⇒ ψ.1 In this case we say that ψ skeptically follows from S according to
Sem(AFL(S)).

• S |∼∃L,A,Sem ψ if there is some extension E ∈ Sem(AFL(S)) that contains an
argument of the form Γ⇒ ψ. In this case we say that ψ credulously follows from
S according to Sem(AFL(S)).2

Notation 5.4: In what follows we shall omit from the entailment notations of
Definition 5.3 subscripts or superscripts that do not matter for specific statements.
For instance, we shall write |∼L,A,Sem to denote either |∼∀L,A,Sem or |∼∃L,A,Sem. Simi-

larly, we use the notation |∼ whenever a statement applies to each of the entailment
relations in Definition 5.3.

Remark 9 : A more cautious approach to skeptical reasoning would be to define
AFL(S)-based entailments by S |∼uL,A,Sem ψ if there is an argument Γ ⇒ ψ in

ArgL(S) that belongs to every extension E ∈ Sem(AFL(S)). Clearly, it holds that

if S |∼uL,A,Sem ψ then S |∼∀L,A,Sem ψ. In what follows we shall concentrate on the
entailments of Definition 5.3.

Example 5.5 Let us consider a sequent-based argumentation system for S1 =
{p,¬p, q} that is based on classical logic CL, and whose only attack rule is Relevant
Undercut (see Example 4.10). It is easy to see that no argument in ArgCL(S1)
attacks the argument q⇒q, and so S1 |∼CL,R-Ucut q. On the other hand, p⇒p and

¬p⇒¬p attack each other, therefore S1 6|∼CL,R-Ucut p and S1 6|∼CL,R-Ucut ¬p,

Example 5.6 Consider the set S2 = {p, q,¬(p ∧ q)}. When classical logic is the
base logic none of the formulas in S2 is derivable, since according to CL each pair
of assertions in S2 attack the third one by (Relevant) Undercut.

Suppose now that the base logic is Priest’s 3-valued paraconsistent logic LP (see
Priest 1989). A sound and complete sequent calculus for this logic is obtained by

1Recall that by the definition of ArgL(S), this implies that Γ ⊆ S.
2Similar entailment relations may of-course be defined for other semantics of abstract argumentation
frameworks, such as semi-stable semantics (Caminada 2006), ideal semantics (Dung et al. 2007), eager
semantics (Caminada 2007), and so forth.
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keeping the axiom, structural rules, and the inference rules for ∨ and ∧ of LK, and
adding the axiom ⇒ p,¬p and the negation rules in Figure 3.

[¬¬⇒]
Γ, φ⇒ ∆

Γ,¬¬φ⇒ ∆
[⇒¬¬]

Γ⇒ ∆, φ

Γ⇒ ∆,¬¬φ

[¬∧⇒]
Γ,¬φ⇒ ∆ Γ,¬ψ ⇒ ∆

Γ,¬(φ ∧ ψ)⇒ ∆
[⇒¬∧]

Γ⇒ ∆,¬φ,¬ψ
Γ⇒ ∆,¬(φ ∧ ψ)

[¬∨⇒]
Γ,¬φ,¬ψ ⇒ ∆

Γ,¬(φ ∨ ψ)⇒ ∆
[⇒¬∨]

Γ⇒ ∆,¬φ Γ⇒ ∆,¬ψ
Γ⇒ ∆,¬(φ ∨ ψ)

Figure 3. Negation rules for LP

This time, whatever the attack rules in Figure 2 or their relevant versions are
used, the consequences would be different than those that are obtained when CL is
the base logic. Indeed, in LP sequents of the form p,¬(p∧q)⇒ ¬q are not derivable.
It follows that while ¬(p ∧ q) ⇒ ¬(p ∧ q) is still attacked in LP (by p, q ⇒ p ∧ q),
p⇒ p and q ⇒ q are not attacked.

Example 5.7 Let us recall the set S3 = {m, a,m⊃O¬f, (m ∧ a)⊃Of} of Exam-
ple 4.8. Suppose that SDL is the base logic and OO-SpecNeg is the single attack
rule. We observe that, as expected, one concludes the following:

• S3 6|∼SDL,OO-SpecNegO¬f . This is because one cannot derive O¬f , since the sequent

m,m⊃O¬f ⇒ O¬f is attacked by m, a, (m ∧ a)⊃Of ⇒ ¬(m⊃O¬f).

• S3|∼SDL,OO-SpecNegOf . Indeed, the sequent m, a, (m∧a)⊃Of ⇒ Of is not attacked

by an argument in ArgSDL(S3).1

Remark 10 : It is important to note at this point that the reasoning mechanism,
depicted in the last examples, is reinforced by corresponding derivation procedures.
Such derivations are dynamic in nature, as sequents may not only be introduced
during a derivation, but may also be retracted. This brings about a deviation in the
standard definition of derivability in Gentzen-type proof systems. We postpone the
discussion about this to another paper. The interested reader is referred to (Arieli
and Straßer 2014) for some definitions and preliminary discussions on this matter.

Next, we consider some basic properties of |∼. In what follows, we fix a (sequent-
based) logical argumentation framework AFL(S) = 〈ArgL(S),A〉 for a set S of L-
formulas, based on a logic L = 〈L,`〉 with a sound and complete sequent calculus
C, and where A is the set of attacks obtained by the sequent elimination rules in
AttackRules (that is, (s1, s2) ∈ A iff there is R ∈ AttackRules and s1 R-attacks s2).

Proposition 5.8: If ArgL(S) is conflict-free with respect to AFL(S) then S |∼ψ
iff S ` ψ.

Proof : If there are no attacks between arguments in ArgL(S), no attack rule in
AttackRules is applicable, and so the single extension of AFL(S) is ArgL(S). It
follows, then, that S |∼ψ iff there is a C-derivation of Γ⇒ ψ for some Γ ⊆ S. Since
C is sound and complete for L, the latter is a necessary and sufficient condition for
Γ ` ψ, and so (by the monotonicity of L) it is a necessary and sufficient condition
for S ` ψ.2 �

1It is important to note that m,a, (m ∧ a) ⊃ Of ⇒ Of is attacked by SDL-derivable arguments (such as
m,m ⊃ O¬f,m, a, (m ∧ a) ⊃ O¬f ⇒ ¬((m ∧ a) ⊃ Of)), but none of them is in ArgSDL(S3).
2In case that S is infinite, compactness of L should be assumed along the proof.
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The next result is an immediate corollary of Proposition 5.8:

Corollary 5.9: If AttackRules = ∅ then |∼ and ` coincide.

As the examples above show, |∼ and ` are different. In the general case, we have:

Proposition 5.10: If S |∼ ψ then S ` ψ.

Proof : If S |∼ ψ then in particular there is a sequent Γ⇒ ψ ∈ ArgL(S) for some
Γ ⊆ S. Thus, there is a proof in C for Γ⇒ ψ, and so Γ ` ψ. By the monotonicity
of L we have that S ` ψ. �

Proposition 5.8 implies, in particular, the following results for all the attack
relations considered previously in this paper:

Corollary 5.11: |∼ is cautiously reflexive: for every formula ψ such that ψ 6` ¬ψ
it holds that ψ |∼ ψ.1

Corollary 5.12: For every atom p it holds that p |∼ p.

Proof : By Corollary 5.11 and the fact that since ¬ is a negation, for every p it
holds that p 6` ¬p. �

Despite of the last two corollaries, (all) the examples above show that |∼ may not
be reflexive. These examples also show that in general |∼ is not monotonic either.
For instance, when C = LK and A consists of any of the attack rules in Figure 2,
we have that p |∼ p while p,¬p 6|∼ p.

Like reflexivity, weak forms of monotonicity can be guaranteed in particular cases.
For instance, as Proposition 5.14 below shows, when adding unrelated information
to an argumentation framework with relevant attack rules, this information should
not disturb previous inferences. For this proposition we first recall the following
known notion:

Definition 5.13: Let L = 〈L,`〉 be a propositional logic.

• A set T of formulas (in L) is called `-consistent if there exists a formula ψ (in
L) such that T 6` ψ.

• We say that L is uniform, if for every two sets of formulas T1, T2 and formula ψ
we have that T1 ` ψ when T1, T2 ` ψ and T2 is a `-consistent theory that has no
atomic formulas in common with Γ1 ∪ {ψ}.

Remark 11 : By  Los-Suzsko Theorem ( Los and Suzsko 1958), a finitary propo-
sitional logic 〈L,`〉 is uniform iff it has a single characteristic matrix (see also
Urquhart 2001). Thus, for instance, the logics in this paper are uniform.

Proposition 5.14: Let L = 〈L,`〉 be a uniform logic, and let R be a set of
attack rules in Relevant Compact Defeat, Relevant Compact Direct Defeat, Rel-
evant Undercut, Relevant Direct Undercut, and Relevant Canonical Undercut. If
S1 |∼L,R ψ and S2 is a `-consistent set of formulas that is irrelevant (in the sense

of Definition 4.9) to S1, then S1,S2 |∼L,R ψ.2

Proof : First, we show the following lemma:

1Note that the condition is indeed required here. For instance, in an argumentation framework based on
CL and Undercut it holds that p ∧ ¬p 6|∼CL,Ucut p ∧ ¬p. (Indeed, according to any semantics considered

here p ∧ ¬p⇒ p ∧ ¬p is undefended, since it is attacked by ⇒¬(p ∧ ¬p), and the latter is not attacked by
any other sequent since its left-hand side is empty).
2Recall that by Notation 5.4 this means that the proposition holds for every entailment of the form |∼πL,R,Sem
considered in Definition 5.3, where L and R are as defined in the proposition, Sem is any of the standard
argumentation semantics considered in this paper, and π ∈ {∀, ∃}.
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Lemma 5.15: No argument in ArgL(S1) is attacked, according to the rules in R,
by an argument in ArgL(S1 ∪ S2)− ArgL(S1).

Proof : In the notations of Definition 5.2, we have to show that ArgL(S1) ∩
(ArgL(S1 ∪ S2) − ArgL(S1))+ = ∅. Indeed, assume for contradiction that some
Υ ⇒ ψ ∈ ArgL(S1 ∪ S2) − ArgL(S1) R-attacks some Γ ⇒ φ ∈ ArgL(S1), and let
δ ∈ Υ ∩ S2 (such a δ exists, otherwise Υ ⊆ S1 and so Υ ⇒ ψ ∈ ArgL(S1)). In
particular, δ ∈ mcs(ψ), and so there is a sequent ∆⇒ ψ that R-attacks Γ⇒ φ for
some R ∈ R and where ∆ is a most compact support for ψ that contains δ.
• Suppose first that R is one of the defeat rules. In this case ψ = ¬

∧
Γ′,

where Γ′ ⊆ Γ. Since S2 is `-consistent, by the uniformity of L we have that
∆∩S1 ⇒ ¬

∧
Γ′ ∈ ArgL(S1), but since Atoms(∆∩S1) ( Atoms(∆) (as δ ∈ ∆), this

contradicts the assumption that ∆ is a most compact support for ψ.
• Suppose now that R is one of the undercut rules. In this case both of ψ ⇒ ¬

∧
Γ′

and ¬
∧

Γ′ ⇒ ψ are C-derivable for some Γ′ ⊆ Γ. Now, the application of Remark 2
on ∆ ⇒ ψ and ψ ⇒ ¬

∧
Γ′ yields that ∆ ⇒ ¬

∧
Γ′ ∈ ArgL(S1 ∪ S2). Hence, by

the uniformity of L and since S2 is `-consistent, ∆ ∩ S1 ⇒ ¬
∧

Γ′ ∈ ArgL(S1).
By Remark 2 again and the fact that ¬

∧
Γ′ ⇒ ψ is C-derivable, we get that

∆ ∩ S1 ⇒ ψ ∈ ArgL(S1). Once again, this is a contradiction to the choice of ∆ as
a most compact support for ψ, since Atoms(∆ ∩ S1) ( Atoms(∆). �

The proof of Proposition 5.14 now proceeds as follows: By the lemma above,
the addition of irrelevant information (S2) to existing information (S1) does not
produce more attacks on existing arguments, and so every Sem-extension E1 ∈
Sem(AFL(S1)) is included in some Sem-extension E2 ∈ Sem(AFL(S1 ∪ S2)). We
also get the converse, since in our case the arguments in E ∩ (ArgL(S1 ∪ S2) −
ArgL(S1)) do not defend the arguments in E , and so if E ∈ Sem(AFL(S1 ∪ S2))
then E ∩ ArgL(S1) ∈ Sem(AFL(S1)). Suppose then that S1 |∼L,R ψ. This means

that every [some] extension E1 ∈ Sem(AFL(S1)) contains an argument of the form
Γ ⇒ ψ where Γ ⊆ S1, and so every [some] extension E2 ∈ Sem(AFL(S1 ∪ S2))
contains an argument of the form Γ ⇒ ψ where Γ ⊆ S1 (thus Γ ⊆ S1 ∪ S2). This
implies that S1,S2 |∼L,R ψ. �

In the appendix we show that, assuming that the base logic satisfies some simple
properties, the cautious form of monotonicity in Proposition 5.14 holds also for
frameworks with non-relevant attack rules (see Propositions A.2 and A.3).

We conclude this section by checking two properties of |∼ that assure proper
handling of inconsistent information: paraconsistency (da Costa 1974) and crash
resistance (Caminada et al. 2012). We start with the former.

Proposition 5.16: If ` is paraconsistent (p,¬p 6` q for p 6= q) then so is |∼.

Proof : By Proposition 5.10, S 6|∼ψ when S 6` ψ. Thus, if p,¬p 6` q then p,¬p 6|∼ q
as well, and so |∼ is paraconsistent. �

Next, we consider crash resistance.

Definition 5.17: Let S be a set of L-formulas such that Atoms(S) ( Atoms(L).

• S is called contaminating for |∼, if for every set T that is irrelevant for S and
for every formula ϕ, it holds that S |∼ ϕ iff S, T |∼ ϕ.

• |∼ is crash-resistant if there is no set of formulas that is contaminating for |∼.

Proposition 5.18: Let L = 〈L,`〉 be a uniform logic that has the variable sharing
property (so it resists irrelevant information: S 6` ψ when ψ is irrelevant to S).
Then, in the notations of Proposition 5.14, |∼L,R is crash resistant.
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Proof : Suppose for a contradiction that there is a set S that is contaminating
for |∼L,R. Let p be an atom that does not appear in S. Then S 6` p and by Propo-

sition 5.10, S 6|∼L,R p. Since S is contaminating we have that S, p 6|∼L,R p. On the

other hand, by Corollary 5.12, p |∼L,R p, and so by Proposition 5.14, S, p |∼L,R p —
a contradiction. �

Proposition 5.19: Let L = 〈L,`〉 be a logic with a `-deductive ⊃. Suppose that

(1) L has the variable sharing property for consistent sets (if S is `-consistent
and ψ is irrelevant to S then S 6` ψ), and that

(2) L is consistency-enforcing (` ¬
∧

Γ whenever a finite Γ is `-inconsistent).

Let ∅ 6= R ⊆ {Defeat, Compact Defeat, Undercut, Canonical Undercut, Compact
Undercut}. Then, |∼L,R is crash resistant.

Proof : First we show:

Lemma 5.20: For any S and any s = Υ ⇒ ψ ∈ ArgL(S) such that Υ is `-
inconsistent there is a s′ ∈ ArgL(S)− ArgL(S)+ that R-attacks s.

Proof : Since Υ is `-inconsistent, by (2), s′ = ⇒ ¬
∧

Υ ∈ ArgL(S). It is easy to
see that s′ R-attacks s for all R ∈ R and that s′ is not attacked in ArgL(S). �

Suppose for a contradiction that there is a set S that is contaminating for |∼L,R.

Let p be an atom that does not appear in S. By (1), for every Υ⇒ p ∈ ArgL(S), Υ is
`-inconsistent. By Lemma 5.20 we have S 6|∼L,R p and hence by the supposition also

S, p 6|∼L,R p. To see that S, p |∼L,R p, suppose that Υ⇒ ψ ∈ ArgL(S ∪{p}) R-attacks

p⇒ p. Then ψ ⇒ ¬p ∈ ArgL(S∪{p}) and by transitivity, Υ⇒ ¬p ∈ ArgL(S∪{p}).
If p /∈ Υ, Υ is `-inconsistent by (1). If p ∈ Υ then Υ − {p} ⇒ p ⊃ ¬p ∈ ArgL(S)
and again Υ is `-inconsistent by (1). By Lemma 5.20, then, Υ⇒ ψ is attacked by
some non-attacked sequent in ArgL(S ∪ {p}). It follows that p⇒ p is defended by
S ∪ {p} and hence S, p |∼L,R p. Thus S is cannot be contaminating for |∼L,R. �

6. Related Work

Different approaches to logical argumentation have been introduced in the litera-
ture, including formalisms that are based on classical logic (Besnard and Hunter
2001, 2009), defeasible reasoning (Governatori et al. 2004, Pollock 1991, 1995,
Simari and Loui 1992) abstract argumentation and the ASPIC+ framework (Modgil
and Prakken 2014, Prakken 2010), assumption-based argumentation (Dung et al.
2006), default logic (Prakken 1993), situation calculus (Brewka 2001), and so forth.

The starting point of this paper is Besnard and Hunter’s approach to logical
argumentation (Besnard and Hunter 2001, 2009), which we believe is a success-
ful way of representing deductive reasoning in argumentation-based environments
(we refer to Besnard and Hunter (2009) for some comparisons of this approach to
other logic-based approaches, in particular the above-mentioned work on defeasi-
ble reasoning). Our work extends this approach in several ways: first, the usual
conditions of minimality and consistency of supports are abandoned. This offers a
simpler way of producing arguments and identifying them (also for systems that
are not formulated in a Gentzen-type style).1 Second, arguments are produced and
are withdrawn by rules of the same style, allowing for a more uniform way of rep-
resenting the frameworks and computing their extensions. Third, our approach is

1Other techniques for generating arguments are considered, e.g., in (Besnard et al. 2010) and (Efstathiou
and Hunter 2011).
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logic-independent. This allows in particular to rely on a classical as well as on a
non-classical logic, and so, for instance, paraconsistent formalisms may be used for
improving consistency-maintenance.

Another sequent-based approach to logical argumentation has been proposed
by Pollock (1991, 1995), where arguments are sequences of sequents of the form
〈Γ, p〉, obtained by generic inference rules (Input, Reason, Supposition, Condition-
alization, and Dilemma), and organized in inference graphs. Unlike the present
approach, Pollock distinguishes between defeasible and conclusive (strict) argu-
ments, where only defeasible arguments can be attacked.

The ingredients of Pollock’s setting may be simulated in our setting. First, in the
presence of a calculus like LK, Pollock’s rules are translatable into our represen-
tation. For instance, Input is the Axiom ψ ⇒ ψ with Left-Weakening, Supposition
is Reflexivity, Conditionalization is [⇒⊃], and Dilemma is reasoning by cases. Sec-
ond, it is not difficult to adjust our setting for accommodating two (or more) kinds
of arguments. In the presence of strict argument, denoted by Γ⇒ ψ, and defeasible
arguments, denoted by Γ ↪→ ψ, one may define attack rules of the following form:

Γ1 ↪→ ψ1 Γ2 ⇒ ψ2 . . . Γn−1 ⇒ ψn−1 Γn ↪→ ψn
Γn 6↪→ ψn

.

The rule above expressed that (an argument obtained from the defeasible schema)
Γ1 ↪→ ψ1 attacks (an argument obtained from the defeasible schema) Γn ↪→ ψn,
provided that the conditions in {Γ2 ⇒ ψ2, . . . ,Γn−1 ⇒ ψn−1} are satisfied.

The ASPIC+ framework (Modgil and Prakken 2014, Prakken 2010) is a compre-
hensive instantiation of Dung’s abstract argumentation framework (Dung 1995).
Just like Pollock’s account, it distinguishes between defeasible and non-defeasible
arguments based on the distinction between defeasible and strict rules. Arguments
are inference trees. Attacks are generated in view of a contrariness function that
also captures weaker negations than classical negation. Different consequence re-
lations are devised in view of semantics for abstract argumentation. In this sense,
ASPIC+, like our approach, provides a very flexible environment for logical argu-
mentation, leaving open the choices of the underlying language, the core logic, and
the adequate calculus.

Our approach overcomes some difficulties of using classical logic to obtain strict
rules in ASPIC+ and in Pollock’s OSCAR system (Pollock 1992, 1995). In (Wu
2012, Chapter 6) it is shown that consequences are not necessarily retained when
unrelated information is added to those systems under the standard semantics such
as preferred or grounded semantics. As shown in Propositions 5.14, this difficulty
may be avoided in some of the sequent-based settings proposed here (see also
Propositions A.2 and A.3 in the appendix).

7. Conclusion and Further Work

The primary message of this paper is that sequent-based representation and rea-
soning is an appropriate setting for logic-based modeling of argumentation systems.
Among others, this approach enables a general and natural way of expressing ar-
guments and implies that well-studied techniques and methodologies may be bor-
rowed from proof theory and applied in the context of argumentation theory.

Some important issues are left for future work. One of them is a development
of practical means for computing the consequences of sequent-based argumenta-
tion frameworks. This requires an automated machinery that not only produces



November 25, 2014 10:57 Argument & Computation n˙ArieliStrasser-tARC

REFERENCES 21

sequents, but is also capable of eliminating them, as well as their consequences.
Here, techniques like those used in the context of dynamic proof theory for adap-
tive logics may be useful (see, e.g., Batens 2007, Straßer 2014). Some results in this
direction are reported in (Arieli and Straßer 2014).

Future work also involves the exploration of further utilizations of arguments as
sequents. Below, we hint on two such opportunities:

• We used Gentzen-type systems which employ finite sets of formulas. However,
one could follow Gentzen’s original formulation and use sequences instead. This
would allow, for instance, to encode preferences in the arguments, where the
order in a sequence represents priorities. In this way one would be able to argue,
for example, that Γ ⇒ p for any finite sequence Γ of literals that contains p
and in which the first appearance of p precedes any appearance of ¬p. Another
possibility is to employ multisets in the sequents, e.g. for representing majority
considerations. Thus, one may state that Γ ⇒ p holds whenever the number of
appearances of p in a multiset Γ of literals is strictly bigger than the number
of appearances of ¬p in the same multiset. Of-course, the opposite may also be
stated when incorporating mathematical objects other than (finite) sets. That
is, it is possible to explicitly indicate that the order and/or the number of ap-
pearances of formulas do not matter, by introducing (either of) the following
standard structural rules:

Permutation:
Γ1, ψ, ϕ,Γ2 ⇒ ∆

Γ1, ϕ, ψ,Γ2 ⇒ ∆

Γ⇒ ∆1, ψ, ϕ,∆2

Γ⇒ ∆1, ϕ, ψ,∆2

Contraction:
Γ1, ψ, ψ,Γ2 ⇒ ∆

Γ1, ψ,Γ2 ⇒ ∆

Γ⇒ ∆1, ψ, ψ,∆2

Γ⇒ ∆1, ψ,∆2

• The incorporation of more complex forms of sequents, such as hypersequents
(Avron 1987) or nested sequents (Brünnler 2010), allows to express more sophis-
ticated forms of argumentation, such as argumentation by counterfactuals or
case-based argumentation. For instance, the nested sequent Γ1 ⇒ (Γ2 ⇒ ψ) may
be intuitively understood by “if Γ1 were true, one would argue that Γ2 ⇒ ψ”
and the hypersequent Γ1 ⇒ ψ1 | Γ2 ⇒ ψ2 may be understood (again, intuitively)
as a disjunction, at the meta-level, of the arguments Γ1 ⇒ ψ1 and Γ2 ⇒ ψ2.
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Besnard, P., Grégoire, É., Piette, C., and Raddaoui, B. (2010), “MUS-based generation of arguments and
counter-arguments,” in Proc. IRI’10, IEEE, pp. 239–244.

Besnard, P., and Hunter, A. (2001), “A logic-based theory of deductive arguments,” Artificial Intelligence,
128, 203–235.

Besnard, P., and Hunter, A. (2009), “Argumentation based on classical logic,” in Argumentation in Arti-
ficial Intelligence, eds. I. Rahwan and G.R. Simary, Springer, pp. 133–152.



November 25, 2014 10:57 Argument & Computation n˙ArieliStrasser-tARC

22 REFERENCES

Brewka, G. (2001), “Dynamic argument systems: A formal model of argumentation processes based on
situation calculus,” J. Logic and Computation, 11, 257–282.
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Appendix A. Some Further Results About the Restricted Monotonicity of |∼

Below we show that under some (rather intuitive) requirement on the base logic
L, restricted monotonicity with respect to relevant attacks (Proposition 5.14) may
be generalized to other attack rules. For this, we first need to introduce some new
terminology.

Definition A.1: Let L = 〈L,`〉 be a propositional logic.

• We say that L is consistency-enforcing , if for every finite set of L-formulas Γ
that is not `-consistent it holds that ` ¬

∧
Γ.

• We say that L is ¬∧-expanding , if Υ ` ¬
∧

Γ implies that Υ ` ¬
∧

Γ′ for every
finite set Γ′ that contains Γ.

In what follows we consider sequent elimination rules representing premise at-
tacks (prem-attacks, for short), that is: all the forms of defeat and undercut in
Figure 2. In addition, we assume that a given set R of prem-attacks rules contains
at least one of the rules Defeat, Compact Defeat, Undercut, Compact Undercut,
or Canonical Undercut.

The main results of this appendix are then the following:

Proposition A.2: Let L = 〈L,`〉 be a uniform, ¬∧-expanding and consistency-
enforcing logic, R a set of prem-attacking rules, and Sem a semantics which is
either complete, grounded, preferred or stable. If S1 |∼∀L,R,Sem ψ and S1 is irrelevant

to S2, then S1,S2 |∼∀L,R,Sem ψ.

Proposition A.3: Let L = 〈L,`〉 be a uniform, ¬∧-expanding and consistency-
enforcing logic, R a set of prem-attacking rules, and Sem a semantics which is
either complete, grounded or preferred.1 If S1 |∼∃L,R,Semψ and S1 is irrelevant to S2,

then S1,S2 |∼∃L,R,Sem ψ.

Note that, unlike Proposition 5.14, in the propositions above S2 need not be
`-consistent.

To show the Propositions A.2 and A.3, we need a few lemmas. The first lemma
holds in every argumentation framework AF = 〈Args,A〉 with a set Root(AF) =
Args −Args+ of unattacked arguments.

Lemma A.4: Let AF ′ = AF ↓Args−Root(AF)+ be the framework AF = 〈Args,A〉,
restricted to Args − Root(AF)+. Then Cmpl(AF) = Cmpl(AF ′).

Proof : To see that Cmpl(AF) ⊆ Cmpl(AF ′), suppose that E ∈ Cmpl(AF). Then
Root(AF) ⊆ E . Since E is conflict-free, necessarily Root(AF)+ ∩ E = ∅, and so
E ⊆ Args − Root(AF)+. Suppose now that E defends in AF ′ an argument A ∈
Args−Root(AF)+. If E defends A also in AF then by the completeness of E , A ∈ E .
If E does not defend A in AF , then there is a B ∈ Root(AF)+ that A-attacks A,
but B 6∈ E+. However, since B ∈ Root(AF)+, there is a C ∈ Root(AF) such that C
A-attacks B. But Root(AF) ⊆ E , so C ∈ E , which contradicts the assumption that
B 6∈ E+. We have thus shown that every argument that is defended by E in AF ′ is
in E . Let now A ∈ E and suppose some B ∈ Args − Root(AF)+ attacks A in AF ′.
Clearly, B also attacks A in AF . By the completeness of E in AF , B is attacked by
some C ∈ E in AF . Since B ∈ Args − Root(AF)+ and E ⊆ Args − Root(AF)+, C
also attacks B in AF ′. Hence, E defends itself in AF ′. Altogether, we have shown
that E ∈ Cmpl(AF ′)

1The question whether this proposition holds also for stable semantics is left for future work.
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To see that Cmpl(AF ′) ⊆ Cmpl(AF), suppose that E ∈ Cmpl(AF ′). Note first
that by the definition of AF ′, Root(AF) ⊆ Root(AF ′). Since E is complete in AF ′,
Root(AF ′) ⊆ E , and hence Root(AF) ⊆ E . We now show that E ∈ Cmpl(AF).
Clearly, E is conflict-free in AF since the only attacks that are added by moving
from A′ (the attack relation of AF ′) to A are attacks between Args and Root(AF)+

and between Root(AF)+ and Args. Suppose now that E defends in AF some
A ∈ Args. If E also defends A in AF ′ then A ∈ E . Otherwise, E does not defend
A in AF ′. By the conflict-freeness of E and since Root(AF) ⊆ E , A cannot be in
Root(AF)+. Hence, A ∈ Args − Root(AF)+, and so there is an A′-attacker B of
A such that there is no C ∈ E such that C A′-attacks B. However, there must be
a D ∈ E such that D A-attacks B. This means that B ∈ Root(AF)+. However,
since B A′-attacks A, B /∈ Root(AF)+, a contradiction. We have thus shown that
whenever E defends some A ∈ Args then A ∈ E . Conversely, suppose that A ∈ E
and some B ∈ Args attacks A in AF . If B ∈ Root(AF)+ then B ∈ E+, since
Root(AF) ⊆ E . In case B ∈ Args − Root(AF)+, also B ∈ E+, as E ∈ Cmpl(AF ′).
Thus, E defends all of its elements. Altogether, we have shown that E ∈ Cmpl(AF).
�

Remark A.12 : Lemma A.4 may be adjusted to any completeness-based seman-
tics, that is, to every semantics Sem such that Cmpl(AF) = Cmpl(AF ′) implies
Sem(AF) = Sem(AF ′) and Sem(AF) ⊆ Cmpl(AF).1 Thus, for every framework
AF , its induced framework AF ′ as defined in Lemma A.4, and a completeness-
based semantics Sem, we have that Sem(AF) = Sem(AF ′).

Next, we fix some logic L = 〈L,`〉 and a sequent-based argumentation framework
AFL(S) = 〈ArgL(S),A〉, for which we use the following notations:

• Arg∅L(S) = {A ∈ ArgL(S) | A is of the form ⇒ ∆},
• Arg⊥L (S) = {A ∈ ArgL(S) | A is of the form Υ⇒ ∆ where Υ is `-inconsistent}.

By Remark A.12 we conclude that every extension with respect to a
completeness-based semantics of an argumentation framework AFL(S) whose base
logic L is consistency-enforcing (and whose elimination rules are prem-attacking),
consists only of sequents whose premises are `-consistent. Formally:

Corollary A.5: Let AFL(S) = 〈ArgL(S),A〉 be a sequent-based argumentation
framework where L is consistency-enforcing and whose rules in R are prem-attacks.
Then for every completeness-based semantics Sem and every E ∈ Sem(AFL(S)) it
holds that E ∩ Arg⊥L (S) = ∅.

Proof : Since AFL(S) has only prem-attack rules, Arg∅L(S) ⊆ Root(AFL(S)). Since

L is consistency-enforcing, Arg⊥L (S) ⊆ Arg∅L(S)+.2 Thus:

Arg⊥L (S) ⊆ Arg∅L(S)+ ⊆ Root(AFL(S))+. (A1)

By Remark A.12, if E ∈ Sem(AFL(S)) then E ∈ Sem(AF ′L(S)), and so:

E ∩ Root(AFL(S))+ = ∅. (A2)

By (A1) and (A2) the corollary follows. �

1Note that all the semantics considered in this paper are completeness-based.
2This is due to the supposition that R contains at least one of the rules Defeat, Compact Defeat, Undercut,
Compact Undercut, or Canonical Undercut, mentioned at the beginning of the appendix. This allows to
derive the sequent ⇒¬

∧
Υ where Υ is `-inconsistent.
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The next two lemmas present other properties that will be needed in the sequel.

Lemma A.6: Let L = 〈L,`〉 be a uniform and consistency-enforcing logic, and
let R be a set of prem-attack rules. Suppose that S1 is a set of L-formulas that is
irrelevant to a set of L-formulas S2. If an argument A = Υ⇒ ψ ∈ ArgL(S1∪S2)−
Arg⊥L (S1 ∪ S2) R-attacks an argument B = Γ ⇒ φ ∈ ArgL(S1) according to a rule
R ∈ R, then there is a formula ψ1 such that the argument A1 = Υ ∩ S1 ⇒ ψ1 ∈
ArgL(S1) R-attacks B.

Proof : Suppose that A R-attacks B where R ∈ R.

• Suppose first that R is a direct prem-attacking rule (i.e., either Direct Defeat,
Compact Direct Defeat, or Direct Undercut). In this case ψ ` ψ′ where ψ′ ∈ Γ.
Hence, by Remark 2, Υ ⇒ ψ′ is in ArgL(S1 ∪ S2). Since Υ ∩ S2 is `-consistent
(because so is Υ), by the uniformity of L, A1 = Υ ∩ S1 ⇒ ψ′ ∈ ArgL(S1).
Obviously, A1 R-attacks B.

• Suppose now that R is a compact prem-attacking rule (Compact Defeat, Com-
pact Direct Defeat, Compact Undercut). Then ψ = ¬

∧
Γ′ for some Γ′ ⊆ Γ.

Again, by the uniformity of L we have that A1 = Υ ∩ S1 ⇒ ¬
∧

Γ′ ∈ ArgL(S1).
Clearly, A1 R-attacks B.

• Suppose that R is any other prem-attacking rule (that is, Undercut, Canonical
Undercut, or Defeat). Then ψ ` ¬

∧
Γ′ for some Γ′ ⊆ Γ. By Remark 2, then,

Υ ⇒ ¬
∧

Γ′ ∈ ArgL(S1 ∪ S2). Again, by the uniformity of L, we have that A1 =
Υ ∩ S1 ⇒ ¬

∧
Γ′ ∈ ArgL(S1). Clearly, A1 R-attacks B.

In each case, then, there is a formula ψ1 such that the argument Υ∩S1 ⇒ ψ1 is in
ArgL(S1) and R-attacks B. �

Notation A.7: E+
S,R = {A ∈ ArgL(S) | there is a B ∈ E such that B R-attacks

A for some R ∈ R}.

Lemma A.8: Let AFL(S) = 〈ArgL(S),A〉 be a sequent-based argumentation
framework, where L is an ¬∧-expanding logic and R is a set of prem-attack rules.
Suppose that E ∈ Cmpl(AFL(S)) and that A = Υ ⇒ ∆ and A′ = Υ′ ⇒ ∆′ are
derivable sequents where Υ′ ⊆ Υ and Υ′ ⊆ S. Then:

(1) If A ∈ E then A′ ∈ E.
(2) If A′ ∈ E+

S,R then A ∈ E+
S′,R, where S ′ is any set containing Υ and S.

Proof : To see the first item, note that since E is a complete extension, we only
have to show that E defends A′. Suppose then that B = Γ ⇒ ψ ∈ ArgL(S) R-
attacks A′ where R ∈ R. We show that B ∈ E+.

• If R is a direct prem-attack or (Compact) Undercut, then B also attacks A, and
so B ∈ E+.

• In the other cases (Defeat, Compact Defeat, Canonical Undercut) ψ ⇒ ¬
∧

Υ′

is derivable. Since L is ¬∧-expanding, ψ ⇒ ¬
∧

Υ is derivable. By Remark 2,
B′ = Γ ⇒¬

∧
Υ ∈ ArgL(S). Clearly, B′ R-attacks A and so B′ ∈ E+. However,

since B′ has the same premise set as B, also B ∈ E+.

For the second item, let B = Γ⇒ ψ be an argument in E that R-attacks A′ for
some R ∈ R. Again, we consider two cases.

• If R is a direct prem-attack or (Compact) Undercut, clearly B R-attacks A.

• Let R be Defeat, Compact Defeat or Canonical Undercut. Then ψ ⇒ ¬
∧

Υ′ is
derivable, and since L is ¬∧-expanding also ψ ⇒ ¬

∧
Υ is derivable. By Remark 2,

B′ = Γ⇒ ¬
∧

Υ ∈ ArgL(S). Clearly, B′ R-attacks A. By Item 1, B′ ∈ E .

In both cases there is an argument in E that R-attacks A, and so A ∈ E+
S′,R. �
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The main lemma for Propositions A.2 and A.3 is the following:

Lemma A.9: Let L be a uniform, consistency-enforcing, and ¬∧-expanding logic,
and let R be a set of prem-attack rules. If S1 is irrelevant to S2, then:

(1) If E ∈ Cmpl(AFL(S1 ∪ S2)) then E+
S1,R = (E ∩ ArgL(S1))+

S1,R.

(2) If E ∈ Cmpl(AFL(S1 ∪ S2)) then E ∩ ArgL(S1) ∈ Cmpl(AFL(S1)).
(3) If E ∈ Cmpl(AFL(S1)) then E ∈ Adm(AFL(S1 ∪ S2)).
(4) If E ∈ Prf(AFL(S1 ∪ S2)) then E ∩ ArgL(S1) ∈ Prf(AFL(S1)).
(5) If E ∈ Stbl(AFL(S1 ∪ S2)) then E ∩ ArgL(S1) ∈ Stbl(AFL(S1)).
(6) If E ∈ Cmpl(AFL(S1)) there is E ′∈Cmpl(AFL(S1 ∪ S2)) such that E ⊆ E ′.
(7) If E ∈ Prf(AFL(S1)) there is E ′ ∈ Prf(AFL(S1 ∪ S2)) such that E ⊆ E ′.
(8) If Grnd(AFL(S1)) = {E} and Grnd(AFL(S1 ∪ S2)) = {E ′} then E ⊆ E ′.

Proof : Let L, R, S1 and S2 be as in the lemma.

Item 1: Obviously, (E ∩ ArgL(S1))+
S1,R ⊆ E

+
S1,R. For the converse, let B ∈ ArgL(S1)

be an argument in E+
S1,R. Then there is an argument A = Υ ⇒ ψ ∈ E that

R-attacks B. By Lemma A.6 (which is applicable here, since by Corollary A.5,
E ∩ Arg⊥L (S1 ∪ S2) = ∅), there is an argument A′ = Υ ∩ S1 ⇒ ψ′ such that A′

R-attacks B. By Lemma A.8-1, A′ ∈ E , and so B ∈ (E ∩ ArgL(S1))+
S1,R.

Item 2: Let E ∈ Cmpl(AFL(S1 ∪ S2)). In particular, E and all its subsets are
conflict-free, thus E∩ArgL(S1) is conflict-free. To see that E∩ArgL(S1) is admissible,
suppose that A ∈ ArgL(S1) attacks some B ∈ E ∩ ArgL(S1). Then, since E is
complete in AFL(S1 ∪ S2), A ∈ E+

S1∪S2,R and hence A ∈ E+
S1,R. By Item 1, A ∈

(E ∩ArgL(S1))+
S1,R. Thus E ∩ArgL(S1) indeed defends itself. It remains to show that

E ∩ ArgL(S1) defends exactly itself. For this, suppose that E ∩ ArgL(S1) defends
some A ∈ ArgL(S1). Assume for a contradiction that A 6∈ E ∩ ArgL(S1) and hence
A 6∈ E . Since E is complete, E does not defend A. Hence, there is an argument
B = Υ ⇒ ψ ∈ ArgL(S1 ∪ S2) such that B R-attacks A and B 6∈ E+

S1∪S2,R. Suppose

first that B ∈ Arg⊥L (S1∪S2). Since L is consistency-enforcing, there is an argument

C = ⇒ φ that attacks B. Since C ∈ Arg∅L(S1 ∪ S2) ⊆ Root(AFL(S1 ∪ S2)) ⊆ E we
have that C ∈ E , which is a contradiction to our assumption that B 6∈ E+

S1∪S2,R.

Hence, B ∈ ArgL(S1∪S2)−Arg⊥L (S1∪S2). By Lemma A.6 (which again is applicable
here, since by Corollary A.5, E ⊆ ArgL(S1 ∪ S2)− Arg⊥L (S1 ∪ S2)), there is a B1 =
Υ ∩ S1 ⇒ ψ′ ∈ ArgL(S1) that R-attacks A. Hence, since E ∩ ArgL(S1) defends A,
B1 ∈ (E ∩ ArgL(S1))+

S1,R ⊆ (E ∩ ArgL(S1))+
S1∪S2,R. But then by Lemma A.8-2, also

B ∈ (E ∩ ArgL(S1))+
S1∪S2,R and thus B ∈ E+

S1∪S2,R – a contradiction.

Item 3: Obviously E is conflict-free in 〈ArgL(S1 ∪ S2),R〉, since it is conflict-
free in 〈ArgL(S1),R〉. Suppose that A = Υ ⇒ ψ ∈ ArgL(S1 ∪ S2) R-attacks
some B ∈ E . If A ∈ Arg⊥L (S1 ∪ S2) then by (A1) in the proof of Corollary A.5,
A ∈ Root(〈ArgL(S1),R〉)+ and so A ∈ E+

S1,R (since E is complete AFL(S1)).

Suppose now A 6∈ Arg⊥L (S1 ∪ S2). Thus, by Lemma A.6, there is an argument
A1 = Υ ∩ S1 ⇒ ψ′ ∈ ArgL(S1) such that A1 R-attacks B. Since E is admissi-
ble in AFL(S1), A1 ∈ E+

S1,R. Thus, by Lemma A.8-2, also A ∈ E+
S1∪S2,R. Hence,

E ∈ Adm(AFL(S1 ∪ S2)).

Item 4: Suppose for a contradiction that E∩ArgL(S1) 6∈ Prf(AFL(S1)). Then there
is a set E ′ ) E ∩ ArgL(S1) which is complete in AFL(S1). Let E ′′ = E ′ ∪ E . Since
E ∈ Prf(AFL(S1 ∪ S2)) and E ( E ′′, E ′′ is not admissible in AFL(S1 ∪ S2). Thus,
either E ′′ is not conflict-free or E ′′ is not defended. Assume first that E ′′ is not
conflict-free. Hence, either there is some A ∈ E ′ that attacks some B ∈ E , or there
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is some C ∈ E that attacks some D ∈ E ′. Suppose the first case. Since E is defends
itself, there is a B′ ∈ E that attacks A and hence we’re in the second case. Note
that by Corollary A.5, C /∈ Arg⊥L (S1 ∪ S2) since E is complete. Thus, by Item 1,
there is an argument C1 ∈ E ∩ ArgL(S1) that attacks D. But this means that E ′
is not conflict-free – a contradiction. We have thus established that E ′′ is conflict-
free. Hence, E ′′ is not defended. However, since by Item 3, E ′ ∈ Adm(AF(S1∪S2)),
and since E ∈ Adm(AF(S1 ∪ S2)) and E ′′ is conflict-free, it is easy to see that
E ′′ is defended – a contradiction. Thus, we have established that E ∩ ArgL(S1) is
maximally admissible in ArgL(S1), which means that E ∩ArgL(S1) ∈ Prf(AFL(S1)).

Item 5: Let A ∈ ArgL(S1). Since E is stable in AFL(S1 ∪ S2), it is also complete
and E ∪ E+

S1∪S2,R = ArgL(S1 ∪ S2). Hence, either A ∈ E , which implies that A ∈
E ∩ ArgL(S1) (since A ∈ ArgL(S1)), or A ∈ E+

S1∪S2,R, which implies that A ∈ E+
S1

(by the definition of E+
S1 and again since A ∈ ArgL(S1)). In the latter case, by

Item 1, A ∈ (E ∩ ArgL(S1))+
S1,R. Since A is arbitrary in ArgL(S1) this shows that

(E ∩ArgL(S1))∪ (E ∩ArgL(S1))+
S1,R = ArgL(S1). By Item 2, E ∩ArgL(S1) is complete

in AFL(S1). Thus, E ∩ ArgL(S1) is stable in AFL(S1).

Item 6: Let E ∈ Cmpl(AFL(S1)). By Item 3, E ∈ Adm(AFL(S1 ∪ S2)). The
rest follows by the fact that if E ∈ Adm(AFL(S1 ∪ S2)) then there is a E ′ ∈
Cmpl(AFL(S1 ∪ S2)) such that E ⊆ E ′.
Item 7: Since E is in particular complete in 〈ArgL(S1),R〉, by Item 6 there is an
extension E ′ ∈ Cmpl(AFL(S1∪S2)) for which E ⊆ E ′. The rest follows immediately
by the fact that each complete extension is included in some preferred extension
of the same framework.

Item 8: By Item 2, E ′ ∩ ArgL(S1) is complete in AFL(S1), and thus E ⊆ E ′ ∩
ArgL(S1) ⊆ E ′. �

Now we can turn to the proofs of the main results of this appendix:

Proof of Proposition A.2. Suppose that S1 |∼∀L,R,Semψ, and let E be an extension

in Sem(AFL(S1 ∪ S2)). First, we treat grounded semantics. By our assumption,
there is an argument Γ ⇒ ψ in the grounded extension of AFL(S1). Thus, by
Lemma A.9-8, Γ⇒ ψ is in the grounded extension of AFL(S1∪S2), i.e., in E . Thus

S1,S2 |∼∀L,R,Sem ψ. Suppose now that the semantics is either complete, preferred or
stable. Again, by our assumption, there is an argument of the form Γ⇒ ψ in every
element of Sem(AFL(S1)). By Lemma A.9, E ∩ ArgL(S1) ∈ Sem(AFL(S1)), and so
there is a sequent of the form Γ ⇒ ψ in E ∩ ArgL(S1). In particular, E contains a

sequent of the form Γ⇒ ψ, and so S1,S2 |∼∀L,R,Sem ψ. 2

Proof of Proposition A.3. Suppose that S1 |∼∃L,R,Sem ψ. Hence, there is some

extension E in Sem(AFL(S1)) that contains a sequent of the form Γ⇒ ψ for some
Γ ⊆ S1. By Lemma A.9, there is an extension E ′ in Sem(AFL(S1∪S2)) that contains

the extension E . Thus, Γ⇒ ψ is in E ′, and so S1,S2 |∼∃L,R,Sem ψ. 2

Corollary A.10: Let L = 〈L,`〉 be a uniform, ¬∧-expanding and consistency-
enforcing logic, and let R be a set of prem-attacking rules.

• |∼∀L,R,Sem is crash resistant when Sem is a complete, grounded, preferred or stable
semantics.

• |∼∃L,R,Semψ is crash resistant when Sem a complete, grounded or preferred seman-
tics.

The proof of Item 1 (respectively, of Item 2) is similar to that of Proposition 5.18,
using Proposition A.2 (respectively, Proposition A.3) instead of Proposition 5.14.


