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Uncertainty Modeling by Bilattice-Based Squares
and Triangles

Chris Cornelis, Ofer Arieli, Glad Deschrijver, and Etiennekerre

Abstract—In this paper, Ginsberg's/Fitting’s theory of bilat- the properties we want them to satisfy, often determines to a
tices, and in particular the associated constructs of bilattice- great extent the strength of the applications that rely emth
based squares and triangles, is introduced as an attractive Fortunately, we do not have to start our investigation from

framework for the representation of uncertain and potentially . .
conflicting information, paralleling Goguen’s L-fuzzy set theory. scratch. Instead, it turns out that ideas from baliuzzy

We recall some of the advantages of bilattice-based frameworks S€t theory [21] and bilattice theory [1], [22] can go a very
for handling fuzzy sets and systems, provide the related strucres long way in helping us pinpoint the ‘best’ choice for these
with adequately defined graded versions of the basic logical connectives, allowing for a positive synergy between the- co
connectives, and study their properties and relationships. tributing theories. Incidentally, the present paper ca e
Index Terms— bilattices, bilattice-based squares and triangles, viewed as a generalization to the lattice-valued and hikatt
negators, t-norms and t-conorms, implicators, MV-algebras. valued case of previous papers [23], [24], [25], [26] thdere
to particular forms of ‘triangle’ and ‘square’, in which the
underlying structure is the unit interval.
The rest of the paper is organized as follows: first, in
ILATTICES are algebraic structures that were introducegection Il, we recall some elementary concepts of biladtice
by Ginsberg in [1], [2] as a general and uniform frameand bilattice-based squares and triangles. Section Ilhés t
work for a diversity of applications in artificial intelligge. heart of this paper, in which we consider proper representa-
In particular, he treated first-order theories and their-cotions of logical connectives in our framework: the first part
sequences, truth maintenance systems, and formalisms (fection Ill-A) establishes the representation of inviekit
default reasoning. In a series of papers, Fitting then sHoweegators, the second part (Section 11I-B) explores the a@fea
that bilattices are very useful tools for providing semesti L-representability in the definition of t-norms and t-conerm
to logic programs (see, e.g., [3], [4], [5]), a thesis thatsw&or modeling conjunction and disjunction, and the last part
later vindicated in [6], [7], [8]. Several works have showr{Section 1lI-C) introduces several ways of representing im
that bilattices may serve as a foundation of other area$ syndication connectives and examines the relationships gmon
as computational linguistics [9] and distributed knowledgthem, as well as their relations to other connectives. In
processing [10]. In particular, a family of bilattice-bddegics particular, the choice of the ‘right’ negator and the existof
and corresponding proof systems were introduced in [12], [1 an associated MV-algebra are explored. Finally, in Sedtbn
[13], where it was shown that bilattices are useful as thee hint on the application potential of our bilattice-based
underlying algebraic structures of formalisms for reasgni framework and conclude.
with imprecise information (see also [14], [15]). This poin
was recently made explicit in the context of fuzzy set theory Il. PRELIMINARIES
where we have shown (see [16], [17]) that bilattices, and in ) ) ) _ L _
particular the associated constructs of bilattice-baspdues In this section we review some basic d(lafml.tlons and notions
and triangles, provide an elegant framework for bridging]at pertain to bilattices in general, and bilattice-basguares
between intuitionistic fuzzy sets [18] and interval-valifazzy nd triangles in partlc.ula'r. For ot.her expositions of these
sets [19], [20], two common extensions of fuzzy sets. structures and the motivations behind them, we refer to [16]
The aim of this paper is to substantiate this bil(':lttice-dastg,‘anI [17].
framework by equiping it with suitable implementations for Definition 1: A pre-bilattice [22] is a structureB =
the common logical connectives of negation, conjunctiohB,<:,<x), such thatB is a nonempty set containing at
disjunction and implication. As is well-known from fuzzytseleast two elements, arid, <;), (B, <) are complete lattices.
theory, an adequate choice for these operations, inspiyed/ bilattice [1] is a structureB = (B, <, <y, ), such that
(B, <, <g) is a pre-bilattice, aneh (the ‘negation’) is a unary
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V) the <;-meet (the<;-join) and by ® (respectively, by®) U is imposed. It follows, then, that squares can be regarded
the <;-meet (the<,-join) of a bilattice 5. f andt denote as a generalized form of Atanassov’s [18] intuitionistieZy

the <;-extreme elements, and, T denote the<,-extreme sets (see also [17]).

elements ofB3. Intuitively, these elements can be perceived Example 1:Let £, = ({0,1},<) and£s = ({0, %,1}, <),

as ‘false’, ‘true’, ‘unknown’ (i.e., neither true nor falsand \yhere< in each case is the usual ordering. The corresponding
‘contradictory’ (both true and false), respectively. Theot squaresc? and£2 are shown in Figure .t is easy to verify

partial orders<, and < are taken to represent differenceshat both squares are distributive, but oy is classical.
in the degree of truth and in the amount of information

(respectively), conveyed by the assertions.
By Definition 1, the negatiom of a bilattice (B,<;,<j,~) <k (1,1)
is an involution with respect to the latticeB, <;) and an
order preserving operation of the latti¢B, <;). Conversely,
a conflation —, is an involution of (B, <) and an order
preserving operation ofB, <;). When a conflation can be
defined in a given bilattice, it is usual to require also thathb (0,1) (1,0)
kinds of involution commute: for every in B, ——xz = —— .

The following proposition recalls some important propesti

of bilattices.
Proposition 1: Let B = (B, <;, <x, —) be a bilattice. Then: (0,0)
« [1] For everyz,y in B: ’ <y

a) ~(zAy) = ~zV-y, ~(aVy) = Ay, ~(2®y) =
b) —f=t, ~t=f, ~L=1, -T=T.

o [22] If B is a bilattice with a conflation-, then for every
xz,y in B:
a) —(z/\y) = —aA—y, —(aVy) = —aV—y, —(aQy) =
—z®-y, —(z8y) =—-z®-y.
by —f=f, —t=t, —L=T, —-T=L1.

Definition 2: A bilattice B = (B, <, <y, ) is distributive
if all (twelve) possible distributive laws concerning Vv, ®,
and® hold. A distributive bilattice is calledlassicalif it has
a conflation— that commutes with~, such thatr V ——ax =t
for everyz in B.

When (B, <;, <j,—) is classical, then B, A,V,——) is a
Boolean algebra. The reason for considering this conflatiofig. 1. The square£? and £2
negation combination rather than, e.e, by itself is that,
amongst others V =L = | +# ¢, making— an inadequate  Denoting the join and meet operations of a complete lattice
choice for a Boolean negation (see also Section IIIl-C, and 4nby A and Vv, respectively, for everyzq, 2), (y1,y2) in
particular the paragraph that surrounds Proposition h3thé L?, we have

sequel we shall sometimes abbreviate the combinatierby (z1,22) A (y1,92) = (21 AL y1, 22 VL y2)
~e (z1,22) V (y1,92) = (21 VL y1,22 AL Y2)

Definition 3: Let £ = (L,<) be a complete lattice. A (x1,72) @ (y1,92) = (x1 AL Y1, T2 AL Y2)
(bilattice-based) squares a structureC? = (L x L,<;,<z,), (€1,22) & (41, 92) = (21 V1 Y1, 72 V1 o)

where, for every(zy, z2), (y1,y2) in L2,

1) —(z1,22) = (x2,21), Moreover, denoting . = inf L and1, = sup L, it holds that
< < >
g; Eihiz; 2t ((il/hyz))zﬂg?cl 7<L Y1 zr:zjf; EL Y2, Lr2=(0z,0z),
1, 22) Sk (Y1, Y2 1>L W 2 =L Y2 Tee = (1g,12),
An element(xy,x2) of a square£? may intuitively be tr2 = (12,02),
understood such that; represents the amount of belifedr Fra=(0z,1z)

some assertion, and,; is the amount of beliefagainst it.
This corresponds to Atanassov’s idea [18] of distinguighia-
tween a membership compon and a non-membershi

P P W(u) P 1These structures are commonly referred toF&8L/ R (after Belnap’s [27],

ComponemVA(“_)' _With_the amendment that in the Case_ of ?28] original four-valued logic) andVZN¢€ (see, e.g., [12], [13]), respec-
square no restriction like 4 (u) + va(u) < 1 for everyw in tively.
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and whenA is an involution of £, then —, defined for We conclude this section by a result that relates the consis-
every (z1,x2) in L2 by —n(z1,72) = (NM(z2),N(x1)), is tent elements of a given square and the associated tridngle.
a conflation of£2. First, we need some additional terminology and notations.

It is easy to verify that every squarg? is distributive  Definition 5: Let B = (B, <, <j, ) be a bilattice with a
when £ is distributive. Structures of the forni? and their conflation —. An elementxz in B is called exactw.r.t. this
generalization to the cartesian product of two latticesewegonflation if z = —x; it is consistentf z <, —u.
studied by Fitting [3], [5], [22] and Avron [29], [30] as a Definition 6: Let — be a conflation of a bilatticeB =
general method for constructing bilattices. (B, <, <k, ). Denote byC~(B) the substructure oB that

The second bilattice-based structure under investigaigoe consists of the consistent elements (w:.).of 5.
is due to Fitting [22]. Proposition 2: [22], [17] Suppose thatl is a complete

Definition 4: Let £ — (L, <) be a complete lattice, anolIattlce with an involution\. Then Z(£) is isomorphic to

| _ . 2 C(L2).

et I(L) = {[1'171'2] | (ll,xg) € L“andz; <p 12}. A

(bilattice-basedjriangle is a structureZ (£) = (I(L),<+ <),

where, for everyixy, zs], [y1, yo] in I(L), [1l. GRADED (BILATTICE-BASED) LOGICAL CONNECTIVES
(1) [z1,72] < [y1,92] & 21 <p y1 andzy <r, o, In this section, which is the main part of this paper, we
(@) [z1,72] <k [y1,92] & 71 <p y1 andzy > yo. show how common extensions -fuzzy set theory of the

. _ . o main connectives of classical logic can be related to ikt
_Note that, in fact, a triangl@(L) is not a (pre-) bilattice, in general, and to bilattice-based squares and triangles in
since the substructur@ (L), <) is not a lattice (the supre- particular. We divide this section to three parts, each one

mum of any two elements does not necessarily exist). Stdlonsiders a basic connective (or two dual connectives, se ca
triangles are very much in the same spirit as bilatticessesingf Section 111-B).

the <y-ordering also represents differences in the amount of|n what follows £ = (L,<p) is a complete lattice, and
information that each interval exhibits. For this reasb(f) (0, =infL, 1, = sup L.

is sometimes called a<-lower pre-bilattice” [31] or a “weak
interlaced bilattice” [32].

A. Negation
'Example 2:The trianglesZ (L) and Z(L) are shown in Definition 7: A negatoron £ is any <;-decreasing map-
Figure 2. ping N : L — L such that\V'(0z) =1, and N (1z) = Og. If
for everyz, N (N (z)) = =, then A/ is aninvolutive negator
on L.
<k

=" In the context of bilattices, the operatienthat appears in
Definition 1 is an involutive negator on the latti¢8, <;). As
a consequence, the operatiendefined on the squaré? by

_‘(x17$2) = (372,331),

is an involutive negator or(L?,<;). If a bilattice B has
a conflation —, then by its definition this operation is an
[0,1] involutive negator on the latticéB, <).

- Suppose now thatV" is an involutive negator orC, i.e.,
everyz in L has an<y-involutive element\/(z) in L. Then,
<k as we noted before, a conflatieny of £2 may be defined by

—~ (21, 22) = (N (22), N (21)).

In this case, another natural definition of a negatof bh <)
is obtained by combining- and —,, i.e., for every(z1, z3)

in L2,
~n (1, m2) = 2= (21, 22) = (N (21), N (22)). 2
0,1 . . . . .
0.1 <, Note 1: One might wonder if there exist other ‘interesting’

negators apart from the prototypical ones described above.
Fig. 2. The triangleZ(L£2) andZ(L3)
2We refer to [16] and [17] for a further discussion on applimas of this
. o . ) ) result in the context of fuzzy sets, and in particular its fasdridging between
When £ is the unit interval with the usual ordering(L£) is intuitionistic fuzzy set theory and interval fuzzy set theo
X P ) —
a structure that corresponds to interval-valued fuzzy [Qﬂ]s This operator h_as also been studied by‘Wagner [33], mamlyen:_t)ntext
It follows. then. that trianales are generalized forms afst of four-valued logics, and by Doherty, Driankov and Tsosk[&4] in the
0 A ) g _g framework of DDT-logic (an operational version of Belnamsif-valued logic
extensions of fuzzy sets (see again [17]). [27], [28]; see also [35]), where it is simply called ‘complertign
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In [24], for the particular structur€l0, 1]2, <,), it was shown DN(x1,0.) <; (12,12), M0z, 22) >¢ (12,12), N(21,12) >4
that all involutive negators can be generated by simplestra{O.,0.) and9t(1z,22) <t (0z,07).

formations of the two basic choices and ~y. The next  proof: Immediate from the fact thaft is an involutive
proposition is a generalization of that result to squares.  negator and the assumption t8af0.,0,) = (1., 12).

Definition 8: For every element = (z1,22) in L?, define: | emma 3-C:Let £ = (L,<) be a complete lattice that
pri(z) = 21 andpra(z) = xs. is a chain. For any involutive negatéft on (L2, <,) such
Proposition 3: Let £ = (L, <) be a complete lattice thatthat 9(0-,0-) = (1z,1z), it holds thatpriN(zy,z2) =
is a chain. An operatiofit is an involutive negator ofL2, <;)  priM(z1,0.) andproN(z,, x2) = proN(0g, x2).
iff either Proof: Let # = (x4, x3) in L2. We prove thapr{N(z1, z2)
N(z1,x2) = (N1 (1), Na(22)) (1) = priN(z1,0,) (the proof thapraMN(z1, 22) = proM(0g, z2)
is completely analogous). Whety = 0., the claim trivially

whereN; and .\, are two involutive negators ofi such that 5 4s- likewise whene, = 1., by Lemma 3-B and the fact

Ni(z) = priN(z,02) and Na(z) = proN(0g, x), or that(1z,02) = (0z, 1) it holds thatpr;M(z1, 20) = 0z =
MN(xy,20) = Lot 2y priM(z1,0z).

(21, 22) = (pl(w2), 7 (1)) o) It remains to consider the case in whigh >; 0, and

where is an increasing permutation @f such thatp(z) = 1 <p 1. SinceN is decreasing)t(z1,x2) > N(z1,0z),

priN(0z, x). so if we suppose for a contradiction that, (1, 22) #

Proof: We shall show that i1 is an involutive negator on priN(z1,0r), we have thapriN(zy, z2) >z prif(ey,0c).
(L2,<,) then either(0z,0,) = (1z,1z) or M(0z,0z) = Nptg aI;o that by Lemma 3TBpT2‘ﬂ(CC1,OL) = 1. We
(0£,02) (Lemma 3-A); in the first case Formula 1 appliedistinguish between the following two cases:

(Lemmas 3-B,C,D) and in the second case Formula 2 appliee If pro9(z1,z2) = 1., then by Lemma 3-B, it follows

(Lemmas 3-E,F,G). that zo = proM(N(z1,x2)) = 0z, Which is a contradic-
tion.

o If p’l“gm(l‘l,xg) <r 1., then letb = (b1,b2) =
(priM(x1,x2),12) and e = (c1,¢2) = (priN(z1,0z),
proM(z1,z2)). It is easy to check, then, thdt and

Lemma 3-AlLet £ = (L, <) be a complete lattice that is
a chain. For any involutive negatdt on (L2, <,) it holds that
eitherm(OL, 05) = (0570£) or fﬁ(ol;, 0[;) = (15, 15).

Proof: Assume first thatd(0z,0,) = (z1,0z), where ¢ are <,-incomparable. Moreover it can be verified
xy >1 Og. Then (0£,0z) <¢ (21,07) and (z1,21) <, that N(z1,02) < b <¢ N(x1,22) and N(z1,02) <t
(z1,0r), but(0,02) and(zy, z1) are incomparable W.r.&;. ¢ <; M(z1,22). SinceN is decreasing, we obtain that
SinceMN is decreasing and involutive, we obtat(0,,0,) >, (21,22) < N(b) <¢ (21,02) and (21, 2) <¢ N(c) <4
N(21,02) = (0£,02) and N(zy,21) >¢ N(21,02) = (z1,0z). ThuspriM(d) = priM(c) = z1, soMN(b) and
(Oz,0r). Hence the second component of batf0.,0.) and 2N(c) are <;-comparable. But sincél is decreasing and
N(z1, z1) must belg, thusN(0z,0,) andN(z1, z1) are<,- involutive, this would mean thak and ¢ are also<;-

comparable. Now, sinc# is decreasing and involutive, italso  comparable, which is a contradiction.
follows that(0.,0.) and (x1,x1) are <;-comparable, which

: N Lemma 3-D:Let £ = (L,<.) be a complete lattice that
is a contradiction.

is a chain and le® be a negator on£?,<;) such that

Next, assume thaf(0c,0c) = (lc,22), wherez, < MN(0z,02) = (1¢,1,). Furthermore, letV; and N> be the
le. Then (g, 1c) <¢ (lg,@2) and (z2,22) <¢ (1e,22), 1" 7 1 mappings defined byVi(z) = pri9t(z,0z) and
but (12,1,2) and (z2,z2) are <;-incomparable. Similarly as No(z) = pra9t(Oz, ). Then9t is involutive if ar’1d only if

above, a contradiction can be found. : .
’ Ni and A5 are involutive negators ofi, and for all(z;, z
When (0, 0z) = (1,1z), for 21 <z 1z, we have that '/ g (@1, 22)

(1£,12) and (z1,x;) are two<;-incomparable elements that ’ "N — (N A
are greater than or equal (o1, 1.); likewise, if 01(0z,0,) = (21, 22) = (Ni(21), Na(w2)).
(0z,x2), for o > 0z, we have that0.,0.-) and (z2, x2) Proof: Assume first thatt is an involutive negator on

are two <,;-incomparable elements which are greater than 6€2, <;) such that(0.,0.) = (1.,1,). Define theL — L
equal to(0., z2). In both cases, a contradiction can be founthappingsV; and N, by
in a similar way as previous cases. o

Finally, assume tha®t(0,,0,) = (x1,z2), where0, <r Ni(z) = pri9i(z, Oc)
21 <p 1z andlz >p 2o >1 0z. Then(0z, z2) <; (21,22) Na(z) = praN(0g, 7)
and (z1,1¢) <; (z1,22), but (Og,22) and (z1,1z) are |t js clear thatN;(0z) = Na(0z) = 1z and Ni(1z) =
<;-incomparable. Similarly as above, a contradiction can WQ(M) — 0. Moreover, sincel is decreasing, so ar&/;
found. . and \>. Hence,\; and N, are negators off.
Summarizing, the only possible values 9f(0.,0.) are By Lemma 3-C,priM(z1, z2) = priM(z1,0z) = Ni(z1)

(0z,02) and(1z,1z). and pro(zy,x2) = proN(0z,x2) = Na(za). In other
Lemma 3-BlLet £ = (L, <1) be a complete lattice that iswords, M(z1,z2) = (Ni(z1),Na(x2)). Moreover, since
a chain. For any involutive negatéft on (L%, <;) such that 91 is involutive, we obtain(zi,z2) = MN(MN(z1,22)) =

N(0z,02) = (1z,1,), the following holds for allzy, 25 in L: (N1 (N1 (z1)), Na(Na(22))), soN; and N> are involutive.
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Assume conversely that; and N> are involutive negators mappingsy; and . by
on £ and define the mappin®ft : L? — L? by
v1(x) = priMN(0gz, x)

N(z1,22) = (N1 (1), Na(2)) @2 (x) = proM(z,0r)

Then clearlyM(0.,0,) = (1z,12), M(1£,02) = (0z,1.) It is clear thaty,(02) = ¢2(0z) = 0z and pi(1z) =
andM(0z,12) = (1£,02). Also, sinceN; and A, are de- ¢2(1z) = 1. Also, since is decreasingyp; and oo are
creasing, so i91. Moreover, (M (z1, 22)) = (N1 (N1 (z1)), increasing. Moreover, due to the fact thtis an involutive
Nao(Na(z2))) = (x1,22), S0 is an involutive negator on Negator, and since Lemma 3-E asserts that(0z,z) =
(£2,<y). priN(z,0,) = O, it holds thaty; and ¢, are permutations
of L (i.e., bijections fromL to itself).

Lemma 3-EiLet £ = (L, <) be a complete lattice that is . .
(L, <r) P By Lemma 3-F, for every elementz;,z,) in L? it

a chain. For any involutive negatét on (L2, <;) such that
M(0,,02) = (0z,0,), the following holds for alkz;, z in L: holo; thatprlgt(xl’gf) :0 prim(oﬁ’xQ) IZ fé(m) agd
N(a1,00) i (02,02), N0z, w2) =1 (0z,0¢), Mla, 1) =, 2R 22) = praJa,0c) = pa(z). In other words,
(1£,12) andN(1z,z2) <¢ (12, 1z). for every (z1,z2) in L*, M(z1,22) = (p1(z2), p2(1)).
’ el Moreover, sincél is involutive, we have thelt(M (1, z2)) =

Proof: Immediate from the involutivity ofit, the assumption (01 (pa(21)), p2(1(22))) = (21, 22), hencep, = @;1_

that N(0z,0,) = (0z,0¢) and the fact that under that  assyme conversely that is an increasing permutation of
assumption als@(lz, 1) = (1z,12). L and define the mappinfft : L2 — L? as follows:

Lemma 3-F:Let £ = (L,<;) be a complete lattice that 1
is a chain. For any involutive negatdt on (L2, <;) such N1, w2) = (p(2), 7 (21)).

that m(oﬁaoﬁ) = (O/;,OL), it holds thatp?”lm(xl,ﬂjz) = Clearly, ‘.TI(OK,O[;) = (05,05), m(0£71£) = (15,05) and
priN(0g,z2) and prof(zy,x2) = proN(z1,0.) for all ,m(1,,0.) = (0, 1,). Sincey is increasing is decreasing.
(21,2) in L?. Moreover, R(M(z1,22)) = (e~ (21)), 07 (p(2))) =
Proof: Let = = (z1,z2) be an element if.2. We prove that (z1,22), S0 is an involutive negator oL?, <;).

priN(x1, v2) = priN(0g, 22) (the proof thaprsMN(x1,72) = This completes the proof of Lemma 3-G and Proposition 3.
praMN(z1,0,) is completely analogous). Whery = 0., the m
claim trivially holds; likewise it is true whemry = 1.,
by Lemma 3-E and the fact thatt(0z,1.) = (12,0z).
Assume now thatr; >, Oz, xo <p 1z andpriM(zq, x2)
priN(0z, x2). Then, sincet is decreasingpr;N(z1, z2) <p,
pr1J(0,z, x2). Note also that by Lemma 3-lro9(0,, 22) =
0.. We distinguish between the following the cases:

Clearly, ~,r is obtained from Proposition 3 by Formula 1
where N = N} = MN;, and — is obtained from Formula 2
where is the identity permutation of..

One of the advantages of,  is that it preserves the
following weakened version of the law of the excluded middle

o If proM(xy,x2) = 0, then by Lemma 3-E, it follows
that xy = priM(MN(z1,z2)) = 0z, which is a contradic-
tion.

o If proM(xzy,22) >r O, then letdb = (b1,b2) = e AL N(z) <L yVi N(y).

Eprimgan,xz?)), Oﬁ)_Q I(t lis ;zi)sy to check, (tﬁen%)thabt The intuition behind Kleene’s condition is that even in a

and ¢ are <,-incomparable. Moreover it can be verifiedcOntext wherg excluded middlg gnd/or the contradiction law
that M(0z, z2) > b > N(z1,z2) and N0z, 22) >, do not hold, ‘intended" contradictions should still not sass
¢ >, M(z1, 7). SinceN is decreasing, we obtain that Intended’ tautologies with respect to the truth order. The
(1, m2) >¢ N(b) >, (0, 22) and (z1, 2) >¢ N(c) >, following claim is easily verified:
(0z,22). ThuspraN(b) = pra9(c) = x2, s09(b) and Proposition 4: If N is a Kleene negator ofi, then~ s is
M(c) are <;-comparable. But sincél is decreasing and a Kleene negator ofiL?, <;).
involutive, this would mean thak and ¢ are also<;-  ynlike ~, the negator never satisfies Kleene’s condition.
comparable, which is a contradiction. To see this, consider, for instancg;;,zs) = (12,1,) and
Lemma 3-G:Let £ = (L,<r) be a complete lattice that (y1,y2) = (0z,02). Then:
is a chain and le® be a negator on(L?, <;) such that

Definition 9: An involutive negato\V on £ is calledKleene
negator if for all z,y in L,

N(0z,02) = (0z,02). Furthermore, lety be the L — (@1, 22) A=(21,22) = (2, 12)
L mapping defined byp(z) = priM(0z,z). Then N is %t (02,07)
involutive if and only if ¢ is an <p-increasing permutation = (y1,92) V ~(y1, y2).

of L, and for all (zy, x2) in L2, )
On the other hand;vy also has some disadvantages. For

MN(x1,20) = ((x2), 0 H(x1)). instance, it cannot serve as a (bilattice) negationCérin the

sense of Definition 1, since it does not preserve<heorder.

Proof: Assume first that)t is an involutive negator on Indeed, in£%, for example, although1,0) <, (1,1), still
(£2%,<;) such thati(0,,0.) = (0£,0.). Define theL — L ~xr(1,0) = (0,1) £x (0,0) = ~ar(1,1).
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Consider now negators in trianglg$L), or — equivalently and involutive, it follows that0.,1.] and [z}, z}] are <;-
(see Proposition 2) — in the substructufe~ (£) of the comparable, which is a contradiction.
consistent elements in the squal® As the following propo-  Assume now thad([0z,1z]) = [z1,22], wherezs < 1.
sition shows, it is rather straightforward to find an analegjo If ;7 = x5 andsup(L \ {1.}) = z2, then, since there at
definition of - for these structures, while for this is not least four elements id, there exists any, € |0z, x2[. Thus,
possible. [0z, z2] and [z}, x5] are incomparable w.r.&;, but both are

Proposition 5: Let £ be a complete lattice with an involu-Smaller than or equal tors, z5]. Since‘I}t is/ decreasing, we
tive negatot\. ThenC—~ (L) is closed under- but not under OPtIN N[0z, 22]) > [0, 1] and N([2, 25]) > [0, ).
o Similarly as above, we find a contradiction.

] . . If 21 <p zq, then|zy,1,] and [zs,z5] are incomparable

h Prtcr)]oft. i For the_ﬂrzt_ﬁag of the claim wel r:javed Oy, <, but both are greater thafi,z2]. Since M is
show i if (21, 22) In v /\(f ): SS’\/’IS ﬁ(xl"'ff)' n e<e ' decreasing and involutive, it followdt([z1,1.]) <; [0z, 1]
(21, 22) < —n(@1,22) = (N(22), N21)) and sozy <1 5y N([xg, z2]) <; [0z,1]. Similarly as above, we find a
N(l‘g) and zo <p, N(l‘l) ThUS,—\(Jfl,.%'Q) = (J?Q,.’L‘l) <k contradiction.
(N(Il)’hN(u)) :d_N(xQ’fxlr? - I_/'\/ ﬁ(xl’x%)' If 21 = x9, butsup(L\ {12}) > x2, then similarly as in

For the second part of the claim, consider @, 0c). the previous case, two incomparable elements can be found

Then (0z,0z) is in C™V(L), since(0z,02) <k (1z,12) = \hich are greater thafe,, z,], and similarly a contradiction
—n(0z,07). On the other handiy (02,02) = (12,12) € can be obtained.

iy : _

C7(L), since(le, 1e) £k (Oc,0c) = _N(lﬁ_’ Le)- _ Corollary 6-B: Let £ = (L, <1) be a complete lattice that is
Thus, for the negator, a corresponding triangle operation, ¢hain with at least four elements. For any involutive negat

may be obtained by applying the isomorphisitiz1, 22]) = o on (1(1), <,) it holds that9([0z, 2]) >; [0z, 1z] and

(z1,N(z2)), used in [22] for the proof of Proposition 2, tom([xh 1)) <7 [0z, 1], for all 21,5 in [OL,_lﬁ].

obtain an operatiot defined, for everyjz,, x2] in I(L), by Lemma 6TC'Let £ = (L,<,) be a complete lattice that is

N([x1, x2]) = N (x2), N (21)]. (3) achain with at least four elements. For any involutive negat
. _ _ , Mon (I(L), <) it holds thatr(MN([z1, z2])) = r(N([z1, 1£]))
Cl_early, [NV (x2),N(z1)] is an interval, and s&1 is an invo- and [(N([z1, 22])) = L(N([0, x2])).
lutive negator or(/(L), <)- Proof: We prove thatr(D(z)) = r(9([z1,1,])), for all

Next we show, as we did for squares (cf. Proposition 3),— (3, 4] in I(L) (the proof that(9(z)) = [(N([0z, x2])),
that Formula 3 is a characterization of involutive negaiars o g1 + in I(L), is similar). Whenzs = 1., the claim

many common friangles: trivially holds, so assume that < 1., and thatr(N(z)) #
Definition 10: For every intervalx = [z1,20] In I(L), r(M([xz1,1,])). Then, sinceN is decreasing, we have that
denote:l(z) = z; andr(z) = x». r(M(z)) > r(M([x1, 1,])). Note also that, by Corollary 6-B,
Definition 11: Denote by]a, b] (respectivelyja, b) the in-  {(M([z1,1,])) = 0. We discuss the following cases.
terval[a, b] withouta (respectively, withoub). Denote byja,b] ¢ If [(9%(z)) = 0., then from Corollary 6-B it follows that
the interval withouta and®b. z2 = r(M(N(z))) = 1., which is a contradiction.
Proposition 6: Let £ — (I, <;) be a complete lattice that * 'T (%)) €102, 7(N(x))], then let
is a chain with at least four elements. An operatiins an b = [min(r(MN([x1,12])), I(N(x))), r(N([z1, 12]))],
involutive negator on(I(L), <,) iff c=1[0g,7(M(x))]-
N([z1, 22]) = N (22), N (21)] From zo <p 1. it follows that [z1,12] # [lg,1z],
so N([x1,12]) # [0£,0z]. Since from Corollary 6-B
where A/ is an involutive negator o, such thatV(z) = it follows that [(N([z1,1.])) = 0,, we obtain that
r(N[z, 1)) = 1(N[0,, z]). r(M([z1,12])) > 0z. Hencel(b) > I(c). Since from
Proof: In the proof we shall use the following notation: the assumptions abotit(z) it follows thatr(b) <, (c),
D = {[z,z] | x € L}. we find thatb and ¢ are <;-incomparable. It can be

Lemma 6-AlLet £ = (L, <1) be a complete lattice thatis ~ €asily verified thatN([z,,1]) <; b <; N(z) and
a chain with at least four elements. For any involutive negat ~ 21([%1,12]) <¢ ¢ <; N(z). SinceN is decreasing, we
M on (I(L), <,) it holds thatd([0z, 12]) = [0z, 12]. Fbta'”]thatx SE 92‘(;); < Exlﬁlf)] andz < ‘JE(? <
) - . x1,1z]. Thusi((b)) = I(N(c)) = x1, so N(b) and
OPr;)of. ,_Arzsumoe f';St tiam([oﬁl’ le]) E [.%‘/1,1/5],<Where$11 < N(c) are <,-comparable. Sincé is decreasing and
lvﬁéredo. <en [x,"f] It [i”;fl;; c] aq [”Ehi;]] z;r:x[’xléxig]t;; involutive, it follows thatb and ¢ are <;,-comparable,
L L 1 L 1c 1 = 1z 1

since there are at least four elementsiip and 2} = =« which is a contradiction.
1 T N < . .
otherwise. Note thaf0.,1.] and [z}, }] are incomparable Corollary 6-D: Let £ = (L, <. ) be a complete lattice that is

W.rt. <. Sincedt is decreasing and invoiutivet([0z, 12]) > a chain with at least four elements. For any involutive negat

N(er 12]) = [0g,1z] and Ny, )]) >0 [0z, 10], SO M on (I(L),<;) it holds that
r(M([0z,12])) = r(N([ah, 21])) = 1. HenceN([0z, 1,]) r(M([z1, 21])) = r(N([21, 72]))
and N([z}, z}]) are <,-comparable. Sincét is decreasing I(N([xe, z2])) = L(M([z1, 22]))

r(N([z1, 1)) and
{(N([0z, 22])),
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for all [z1, 2] in I(L). This completes the proof of Lemma 6-F and Proposition 6.

Lemma 6-ElLet £ = (L, <) be a complete lattice that is u
a chain with at least four elements. For any involutive negat Note that Proposition 6 is not true unless the chéihas
M on (I(L),<,) it holds that)t(D) C D. at least four elements. To see this, consider the following

Proof: Obviously, M([0z,0z]) = [lz,1z] € D and €xample:
N([1z,1z]) = [0£,0-] € D. Assume that there exists an Example 3:Consider a mapping/ on (I(Ls), <;), defined
x1 in L\ {0g,1,} such that9([z1,21]) = [y1,y2], with as follows:
y1,y2 In L andy; <y yo. From Corollary 6-D it follows [

23], if [21,22] = [0,1]
that r(M([ys ) = rM(wn,p2])) = rllrnm]) = 210 Ay, ) = {[O, 1

ﬁv if [5(11,5(]2]:[ )

using the fact thadt is involutive. Furthermore, sinc®t is [1— 2,1 —a1], otherwise

a decreasing bijectioM([y1, y1]) >+ N([y1,v2]) = [z1,z1], _ o _ _
sol(N([y1,y1]) >1 U([z1, 21]) = 21 = r(N([y1,v1])), which It is easy to check that this is an involutive negator on
is a contradiction. (I(L3), <), which is not of the form of Formula 3 (thus it is

Lemma 6-F:Let £ = (L, <) be a complete lattice that is not genergte_d as described in Proposition 6). _
a chain with at least four elements and %tbe a negator on  In [36] it is shown that there does not exist a Kleene
(I(L), <,). ThenM is involutive if and only if there exists an Negator on(/([0, 1]), <;). Note, however, that as the following
involutive negatot\” on (L, <) such that, for allzy, z5] in examples show, this does not hold in generaldoy triangle.
I(L),
N([x1, 22]) = N (x2), N (1)) Example 4:The operationV/, defined byV ([0, 0]) = [1, 1],

_ _ _ _ N([1,1]) = [0,0] and N'([0,1]) = [0,1] is a Kleene negator
Proof: Assume first that)t is an involutive negator on (I(Ls), <y).

< i i : L —
(I(L), ). Define the mapping8/ : L — L and\ : L Example 5: Consider a mapping/ on (/(L3), <;), defined

L as follows: by N ([z1,x2]) = [l—x2,1—z4]. This is an involutive negator,
M (z1) = r(N([z1,12])), but it does not satisfy Kleene’s condition, since, e.g.,
Na(w2) = 1[0, @2]))- 0,1 AN(0, 1)) = [0,1] £ [3, 4] =[5, 4] VN([3, 3],

Then, from Lemma 6-A it follows thatVi(0z) = 1z. Note that by a slight modification of this definition we get the
Obviously, Ni(1z) = 0. Since 0N is decreasing, N1 is  jnvolutive negator of Example 3, whicis a Kleene negator
decreasing. Henc#/; is a negator oL, <r). Similarly, N2 gn (I(Ls), <y).

is a negator or{L, <p).

. In general, we have the following result:
From Corollary 6-D it follows that 9 9

Proposition 7: Let £ = (L, <;) be a complete lattice that
I(N(x)) = 1(N([0g, x2])) = Na(z2) and is a chain with at least four elements. Then there does not
r(N(z)) = r(MN([z1, 12])) = Ni(x1), exist a Kleene negator off (L), <;).

for all z = [x1, z2] in I(L). Since from Lemma 6-E it follows Proof: Let.\ be an involutive negator off (L), <(). By

that M([z1, 21]) = [Na(z1), Ni(z1)] is an element oD, for Lemma 6-A,N ([0z,1,)) = [Oﬁ,.lﬁ]. Since L contains more
all 7, in L, we obtain that\; = . than three elements, there existsane |0,,1,[ for which

[x1,z1] is incomparable t0.,1,] w.rt. <;. Furthermore,

N ([x1,21]) is incomparable td0., 1.], since otherwise, if

N([z1,21]) <¢ [0z,1z], then from Corollary 6-B it would
N([z1,12]) = [0z, 7(MN([z1, 12]))] = [0z, N (21)], follow that [z1,21] >+ [0z,12], which is a contradiction.
N[0z, z2]) = [[(N([0z, 22])), 1] = N (z2),1c]. Similarly, the assumptionV ([z1,z1]) >: [0z,1.] leads to

) o ] ] a contradiction. Thereforey(N ([z1,x1])) <r, 1..
SinceM is involutive, we obtairzy,1.] = m(m([:cl, 1) = Now, since is a chain vy y = 1. iff (z = 1z or y =
‘}t([Ol;, N($1)]) = [N(N(Qh)),lg], for all x1 In L. Hence 15). ThUS,’/‘([l‘l,Jq]\/N([l’h.1‘1})) _ JUl\/LT(./\/'([.Il,.’El])) <

Let from now onN = N; = N5. From Corollary 6-B it
follows, for all 1,25 in L,

N s involutive. _ , , 1z. It follows that [0z, 12] A N([0z,1z]) = [0z, 1z] %
Assume conv_ersely thatv is an involutive negator on 1, 21] V N([z1,21]), and SO is not a Kleene negator on
(L,<1) and define the mappindt : I(L) — I(L) by, for (I(L), <,). -
all z = [z, 2] in I(L), T
N(z) = [N (z2), N(z1)]. B. Conjunction and disjunction
Then from the fact that/ is a negator oL, <) it easily fol- Definition 12: A triangular norm(at-norm, for short) on a

lows that9([0.,0c]) = [Le, 1c] andN([Lz, 1) = [0g,0¢].  lAWCEL = (L, <) is amappingl : L x L — L thatis< -
(I(L), <,). Since is involutive, we obtain thadt(M(z)) = Satisfies, for every in L, T(1z,z) = .

N(N(z2), N (z1)]) = NN (1)), N(N(22))] = =, for all Definition 13: A triangular conorm(a t-conorm for short)
x in I(L). HenceMN is involutive. on a latticel = (L,<p) is a mappingS : L x L — L that
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is <p-increasing in both arguments, commutative, associatigy the absorption lawys = y2 Ar, (z2 V1, y2), SO the element

and satisfies, for every in L, S(0z,z) = x.

Given a pre-bilatticeB (B, <, <g), its <;-meet A
and <;,-meet® are clearly t-norms oiiB, <;) and (B, <),
respectively. Also, the<;-join v and the<y-join & of B are
t-conorms on(B, <;), and(B, <j), respectively. This implies
that for a complete lattic& = (L, <) with a meetA;, and
a join vz, the following operations are t-norms qi.?, <;)
and (L?,<;,), respectively:

(x1 AL Y1, 2 VL y2),
(x1 AL Y1, T2 AL Y2)-

T<,((z1,72), (Y1, 42)) =
TSk((xhl'Q)a (yla y2)) =

Similarly, the operations below are, respectively, t-aom®on
(L2, <) and (L2, <g):

(x1 VL y1, T2 AL Y2),
(x1 VL Y1, 22 VL y2).

Sﬁt((xlva)v (yl;yQ)) =
S<, (1, 22), (y1,92)) =

Clearly, 7, is the <;-greatest t-norm ofL?, <;) and7<,
is the <;-greatest t-norm oiiL?, <;). Also, it is easy to see
that S<, andS<,, are, respectively, the;-smallest t-conorm
on (L?,<,) and the<,-smallest t-conorm oriL?, <j).

Interestingly, as the following proposition shows, the-
extreme ¢-(co)norms are definable by the;-extreme t-
(co)norms and the other way around (see also [37]).

Proposition 8: In every squareC?,
1) T<.((z1,22), (y1,92))
= 5, (< (T, (w1, 22), (oﬁ, oﬁ))
T<,((y1,92),(0£,07))
2) S<,((w1,22), (y1,92))
= S<,(S<, (T, (@1, 22), (15, 1£))

(21, 22), (y17y2))),

((@1,22), (1. 12)) ).

T<,((y1,92), (12, 12))
3) T<,((w1,22), (y1,92))
= 5<,(S<, (Tgk«xl, 72), (02, 1)),
T<, ((y1,92), (02, 12)) 7Tgk(($1,$2)a(y17y2))),
4) T<,((z1,22), (y1,92))
= S<, <3§k (TSk((fla 2), (1£,0c)),

T ((1,92), (12, 02) ), T, (@1, 22), (91,92)) )

Proof: We show only part 1); the proof of the other partgonsider theC-representable t-norfi on (L2, <

is similar.
S<,(S<, (T ((1,2), (02,02)), T, (91, 42), (02, 02))),
Tgt((xhx?)a (y17y2)))
=S<, <5§t (($1 AL Oz, 22V 0z), (y1 AL Og,y2 Vi 0£))7
(1 AL y1, 22V, y2))

=8<, (Sét((0L7$2)7 (0z,y2)), (x1 AL y1,22 VL y2)>
=8<,((0z, 22 AL y2), (1 AL Y1, 22 VL ¥2))
= (1 AL Y1, 02 AL Y2 AL (T2 VI Y2))-

in the last line above is equal (@1 AL y1,22 AL y2), which
is T<, ((z1,22), (y1,92))- u
The definition of7<,, S<,, 7<,, andS<, is an example of
an effective way of generating t-(co)norms on (substrustur
of) squares(? by taking advantage of existing connectives
on the underlying latticeC. Intuitively, this amounts to a
kind of divide-and-conquer strategy, where conjunction an
disjunction on£? are split up into simpler operations af
This leads us to define the notion Gfrepresentability.

Definition 14: Let £ = (L, <) be a complete lattice. A
t-norm T on (L2, <;) (respectively, a t-conorn®) is called
L-representablgeif there exist a t-norn/” and a t-conormS
on L (respectively, a t-conor§’ and a t-norn7”’ on £) such
that, for every(z1, z2), (y1,2) in L?,

T((1,22), (Y1, 92)) = (T (21,91), S(72,92)) (4)
S((w1,22), (y1,92)) = (S'(x1,11), T'(22,92))  (5)

T and S (resp.S’ and7”’) are called theepresentantof T
(resp.©).

Analogously, L-representable t-(co)norms @2, <;) can
be defined in the obvious way. In the sequel, if the identity
of the lattice is clear from the context, we shall simply be
speaking about representable t-(co)norms.

The above definition allows a straightforward construction
of t-(co)norms by operations that meet Definitions 12 and 13;
it suffices to takeany t-norm 7" and t-conormS on £, and
to use them as representants in formulas (4) and (5) above.
The converse, however, is not true; not any t-(co)normCén
can be obtained by a representation. For instance, in [39] it
shown that the mapping : [0,1]? — [0, 1], given by:

T((‘rlvx2>7 (yla y2))

- (min(xla Y1, max(ac27 312))7 min(x27 yZ))

(6)

is indeed a t-norm or{[0, 1]2, <), but clearly it is notZ-
representable, since its first component also dependss,on
andys.

Proposition 9: Let ¥ (respectively,&) be anL-represen-
table t-norm (respectively, t-conorm) ofL?, <;). Then ¥
(respectively,&) is monotonic w.r.t. both<; and <j.

The same property holds fof-representable t-(co)norms
w.rt. (L2, <p).

Proof: Let7 be a t-norm and a t-conorm on(L, <r,).
+), defined by
T((21,22), (y1,92)) = (T(z1,91),S(22,92)), and suppose
that (z1,22) <p (2},25). Thenz; <; 2} and zo <
x4, and so, for everyy in L, 7(x1,y) <r 7(},y) and
S(z2,y) < S(ah,y). This implies that for every(y:,y2)
in L2, (T (z1,91), S(x2,92)) <p (T(2,51),S(a5,y2)), and
therefore X ((z1, x2), (v1,y2)) <k T((z},25), (y1,92)). The
proof of the other cases is similar. ]

When a t-norm is not-representable the proposition above
is no longer true.

4This definition extends the notion tfepresentability introduced in [38].
To avoid confusion with the<;-ordering of a bilattice, we will not use the
latter terminology in this paper.
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Example 6:Let 7 be the t-norm defined in Formula (6)C. Implication
above. Conside(z,,z2) = (0.5,1), (z1,25) = (0.5,0), and  pefinition 16: An implicator on a latticel = (L,<y) is

(y1,92) = (1,0). Then (1, z2) <; (2, 25), but a mappingZ : L x L — L that is <;-increasing in its first
T (21, 22), (y1,92)) = (min(0.5, 1, max(1,0)), min(1,0)) fﬁ;}ponent and; -decreasing in its second component, such
= (0.5,0),
( . ) . Z(0z,0z) =1z, Z(1£,0.) =0,
T (27, 24), (y1,y2)) = (min(0.5, 1, max(0, 0)), min(0, 0)) T(0g, 1) =1p,  Z(lp,1p) =1pf.
=(0,0). Given a t-norm7 and an implicatofZ on £, it is usual to
Hence, 7 ((z1,22), (y1,v2)) %¢ T (2, 25), (y1,y2)). require the soundness fafzzy modus ponenise. fora, b, .,y

Next we relate t-norms and t-conorms by appropriate neg'zQ-L’ it should hold that

tors. A natural way of doing so is to impose de Morgan’s laws. if a« <pxzandb<pZ(z,y), thenT(a,b) < y.

o In particular, therefore, if for somein L, z <; Z(x,y) then
Definition 15: Let 7 be a t-norm onZ, and letA be an T(z,2) <1, y. On the other hand, to allo@(z,y) to be as

involutive negator orC. The \V-dual of 7 is a t-conormS on  |5rge as possible, one would like to require the convers, th

L defined by T (z,2) <y y implies z <; Z(z,y). Eventually, then,
S(z,y) = N(TN(2), N (y))). T(x,2) <Ly 2z < I(z,y) (7)
The N-dual of a given t-conorm is defined as a t-norm oa condition which is known also as thesiduation principle
L in a similar way. and which leads to the following class of implicators:

It is interesting to note that fo’-representable t-norms Definition 17: Let 7 be a t-norm onl. An R-implicator
with A/-dual representants on e(d.?, <;), the choice of the Z; (the residuumof 7) is defined, for every:,y in L, by
negator~,s or - does not affect the identity of the dual t-Zr(z,y) =sup{z € L | T(x,2) <p y}.
conorm. Note 2: In [40, Property 2.48], it was shown that (7) holds

Proposition 10: Suppose thaff is an L-representable t- if and only if Z = Z and if 7 satisfies, for any sefx; }icr
norm on (L%, <;) with representant$7,S), such that? is in L, 7 (sup;c; i, y) = sup;e; 7 (i, ).
the V'-dual t-norm ofS and AV is an involutive negator oif. In the sequel, we will say that a t-norffi satisfies the
Then the {)-dual and the {)-dual of T are the same. residuation principle if (7) holds fof” together withZ = Z.

Proof: For (z1,22), (y1,42) in L? we have, The following proposition will be important for our further

exposition:
—Z(=(z1,22), ~(y1,y2)) = ~(T (22, 92),S(z1,y1)) Proposition 11: Let £ = (L, <) be a complete lattice and
= (S(z1,51), T (22, 92)), T a t-norm on(L?, <,) satisfying the residuation principle.
Then7 is L-representable.
and Proof: In [41] it was proven that i/ satisfies7 (z V y,
z) =T (z,2)VT(y,z), thenT is L-representable. Now, the
~n E(~on (21, 22), ~a (U1, 92)) claim immediately follows from Note 2. |
=~n (TN (1), N (1)), SN (22), N (y2))) Another definition of a family of implicators is motivated
= (N(TN(z1),N(51)), N (SN (z2), N (12)))) by the classical definition of the material implication— y
as—x V.
= (S(x1,y1), 7 (x2, .
(S@0). T(e232)) Definition 18: Let S be a t-conorm andV a negator or’.
Thus, The S-implicator Zs »r (generated bys and.\) is defined for
everyz,y in L by Zs y(,y) = SV (z),y).
—T(= (21, 72), (Y1, ¥2)) It is easy to verify that eactR-implicator and eachS-
=~y T (21, 22), ~ar (1, 12))- implicator is in particular an implicator. Moreover, these

definitions reveal that very often implicators are linked to
m ‘simpler” connectives. Also, we can exploit the classical

. . . . .. equivalence between the formulas— f and —x, to define
A similar discussion as above also applies to the definitiogs, following special kind of negator ofl.

of t-(co)norms on (substructures of) the trianglec), with

the caveat that Definition 19: Let £ = (L, <) be a complete lattice with

an implicatorZ. Theinduced negatoof Z is a mappingNz,
1) there are neither t-norms nor t-conorms (@4L), <), defined for everys in L by Nz(z) = Z(z,0.).
and Examples of all the above operations on bilattice-based
2) in the choice of representants ghit must be assured squares and triangles are thus easy to generate using the con
that the resulting composite operation always yields afructs introduced in the previous sections. As an illtistna
element of/(L). and in view of its importance for the sequel, the following



IEEE TRANSACTIONS ON FUZZY SYSTEMS 10

proposition derives an explicit representatiorfimplicators aNZn(a,b) <¢ b

of L-representable t-norms 2, <;). = —aV (a AZx(a,b)) <4 —a Vb
Proposition 12:Let £ = (L,<;) be a complete lattice = (—maVa)A(—aVIx(a,b)) < —aVb

and let T be an L-representable t-norm o0L?, <;) with = tA(——aVIr(a,b) < —aVb

representantd” and S, where S is the N'-dual t-conorm of
a t-norm7” for some involutive negatal". Then, for every
(x1,22), (y1,y2) in L2, Thus alsoZ, <; Z(y,—-, and S0Zx = Z(y ~)- u

e ( Proposition 13 substantiates the claim, hinted at by Defi-
(@1, 72), (v1,12)) nition 2, that in classical bilattices the combination “” is
= (Z7(21,91), N (Z1 (N (22), N (92))))- the one that really plays the role of Boolean negation, ard th

Proof: Indeed, formulasx vV ——z are the analogies of classical tautologies.

= —=aVIx(a,b) <y —aVb.

An alternative proof of the above result can be given in

Tz (w1, 22), (1, 302)) terms of MV-algebras, of which Boolean algebras are a specia

= sup{(71,72) € L* | T((z1,22), (71,72)) <¢ v} case; the following definition is not a reproduction of the
=sup{(y1,7) € L* | T(z1,7m) <1 0 original, lengthy one given in [42], but is rather a minimal
andS(za,72) >1 2} characterization in terms of required properties (see[43j).

= (sup{m € L | T (z1,7) <z w1},
inf{vy2 € L | S(z2,72) >L y2})
= (Zr(x1,91),inf{y2 € L | N(T'(N(22), N (72)))

Definition 20: Let £ = (L, <) be a complete lattice, and
let 7 be a t-norm onC that satisfies the residuation principle
(Equation 7) and such that, for everyy in L,

>1 Y2})
— (Tr(wr,y),int{ € L] TN (@2), M (32)) (@ y).y) = Ir Iz (y,o) @) =aVey. (@)
<1 N(y2)}) Then(L,<.,T) is called anMV-algebra

— !

= (Zr(z1,91), N (sup{r2 € L | T'(N(22),72) Proposition 13 then follows from the following observation
<1 N(v2)})) along with the fact that any Boolean algeltia, Az, Vg, —5)

= (Zr(z1,y1), N(Z7: (N (22), N (y2))))- is an MV-algebra in whicll” coincides withA g (see e.g. [43)).

Proposition 14:In an MV-algebra(L,<,,7), the map-

The question of implicator classification, i.e., which a1t nings7 andZs y, whereA’ = Nz, andS is the \/-dual of
ular instance to use in which case, has received considerapl 5re identical.

attention in the literature. A comprehensive account f@ th N . tigate what h . that d
situation in the lattice(1([0,1]),<;) appears in [25] andt OWV\l’e 'n.veft'ﬁat(ta.w al ?hppens;n stqtu.ares atlccl){r:etspon
([0, 1]2, <) is examined in [24] and [36]. 0 non-classical bilattices. In this context it is easy towlthat
) o o ) o the converse of Proposition 14 is not true in general, that is
Here, in the context of bilattices, it is in particular iresting coincidingR- andS-implicators would not necessarily lead to
to investigate the light that implicators shed on the chaite 5, MV-algebra. To see this consider, e.g., the lattjeel], <).

the ‘right’ negator. To that aim, first observe that in classi | is easy to verify that the nilpotent minimum, defined for
bilattices, the most ‘naturalR-implicator, i.e. the one basedeveryx y in [0,1] by

on A, coincides with anS-implicator on condition that the
associated negator is chosen-~agi.e., the combination-—): T(x,y) {min(ay,y), if x+y>1,
r,y)=

Proposition 13:Let B = (B, <;,<j,—) be a classical 0, otherwise,
bilattice with conflation—. ThenZ, = Z(, .), and soZ,
is both anS-implicator and arfR-implicator on(B, <;).

Proof: First, asA is a t-norm,V is a t-conorm, and
N(z) = ——z is a negator of(B,<;), Z, is indeed an
R-implicator and Z,, _- is an S-implicator. Second, by
Definition 2 and Proposition 1, in every classical bilattice o ) ) .
holds thata A ——a = f for everya in B. Now, for everya,b Still, this implicator does not satisfy Equation 8 of Defini-
in B, tion 20, and sq[0, 1], <,7) is not an MV-algebra.

The last example can also be extended[t91]?, <;) with
anb<ib = fV(and)<ib a representable t-norr@ on it, whose representants are the
= (aN—>a)V(aAb) < b above nilpotent minimund and the t-conorn®, which is the
= aA(——aVb)<;b dual of 7 with respect to the standard negation [6n1]. By
Proposition 11, the residual implicator @fis given by
ThusZ, -y <; Zr. On the other hand, by the definition of
In, Iz ((w1,22), (y1,92)) = (Tr(z1,91), 1 = I7 (1 — 22,1 —12)),

is a t-norm on this lattice. Now, fok" = A’z and theA/-dual
S of 7, we have that

1, if z <y,

IT(x,y) = IS,N($7y) = {max(l _ x,y), otherwise.
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and the induced negator &%, N’ = Nz, is given by
N((z1,22)) = Iz ((21,22),(0,1))
= (17(331,0), 1— 17(1 — T2, 1— 1‘1))
= (1 —x171 - 1‘2).
The associated-implicator is thus

Ten((21,72), (y1,92))
= 6N (z1,72), (y1,92))
= (SA —21,51), T(1 — 22,92))
= (Zr(21,91),1 — S(22,1 — y2))
= (Zr(x1,91),1 —Z7(1 — 29,1 — yo)
= Iz ((w1,22), (Y1,92))-
So the R- and S-implicators that are associated with

coincide, but by the same argument as in the previous example

% does not generate an MV-algebra @0, 1]

27§t)-

A necessary and sufficient condition for having coincidin
R- andS-implicators inarbitrary squares (not only those that

correspond to classical bilattices; cf. Propositions 18 a4),
is given in the following proposition:

Proposition 15: Let £ = (L, <r) be a complete lattice, and
let T be a t-norm on(L?, <;). Then theR-implicator J5 of
T on (L% <,) is equal to theS-implicator Jg o generated by
an involutive negatoft on (L?, <;) and thelt-dual t-conorm
G of T, if and only if there exist t-normg and 7’ on L
for which Zr = Zs o andZ7 = Zg/ nr, Where N and N’
are involutive negators ofi and whereS (respectivelyS’) is
the V/-dual (respectivelyV’-dual) t-conorm of” (respectively
7T') such that¥ is L-representable with representaftsand
S’

Proof: For the proof we need the following lemma:

Lemma 15-Allet £’ = (L', <;/) be a complete lattice.
If the R-implicator Zy of a t-norm7 on £’ is equal to the
S-implicator Zs »r generated by an involutive negatdf on
L' and the N-dual t-conormS of 7, then 7 satisfies the
residuation principle.

Proof: If for a t-norm 7 on £’ it holds thatZ; = Zs ar,

for all z,y € L',
N(T (z,N(y))) = SN (z),y)
—sup{z € L' | T(w,2) <pr ).
Let z,y,z € L'. If T(x,2) <p» y, thenz € {z € L' |

T(z,2) <pry}, 802 <p Ir(z,z) = N(T (2, N(y))). Since
N is involutive, then

T(x,2) <y = T(z,N(y)) <o N(2). ©)

If we replace in Formula & by N (y) andy by N (z), we
have the following:

T(z,N) <p N(z) = T(z,2) <p y. (10)

Combining Formula 9 and Formula 10, we get, forall), z €
L,

T(x,2) <y y ez <p NT(2,N(y) =Ir(z,y),

11

and so7 satisfies the residuation principle.
Now we can show Proposition 15.
(=) Let L' = (L?,<y). If Tis at-norm on(L?, <;) for which
Jz = Js.m, for some involutive negatdit on (L?, <,), then
¥ satisfies the residuation principle by Lemma 15-A. Note that
it also follows thatdt = ;..
From Proposition 11 and Proposition 12, it follows ti&t
is L-representable (we call the representdhtand S’), and
that, for allz,y € L?,

Is(a,y) = (mxhy1>,/v<zrw<x2>,/\f<y2>>>), (1)

where 7’ denotes the\/-dual t-norm ofS’, for an arbitrary
involutive negator\/ on £. The negatodt;. induced byJ<
is given, for allz € L?, by

. () (NIT (20), N (N, <N<x2>>>)-

onsider now theS-implicator 3 » generated byt and the
-dual & of ¥. Using the fact thadt = 915, the implicator
Je,m is defined, for allz,y € L?, by

y)
N(x),y)

N(T(z, N(y)))
_ (NZT( (z1, Nz, (1)),

N (Nz,, (W (S (22 NNz, W20 ) )) )
= (Nzp (T (a1, Nz, (),
N (N, (T' (N (@) Nz, (N (32))) ) ))
= (SWzp (21),3), N (8" (N, (W (2)), N (32))))

= (Zowzy @190, N (Tsr a,, (N (@2). N a2) ) ) ).

whereS denotes theVz, -dual of 7 andS” denotes the\V7_, -
dual of 7’. Combining this with Formula 11, we obtain that
I =IsNy, andZs: = Zg» Nz, Now, since the arguments
above hold for every involutive negatdf on £, we can choose

Js fn(
S(

L ) A i Thens’ " and we are done.
then by the definition of residual implicator we obtain thatN Ny §=5 W

) Assume that7 and 7' are t-norms onL for which
IT =Zs,n andZy = Zs/ -, whereN and A are involutive
negators onl and whereS is the N-dual of 7 and &’ is
the N’-dual of 7'. Let T be the L-representable t-norm on
(L?, <) with representantd” and S’. From Proposition 12
again, it follows that theR-implicator Jz of ¥ is given, for
all z,y € L?, by

Jx(z,y) = (Zr(2v1,91), N (Zr (N (22), N (42))))-

Using the fact thal; = Zs »- andZr
for all z,y € L?,

= Zs/ A, We obtain,

Jz(z,y)
= Zs.n(x1,51), N (Zsr ar (N (22), N (y2))))
= (SN (21),y1), N'(8" (22, N (y2))))
= (SWN(21), 1), T" (N (22), y2))
= 6(N(x),y),
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wheret is the involutive negator ofiL?, <,) defined, for all S(z2,y2)). Since(L?, <;,T) is an MV-algebra, it holds that
z € L? by N(z) = (N(z1),N(z2)), and whereS is the
MN-dual t-conorm off. HenceJz = Jg . [ | T((z1,22), (Y1, v2)) <¢ (21, 22)

The following example advances some interesting observa- & (21,72) <t Ix((y1,2), (21, 22))
tions about the choice of a proper negator for a given square,
and how this affects the relationships between the correspo o equivalently, by Proposition 12,
ing implicators as well as the existence of associated MV-
algebras.

Example 7:Consider([0, 1]2, <,). In [36] it was shown that
the mapping?, defined by

T(x1,y1) <p 21 andS(x2,y2) >1 22
& 1 <p I7(y1,21) andxg > N(Z7 (N (y2), N (22))),

(21, 22), (Y1, 92)) \év:egfoﬁfis_r:]hesj\/-dual t-norm of S with respect to some
. Thus,
= (T(e1. ). (w2, 02)) °

= (max(0, 21 + g1 — 1), min(1, 22 + 42)) T (z1,y1) <p z1 andT' (N (z2), N (y2)) <p N(z2)

is a representable t-norm that satisfies the residuatioipte, < =1 <1 Zr(y1,21) andN (z2) <p Zr (N (y2), N (22)),

and moreover thafx = Zg ., WwhereN(z) = 1 — z and

S is the ~pr-dual of €. On the other handZs # Zs -. which means that botty and 7’ satisfy the residuation

This is another clear hint in favour of the negation-condiati condition. To see thaf” and 7' also satisfy the condition

combination~ . of Formula 8, note that sincg.?, <,, %) is an MV-algebra,
Moreover, ([0, 1)2, <;, ¥) is an MV-algebra; below we show

that property (8) in Definition 20 holds. Indeed, note that in T (Tx((z1, 22), (y1,92)), (W1, y2)) = (z1,22) V (y1,92).

our cas€lZs is given by

By Proposition 12, the left-hand side of the last equality is
I‘I((l‘l,.’L’Q), (ylayQ)) y p q y

= (min(1,y1 + 1 — 1), max(0, y2 — x2)). Te(Te((21,2), (91, 1)), (41, 92)
Now, for z = (z1,x2) andy = (y1,y2) in [0,1]2 we have the = Zs((Zr (z1, 1), N (T (N (22), N (92)))), (¥1,92))
following: = (Tr Tz (w1, 91), 1),
IQ(IT(xay)vy) N(IT/(IT/(N(JCQ)?N(:UQ))?N(ZJQ)))’

= Zz((min(1,y1 + 1 — 1), max(0, y2 — 22)), (1, 2))
= (min(1,y; + 1 — min(1,y1 + 1 — 21)),

max(0, y2 — max(0,ys — z2)))
= (min(l,max(y; + 1 — 1,y1 + 1 —y1 — 1 + x1)),

and the right-hand side is given by

(x1,22) VL (Y1,92)
= (@1 VL Y1, %2 AL Y2)

max (0, min(ya, y2 — y2 + 2))) = (21 Vi y1, NN (2) Vi, N (12))).
= (max(y1, r1), min(yz, v2))
= (z1,22) V (y1,¥2) Therefore,
=z Vy. Ir(Zr(21,91),91) = o1 VL y1 and

Note that for the above example it holds tHdt, <1, 7) N (Zr (Zr/(N(22),N(y2)), N (y2)) = N(N(22) VL N (y2)),
is an MV-algebra, and tha$ is the Nz, -dual t-conorm of . )
7. So, the structurgL?, <,,¥) ‘contains’, by way of its which means that botllm and 7’ satisfy Formula 8, and so
representants, two underlying MV-algebras. The followingl> <z.7) and(L,<.,7") are MV-algebras.
proposition clarifies the general picture. (<) We shall show thatT satisfies the conditions of
Proposition 16:Let £ = (L,<;) be a complete lattice, Formulas 7 and 8. To see that the residuation principle holds

and let¥ be a t-norm on(L?, <,). Then (L2, <;,%) is an note that

MV-algebra if and only if there exist t-norm and7”’ on £

such that(L,<;,7) and (L,<;,7’) are both MV-algebras, T((z1,72), (y1,72)) <¢ (21, 22)

and such thaf is L-representable with representarfisand & T(r1,11) <1 21 andS(z2,y2) >1, 22
5, whgreS is the A/-dual t-conorm of a t-norn¥”’ for some o T(e,y) <oz and T (N (22), N (1)) <1 N (22)
involutive negatorV.

Proof- & x1 < I7(y1, z1) and N (z2) <p Z7 (N (y2), N (22))
(=) Let (L2, <;,%) be an MV-algebra. By Proposition 11, ~ ! <r Ir(y1,z1) andas 21 N(I70(N(y2), N (22)))
T is L-representable, i.e., there exist a tnofmand a t- < (21,22) <¢ (Z7(y1,21), N(Z1 (N (32), N (22))))
conormsS on £, such thatt((z1, z2), (y1,¥2)) = (7 (z1,y1), < (z1,22) <o Is((y1, y2), (21, 22))-
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To see Formula 8, note that:

T (T ((z1, 22), (Y1, 2)), (y1,y2)) Now, the following question might be raised: if a Kleene
- ) negator exists onI(L),<;), can a t-norm7 always be
= Za((Zz (@) N W w2) Nw2))): 1:52)) goung such thatI(L), <,. T) would be an Mv-algebra? The

= (Zr(Zr(w1,91), 1), following example gives a negative answer to this question.
N(Z7/(Zr (N (22),N(y2)), N (y2))) Example 10:Suppose that there exists a t-noffnon the

= (21 VL y1, N(N(22) VL N(y2))) triangle Z(L3) = (I(L3), <;), satisfying Formulas 7 and 8.
= (z1 VL Y1, T2 AL Y2) Then[0,1] v [%»%] [3:1] = Zr(Z7([0,1], [3, 5] [3, 5],
= (21, 72) V (v1,10)- and so(0,1],[5,5] € A and[l,1] ¢ A, whereA = {z €

’ ’ I(Ly) | T(Z7([0,1], 5, 3]), 2) <¢ [5,3]}. Since[1,1] ¢ A

It follows, then, that(L?, <, ¥) is an MV-algebra. = we haveT(ZT([o 1], [%,%]) [1,1]) = ZT([O 1], [% 3 £
1,1]

]

] hencen = I’T([O 1} [Qa QD E{ ) ]a[ ] [ }

We turn now to triangles. In these structures the sﬂuatsond [1 1] is not possible, sincf), 1] € A and [O 1] [%
{

complicated by the fact that there need not exist a KleeRgyy, >, [0,1], thussup B >, [0,1], where B = ; )

negator on(I(L),<;), while this is a prerequisite of an I(L3) | 7([0,1],2) <, [3,1]}. Hence[0,1] € B. On the
MV-algebra (see [44]}. The following example summarizesgiper hand, since: is the greatest t-norm O(II(L3

previous findings whetf is the unit interval (see, e.qg., [24]). T(0,1],[3,3]) <¢ [0,1] A [4, %] = [0,4] < 4,
Example 8: Consider the triangl¢I ([0, 1]), <;). The map- [},1] € B. Thusa =sup B = [3,1].
ping 7, defined by Since7 satisfies the residuatlon principle fro[é 1
_ =Z7([0,1],[% ] 1]) it follows that 7 ([0, 1], [1,1]) <, [l
T — —1 & T 2773 2
(21, @2} [92, 92]) = [max(0, 21 + 1 1), Since 7([0,1],[3,1]) <, [0,1], we obtain that7 ([0,
max(O,z2—1+y1,y2—1+x1)], [%,1]) <, [0, %]

is a non-representable t-norm that satisfies the residuatio Since7 satisfies Formula 8, we find tha}, 3] v [0, 3] =
principle (7). Moreover, her&s = Zs ., whereS is the (3, 3] = sup C, where

B
1
2

), <
31 so

o

—)-dual of 7. However, since there is no Kleene negator 11 1
(n)(I([O, 1]), <), the triple (I1([0,1]),<;,7) is not an MV- C={z € I(L3) | T(Z7 (3 3], [0 5]). 2) < 0, 3]}
algebra. This is only possible if[1,1] € C. Furthermore,0,1] ¢
Example 8 shows that the property of having coinciditg €. since otherwise[0,1] Vv [1% 1%] = [5:1] < supC, a
and S-implicators is not unique to MV-algebras. Conversehgontradiction. Hence7 (Z7 ([3, 5], [0, %D [0,1]) £ [0 7%]}-
one might also wonder if substructures of bilattice-basezince from the above we know th f'ﬂ([? 1],{0,1]) <¢ [0, 5],
triangles can ever be MV-algebras; the following exampigfollows thatb = Zr([3, 5], (0, 3]) £ [3.1], SOb— [1 1. By
answers this question in the affirmative. the residuation principle, frorﬁr[([% 30510, 3) >4 [1,1], w

obtain that7 ([1, 3], [1,1]) <, [0, ], which is a contrad|ct|on

the mapping\V’ defined in Example 4 is a Kleene negator on We have shown, then, that although there exists a Kleene-

: ; . tor on(I(Ls), <), there does not exist a t-norf on
I(Ls), <;). Consider the following truth tables that define %ega ’ .
t(-n(orzn)17ta)md o IMplicatot on (I{Ly), <o I(Ls),<;) such that(I(Ls),<,,7T) is an MV-algebra.

Example 9: Consider the triangl€(L). As we have seen,

7 ‘ [O O] [171] [07 1] 1 | [an] [1,1] [07 1] 1V. CONCLUSION
Fl)ﬂ {878} Fl)ﬂ Bﬂ ﬁ’ﬂ %’H H’ H H)’ H In this paper we have identified bilattices, and in particula
[0: 1 [070] [07 1 [OZO] [0: 1] [0’1] [1’1] [1’1] the constructs of bilattice-based squares and triangkesa a

natural setting for representing and maintaining conttamhs
(as we do not restrict ourselves only to the consistent ele-
ments). These structures open the door to new opportunities
in modeling imprecise information. Indeed, the ‘tradiédin
approach of evaluating membership functions by values that

We have thafZ = Z7, the residuation principle is satisfied in
this case, and as the truth table below sho@$L.), <;,T)
is an MV-algebra.

x y I(@y) | I(E(>,y)y) | 2VY are arranged in one (and usually total) order, is replaced
{8’ 8% Fl)’ (H H’ H Fl)’ (H Ff’ (ﬂ here by more expressive ‘t\{vo-dimensional’ meesuremea§ th
[070} [0’ 1] [1’ 1] [0’ 1 [()7 1] reflect different interpretations of the underlying ordegs,

’ ’ ’ ’ ’ which may be applied simultaneously.
H’H Fl)’ﬂ E)’(H H’H H’H We have shown that the definition and representation of
[1’ 1 [07 1 [0’ 1 [1’ 1 [1’ 1 suitable logical connectives for a given setting can berzefit
[07 1] [070] [0’ 1] [O’ 1 [0’ 1] lot from bringing together results from bilattice theorydaf}-
[0’ 1 [1’ 1] [1’ 1 [1’ 1 [1’ 1] fuzzy_set theory, _and — moreover — it reises many nen-trivial
[0’ 1 [0’ 1] [1’ 1 [0’ 1 [0’ 1] guestions regarding the inter-relationships among thowsr

’ ’ ’ ’ ’ alternative definitions. From the obtained results it stdug

Sindeed, if (£, <1, T) is an MV-algebra, ther\'z., is a Kleene negator clear also that the situation in squares and triangles &noft
on L; see [44, Theorem 2.31]. substantially different; for instance, neither Kleene ategs
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nor MV-algebras exist on triangles, while for squares thesg]
constructs are readily obtained. Yet, both kinds of stmastu
offer, for every basic logical connective, several gradgd e
tensions that reflect the semantic nature of our framework [as]
one that supports different forms and levels of uncertainty
vagueness, and inconsistency. This is another vindication g,
our claim that both squares and triangles are very useful }or
modeling and representing imprecise information. The a0il20]
what structure is more appropriate for practical applarai 21]
is strongly affected by the nature of the problem under
consideration, as well as by representation considestarch [22]
as those given in this paper. (23]
We note, finally, that apart of the intuitive appeal of our
framework, it also has an interesting application poténtia
This is illustrated in a forthcoming paper, where we considgy)
our approach in the context of preference modeling, showing
that bilattice-based representation of the underlyinglem
provides a generic solution strategy that clarifies and ki@

[25]

existing works in this area (e.g., [45], [46], [47], [48]).

[26]
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