
Four-Valued Logics for Reasoningwith Uncertainty in Prioritized DataOfer ArieliDepartment of Computer ScienceSchool of Mathematical SciencesTel-Aviv UniversityTel-Aviv 69978, Israel.Email: ofera@math.tau.ac.ilAbstractWe present an approach for drawing plausi-ble inferences from inconsistent and incom-plete knowledge-bases. The knowledge-basesunder consideration may be prioritized. Ourmethod is based on four-valued semantics,which is particularly suitable for reasoningwith uncertainty. The inference mechanismis also closely related to some other well-known formalisms for handling inconsistentdata, such as reasoning with maximal con-sistent subsets and possibilistic logic. It isshown that the method presented here is non-monotonic, paraconsistent, and is capable ofmanaging ranked data without having the\drowning problem".1 IntroductionThe purpose of this work is to propose plausible meth-ods for reasoning with uncertainty. The approachesconsidered here are based on a four-valued semantics,which seems to be particularly suitable for our goal,since it contains truth values that can intuitively beunderstood as representing incomplete and inconsis-tent information.Given a knowledge-base KB, the idea is to constructa set of \worlds", which are possible representationsof the information provided in KB. Each one of theseworlds is consistent, and preserves the semantics ofKB in the sense that it has a model in which all theassertions of KB are true. As such, a possible worlddescription of KB might not be a maximal consistentsubset of KB, and so we trade maximal size considera-tions with an obligation to closely re
ect the semanticsof KB. Finally, a formula is accepted as a consequenceof KB when it can be inferred from all the possibleworld descriptions of KB.

In the second part of the paper we extend the methoddescribed above to cases in which the knowledge-basesunder consideration are prioritized. It is shown thatlike many other formalisms for reasoning with inconsis-tent and prioritized data (e.g., [1, 8, 9, 12, 18, 19, 20])our method is also nonmonotonic and paraconsistent[11]. In addition, unlike some other formalisms likesystem Z [18], possibilistic logic [12], and default rea-soning with conditional objects [10], the present ap-proach is capable of managing ranked data withouthaving the \drowning problem" [9, 10].2 Background2.1 The algebraic structureThe approach that we consider here is based on Bel-nap's well-known algebraic structure, FOUR (Figure1), presented in [6, 7]. This structure contains fourelements: the two classical values, t and f , and twoother values, ? and >, that respectively denote lackof information and \too much" information, i.e.: con-
icts. 6�k
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The main idea is to arrange the elements of FOURin two partial orders: One, �t, is usually understoodas re
ecting di�erences in the \measure of truth" thateach value represents. According to this order f isthe minimal element, t is the maximal one, and ?;>are two intermediate values that are incomparable.(ft; f;>;?g;�t) is a distributive lattice with an orderreversing involution :, for which :>=> and :?=?.The meet and the join of this lattice will be denoted by^ and _, respectively. The other partial order, �k, isintuitively understood as re
ecting di�erences in theamount of knowledge that each truth value exhibits.In this partial order ? is the minimal element, > isthe maximal element, and t, f are incomparable.12.2 Syntax and semanticsThe language we treat here is the standard proposi-tional one. Atomic formulae are denoted by p; q, andcomplex formulae are denoted by  ; �. Given a set Sof formulae, we shall write A(S) to denote the set ofthe atomic formulae that occur in S. L(S) denotes theset of the literals that occur in S.The various semantic notions are de�ned on FOURas natural generalizations of similar classical notions:A valuation � is a function that assigns a truth valuefrom FOUR to each atomic formula. Any valuationis extended to complex formulae in the obvious way.The set of the four-valued valuations is denoted by V.We will sometimes write  : b2 � instead of �( ) = b.A valuation � satis�es  i� �( )2ft;>g. t and > arecalled the designated elements of FOUR. A valuationthat satis�es every formula in a given set S of formulaeis a model of S. A model of S will usually be denotedby M or N . The set of all the models of S is denotedby mod(S).The formulae that will be considered here are clauses,i.e.: disjunctions of literals. A useful property ofclauses is given in the following lemma:Lemma 2.1 Let  be a clause and � { a valuation.Then �( )2ft;>g i� 9l2L( ) s.t. �(l)2ft;>g.Proof: By an induction on the structure of  . 2A set of clauses is called a knowledge-base, and is de-noted by KB. As the following lemma shows, repre-senting formulae in a clause form does not reduce thegenerality.Lemma 2.2 [3] For every formula  there is a �niteset S of clauses such that for every valuation �, �( )2f>; tg i� �(�)2f>; tg for every �2S.1(ft; f;>;?g;�k) is also a lattice, and so a �k-meetand a �k-join operators might be de�ned as well (see, e.g.,[2, 5, 6, 7, 13, 14, 16, 17]).

2.3 Measurement of consistencyDe�nition 2.3 Inc(�) = fp j �(p)=>g.De�nition 2.4 Let �1; �22V.a) �1 is more consistent than �2 i� Inc(�1)�Inc(�2).b) M 2mod(KB) is a most consistent model of KB(mcm, for short) if there is no other model ofKB whichis more consistent than M .The set of the most consistent models ofKB is denotedby mcm(KB).De�nition 2.5 A valuation � is consistent if Inc(�)=;. A knowledge-base is consistent if it has a consistentmodel.Proposition 2.6 [3, 4] A knowledge-base is consis-tent i� it is classically consistent.2.4 The basic consequence relationDe�nition 2.7 [2] KB j=4 if every four-valued mcmof KB satis�es  .2Example 2.8 :p; p_ q j=4 q (the only mcm here isM (p)=f , M (q)= t), while p;:p; p_q 6j=4 q (a counter-mcm: N (p) =>, N (q) =?). This example shows, inparticular, that j=4 is nonmonotonic and paraconsis-tent. It also demonstrates the usefulness of consideringonly the mcms of a given knowledge-base rather thanall it's models; In the latter case f:p; p_qg does notentail q, and so the Disjunctive Syllogism is always vi-olated (even in cases in which the relevant formulaeare not involved in any con
ict).Denote by j=2 the classical consequence relation. Un-like j=2, in the standard propositional language thereare no tautologies w.r.t. j=4. This follows from thefact that if 8p2A( ) �(p)=? then �( )=? as well.However, under certain assumptions it is possible todraw the same conclusions with j=2 and j=4:Lemma 2.9 [5] Let KB be a consistent knowledge-base, and let  be a clause that does not contain anyatomic formula and its negation.3 Then KB j=2  i�KB j=4  .Corollary 2.10 If KB is a consistent knowledge-baseand  is a formula in a conjunctive normal form thatnone of its conjuncts is a classical tautology, thenKB j=2 i� KB j=4  .Corollary 2.11 Suppose that KB [ f�g is a consis-tent knowledge-base and  is a clause that does not2This relation is denoted by j=con in [2, 4] and j=4I in[5].3I.e.,  is not a classical tautology.



contain any atomic formula and its negation. ThenKB j=4 implies that KB;� j=4  .Proof: By Lemma 2.9, and since j=2 is monotonic. 23 Reasoning with inconsistent data3.1 World settings and the inference relationDe�nition 3.1 A subset S�KB is consistent in thecontext of KB if S has a consistent modelN , and thereis a (not necessarily consistent) model M of KB s.t.8p2A(S) M (p)=N (p).De�nition 3.2 [1, 3, 4] A possible world setting of aknowledge-base KB is a nonempty maximal subset ofKB that is consistent in the context of KB.4 The setof all the possible world settings of KB is denoted byW(KB).Intuitively, the models of a given knowledge-base rep-resent the epistemic belief of the reasoner (which,in principle, can be inconsistent), while the possibleworld settings are supposed to re
ect the ontologicalbelief. As such, a world setting should be consistent,5and still it should be closely related to the assertionsof the knowledge-base.Note that the elements of W(KB) are not neces-sarily maximal consistent subsets of KB. This isso since they should preserve the semantics of theknowledge-base, while the maximal consistent subsetsmight not do so. For example, the simplest inconsis-tent knowledge-base KB = fp;:pg contains two max-imal consistent subsets fpg and f:pg, but neither ofthem truly re
ect the intended meaning of KB. More-over, each one of them even contradicts an explicit as-sertion of KB (see also Subsection 3.3).De�nition 3.3 [3, 4] The set that is associated witha valuation � is de�ned as follows:S�(KB)=f 2KB j �( )= t; A( ) \ Inc(�)=;g.Example 3.4 Consider the knowledge-base KB =fp; q; h; :p_:qg. Then W(KB) = fS1; S2g, whereS1=fp; hg and S2=fq; hg. These sets are associatedwith the (most consistent) models fp : t; q :>; h : tgand fp :>; q : t; h : tg, respectively. Note that S1 is nolonger a possible world setting of KB0 =KB [ f:pg,since there is no consistent model of S1 that is expand-able to a model of KB0.4In [1, 3, 4] these sets are called recovered knowledge-bases.5The basic assumption here is that in reality things be-have consistently.

As the following proposition shows, there is a strongconnection between the possible world settings of aknowledge-base and its mcms. In particular, everypossible world setting of KB is associated with somemcm of KB:Proposition 3.5 [3, 4]a) 8S2W(KB) 9M 2mcm(KB) s.t. S=SM (KB).b) 8M 2mcm(KB) 9S2W(KB) s.t. SM (KB)�S.Corollary 3.6 Let W (KB) = fSM (KB) j M 2mcm(KB)g. Then W(KB) = fS 2 W (KB) j :9T 2W (KB) s.t. S�Tg.De�nition 3.7 KB j=W  if 8S2W(KB) S j=4 .Example 3.8 Consider the knowledge-base of Exam-ple 3.4. Then KB 6j=W p, KB 6j=W q, and KB j=W h.This might be explained by the fact that unlike p; q,the assertion h is not involved in any con
ict in KB,and so it is a more reliable conclusion (see also Propo-sition 3.12 below).3.2 Basic properties of j=WIn this subsection we consider some basic properties ofj=W . The �rst result is that in case that a knowledge-base is consistent, then its conclusions are the same asthose of the basic consequence relation:Proposition 3.9 If KB is consistent then KB j=W  i� KB j=4 .Proof: Immediately follows from the fact that if KBis consistent, then W(KB)=fKBg. 2Proposition 3.10 j=W is nonmonotonic and para-consistent.Proof: p; q j=W q, but p; q;:q 6j=W q. 2The proof of the last proposition also shows that j=Wis not re
exive.6 However, in many reasoning systems(especially those for making nontrivial inferences frominconsistent data) the re
exivity condition need not bevalid in general (see, e.g., [15, 21]). Still, as it clearlyfollows from Proposition 3.12 below, j=W is re
exivew.r.t. premises that are true in every possible worldsetting:De�nition 3.11 Con(KB) = TfS j S2W(KB)g.Proposition 3.12 Let  be a clause that does notcontain any atomic formula and its negation. IfCon(KB) j=4 then KB j=W  .6Hence, in particular, j=W is not the same as j=4.



Proof: Note, �rst, that since there are no tautologiesw.r.t. j=4 in the propositional language, the conditionof the proposition assures that Con(KB) 6= ;. Now,since Con(KB) � S for every S 2 W(KB), then byCorollary 2.11 8S 2W(KB) S j=4 . Thus KB j=W  .2The converse of the last proposition is not true: InExamples 3.4 and 3.8, for instance, Con(KB) = fhgand so although Con(KB) 6j=4p_q, still KB j=W p_q.Proposition 3.13 IfW(KB) 6=; andKB j=W  , thenKB 6j=W : .Proof: Follows from the fact that every element ofW(KB) is consistent, and so if S is a possible woldsetting s.t. S j=4 , then S 6j=4: . Hence KB 6j=W : .23.3 Inference with maximal consistent setsA famous approach for reasoning with uncertaintyaccepts formulae provided that they classically fol-low from all the maximal consistent subsets of theknowledge-base. Denote by j=MC the correspondingconsequence relation. Then j=W is usually at least ascautious as j=MC:Proposition 3.14 If Con(KB) 6= ; and  is a clausethat does not contain an atomic formula and its nega-tion, then KB j=W  implies that KB j=MC  .Proof: Denote by MC(KB) the set of the maxi-mal consistent subsets of KB. If KB 6j=MC  then9T 2 MC(KB) s.t. T 6j=2  . By Lemma 2.9, then,T 6j=4  as well. Since T is a maximal consistent subsetof KB, and Con(KB) is an intersection of consistentsubsets of KB, then Con(KB)�T . But Con(KB) 6=;,thus there is a nonempty subset of T that is consistentin the context of KB, and so there is a set which ismaximal among the subsets of T that are consistent inthe context ofKB. Denote this set by S. Since T 6j=4  then by Corollary 2.11, S 6j=4 either. To conclude itis left to show, therefore, that S 2 W(KB). Indeed,otherwise there is a set S02W(KB) s.t. S�S0. Thus9�2S0nS s.t. S[f�g is consistent in the context ofKB(since S [ f�g�S0), and so � 62T (otherwise S [ f�gwould have been a subset of T that is consistent in thecontext of KB and properly contains S { a contradic-tion to the choice of S). Since T is a maximal subset ofKB that is classically consistent, necessarily T [f�g isclassically inconsistent. Hence T j=2:�. By Corollary2.10 and since De-Morgan's rules are valid in FOUR,T j=4 :�. Now, by Proposition 2.6 S0 is in particularclassically consistent. So let M be a classical model ofS0, and let N 2mod(KB) s.t. 8p2A(S0) N (p)=M (p).Since �2S0, so M (�)= t. Thus N (�)= t as well. On

the other hand, N is also a model of T , and T j=4:�,therefore N (�)2ff;>g { a contradiction. 2The following proposition shows that our reasoningprocess is analogous in spirit to that of j=MC : Insteadof making classical conclusions from (all) the maximalconsistent subsets, we draw classical conclusions from(all) the possible world settings.Proposition 3.15 Let  be a clause which is not aclassical tautology. Then KB j=W  i�  classicallyfollows from every possible world setting of KB.Proof: KB j=W  i� 8S 2W(KB) S j=4  , i� 8S 2W(KB) S j=2 (Lemma 2.9). 24 Prioritized knowledge-bases4.1 Motivation and basic de�nitionsIn many cases a knowledge-base contains formulaewith di�erent importance or certainty. For instance,rules that state default assumptions are usually con-sidered as less reliable than rules without exceptions.Also, inference rules are usually given a lower prioritythan atomic facts. These kinds of considerations areparticularly commonwhen reasoning with inconsistentknowledge-bases; If some formulae are more certainthan others, one would probably like to reject the leastcertain �rst.A common method of prioritizing formulae assignsthem di�erent ranks. All the formulae with the samerank intuitively have the same importance; Di�erentranks re
ect di�erences in the certainty or reliabilityattached to the assertions (see, e.g., [8, 9, 12, 18, 19,20]). In this section we use this additional informationfor re�ning the inference mechanism discussed in theprevious section.De�nition 4.1 A ranking of a knowledge-base KB isa function r from the clauses in KB to f1; 2; : : : ; ng.The ranking function determines a preference rela-tion on the clauses of a knowledge-base. Intuitively,a clause with a lower rank has a higher priority.Notation 4.2 KBi=f 2KB j r( )� ig.De�nition 4.3 [1]� Wi(KB) = fS�(KB) j �2V; �2mcm(KBi)g.� Wi(KB) = fS2Wi(KB) j :9T 2Wi(KB) s.t.S�Tg.77By Corollary 3.6 the only di�erence from the non-prioritized case is that when the knowledge-base is priori-tized, the relevant valuations are mcms of KBi rather thanmcms of KB.



Each Wi(KB) is a set of possible worlds that corre-spond to the situation described in KB. Following [8]we provide some criteria for choosing the preferred setof worlds:� set cardinality: Wi �scWj i� 8S 2Wi 9T 2Wjs.t. jT j�jSj.� set inclusion: Wi�siWj i� 8S 2Wi 9T 2Wj s.t.T �S.� cardinality of consistent consequences: Wi�ccWji� 8S 2Wi 9T 2Wj s.t. jfl2L(KB) j T j= l; T 6j=lgj � jfl2L(KB) j S j= l; S 6j= lgj.8� inclusion of consistent consequences: Wi �ciWji� 8S 2Wi 9T 2Wj s.t. fl2L(KB) j T j= l; T 6j=lg � fl2L(KB) j S j= l; S 6j= lg.De�nition 4.4 Let � be a preference criteria amongWi(KB), i=1;: : :; n. The optimal recovery level ofKBw.r.t. � is de�ned as follows: i0=maxfi j :9j 6= i s.t.Wj�Wig.The induced consequence relation is a natural gener-alization of j=W (cf. De�nition 3.7):De�nition 4.5 Let i0 be the optimal recovery levelof KB w.r.t. �. KB j=�W  if 8S2Wi0(KB) S j=4 .4.2 An example { Tweety dilemmaFor the following example we �rst extend the discus-sion to languages with predicates and variables. It ispossible to do so in a straightforward way, providedthat each clause that contains variables is consideredas universally quanti�ed. Consequently, a knowledge-base containing a non-grounded formula,  , will beviewed as representing the corresponding set of groundformulae formed by substituting each variable in  with every possible element of the Herbrand universe,U . Formally: KBU =f�( ) j  2KB; � :var( )!Ug.Example 4.6 Consider the following puzzle:bird(x)!fly(x),penguin(x)!:fly(x),penguin(x)!bird(x),bird(Tweety), bird(Fred), penguin(Tweety).We denote the above knowledge-base by KB, and ab-breviate the predicates bird, penguin, and fly by b,8As usual, l denotes the complement of l, and KB j= denotes that 8M 2mod(KB)M( ) is designated.

p, and f (respectively).9 Also, T , F will stand for theindividuals Tweety and Fred. KB has three mcms (seeFigure 2), and each mcm has a set that is associatedwith it:mcm b(T ) p(T ) f(T ) b(F ) p(F ) f(F )M1 t t > t f tM2 t > t t f tM3 > t f t f tFigure 2: The mcms of KBSM1(KB) = KBU n f 2KBU j f(T )2A( )gSM2(KB) = KBU n f 2KBU j p(T )2A( )gSM3(KB) = KBU n f 2KBU j b(T )2A( )gKB is obviously inconsistent, so it is useless as faras classical logic is concerned. Nevertheless, the am-biguous data is related only to the information aboutTweety. j=W \salvages" the consistent part ofKB, andallows us to draw nontrivial conclusions about Fred,despite the inconsistency:KB j=W b(F ); KB j=W f(F ); KB j=W :p(F );KB 6j=W :b(F ); KB 6j=W :f(F ); KB 6j=W p(F ):Since the information about Tweety is inconsistent, soj=W does not allow us to infer nontrivial conclusionsabout Tweety. We claim, however, that this state ofthings is due to the fact that the actual representationof the problem does not properly re
ect our intuitiveunderstanding of this particular puzzle: According tothe above representation every rule is given the sameimportance. In this case, however, we give higher pri-orities to the second and the third rules than to the�rst rule. This is because the former rules are morespeci�c and unlike the latter one they do not have ex-ceptions. In other words, we claim that a more accu-rate representation of this problem should be accom-panied with some mechanism for making precedencesamong the rules. In our case this is a ranking functionr. A possible ranking of KB is the following:r(b(T )) = r(b(F )) = r(p(T )) = 1,r(p(x)!:f(x)) = r(p(x)!b(x)) = 2,r(b(x)!f(x)) = 3.9Note that the symbol f has double meanings here: ab-breviating the predicate fly, and representing the truthvalue false. Each occurance of f will be understood bythe context.



By Proposition 4.11 below it follows that the optimalrecovery level when the preference criteria is either �cior �cc is i0=2. In this case,KB2 = fb(T ); b(F ); p(T ); p(x)!:f(x); p(x)!b(x)g:The most consistent models of KB2 are given in thetable of Figure 3.mcm b(T ) p(T ) f(T ) b(F ) p(F ) f(F )N1 t t f t f fN2 t t f t f tN3 t t f t f ?N4 t t f t t fN5 t t f t ? fFigure 3: The mcms of KB2Since SN2=KBU n fb(T )!f(T )g, while SN1 =SN3 =SN4 = SN5 =KBU n fb(T )! f(T ); b(F )! f(F )g, itfollows that W2(KB) = fSN2(KB)g. Thus, accordingto j=�ccW and j=�ciW one can deduce that Tweety isa bird, a penguin, and cannot 
y, while Fred is a birdthat can 
y and it is not a penguin. The converseassertions are not deducible, as expected. It also canbe shown that the same conclusions are obtained byj=�scW and by j=�siW .4.3 Basic properties of j=�WFirst we show that j=�W is an extension of j=W :Proposition 4.7 If all the clauses in KB have thesame priority, then KB j=�W  i� KB j=W  .Proof: Immediate from Corollary 3.6 and De�nition4.3, since in this case KB=KB1. 2Some basic properties of j=W remain valid also in thecase of j=�W :Proposition 4.8 IfKB is consistent then KB j=�W  i� KB j=4 .Proof: Let n be the maximal rank in KB. If KB isconsistent then the optimal recovery level w.r.t. either�sc, �si, �cc, or �ci is n, and KBn = fKBg. Theclaim now immediately follows from De�nition 4.5. 2By the last proposition and Lemma 2.9 it follows thatif KB is consistent and  is a clause that is not aclassical tautology, then KB j=�W  i�  classicallyfollows from KB.Proposition 4.9 j=�W is nonmonotonic and para-consistent.Proof: The same as that of Proposition 3.10, with rs.t. either r(p)>r(q) or r(:q)>r(q). 2

Proposition 4.10 Let i0 be the optimal recoverylevel of KB w.r.t. �. If Wi0 6= ; and KB j=�W  then KB 6j=�W : .Proof: The same as that of Proposition 3.13, replac-ing W(KB) with Wi0(KB). 2In the rest of this paper, unless otherwise stated, wewill use either �cc or �ci as the preference criterion,and so j=�W will abbreviate either j=�ccW or j=�ciW .Also, i0 will henceforth denote the optimal recoverylevel w.r.t. either one of these criteria. Finally, inwhat follows we assume that the set of the assertionswith the highest priority (i.e. KB1) is consistent.Proposition 4.11 [1] i0=maxfi jKBi is consistentg.Proposition 4.12 Let S2Wi0(KB). Then there is a(most) consistent model M of KBi0 s.t. S =KBi0 [SM (KBnKBi0 ).Proof: By De�nition 4.3, S=SM (KB) for some M 2mcm(KBi0 ). Thus, S = SM (KBi0 ) [ SM (KBnKBi0 ).But by Proposition 4.11 KBi0 is consistent, and soSM (KBi0 ) = KBi0 . It follows, therefore, that S =KBi0 [ SM (KBnKBi0 ). 2De�nition 4.13 Coni0(KB)=TfS j S2Wi0(KB)g.Proposition 4.14 Let  be a clause that does notcontain any atomic formula and its negation.a) If KBi0 j=4 then KB j=�W  .b) If Coni0(KB) j=4 then KB j=�W  .Proof: First note that since there are no tautologiesw.r.t. j=4, the conditions of parts (a) and (b) as-sure (respectively) that KBi0 6=; and Coni0(KB) 6=;.Now, part (a) follows from Proposition 4.12, since8S 2 Wi0(KB) KBi0 � S. Thus, since KBi0 j=4  then by Corollary 2.11, 8S 2Wi0(KB) S j=4  . Theproof of part (b) is similar, and follows from the factthat 8S2Wi0(KB) Coni0(KB)�S. 2By Proposition 4.14 it follows that j=�ccW and j=�ciWpreserve the semantics of the clauses with the i0-highest priorities (see also Corollary 4.16 below). Inaddition, it is possible to deduce conclusion that arebased on assertions with lower priorities than the op-timal recovery level, provided that they are not in-volved in any con
ict. In Example 4.6, for instance,b(x)! f(x) cannot be inferred in general, since it iscauses con
icts when x = Tweety. However, the in-stance b(F ) ! f(F ) is deducible, since it does notharm the consistency of any possible world setting. Inparticular this shows that j=�W does not su�er fromthe so called \drowning e�ect" (see Subsection 5.2 be-low).



Corollary 4.15 Suppose that  2Coni0(KB). ThenKB 6j=�W : .Proof: Follows from Propositions 4.14(b) and 4.10. 2Corollary 4.16 If  2KBi0 then KB 6j=�W : .Proof: By Corollary 4.15 and the fact that KBi0 �Coni0(KB) (see Proposition 4.12). 25 Related systems5.1 Coherent approaches for restoringconsistencyIn order to make inferences from a given knowledge-base, the method presented here considers all thepossible worlds that plausibly represent the intendedmeaning of KB. In [1, 3, 4], on the other hand, onlyone such world is chosen. This world is considered asthe \recovered" version of the \polluted" knowledge-base. Since the recovered knowledge-base is (classi-cally) consistent, it is possible to draw nontrivial clas-sical conclusions from it. In particular, every conclu-sion that is deducible by j=W is also valid accordingthe approach taken in [3, 4], and every conclusion thatis drawn by j=�W is valid according to the approachof [1]; The opposite directions are obviously not true.The main di�erence between the approach of [1, 3, 4]and the present one concerns with the way that theyrefer to contradictory data: The present approach ac-cepts inconsistency and tries to cope with it. This ap-proach allows us to make nontrivial conclusions froman inconsistent theory without throwing pieces of in-formation away. The approach of [1, 3, 4] is sometimescalled coherent . It revises inconsistent informationandrestores consistency. Thus, contradictory data is con-sidered useless, and only a consistent part of the orig-inal information is used for making inferences. See [9]for a survey of coherent techniques for reasoning withprioritized knowledge-bases.5.2 The possibilistic approachIn [10, 12] Benferhat et al. present a well-known ap-proach for reasoning with inconsistency in prioritizedknowledge-bases, called possibilistic logic. Brie
y, theidea is to consider a consistent subset �(KB) of KB,so that in terms of Notation 4.2 �(KB)=KBi , wherei is the maximal index for which KBi is classicallyconsistent (in the extreme cases, �(KB)=; if KB1 isclassically inconsistent, and �(KB)=KB if the wholeknowledge-base is classically consistent). A formula  is a possibilistic consequence of KB (KB j=�  ) if itclassically follows from �(KB).

Proposition 5.1 Suppose that KB1 is consistent,and let  be a clause that does not have an atomic for-mula and its negation. If KB j=� then KB j=�W  .10Proof: IfKB j=�  then �(KB) j=2 . But by Proposi-tions 2.6 and 4.11 �(KB)=KBi0 , so KBi0 j=2 . Since is not a classical tautology and KBi0 is consistent(Proposition 4.11), then by Lemma 2.9 KBi0 j=4  .Hence, by Proposition 4.14(a), KB j=�W  . 2The other direction of the last proposition is not true.This follows from the fact that unlike the case of j=�W ,the possibilistic consequence relation has the so called\drowning problem" [9, 10]: Formulae with ranks thatare greater than the inconsistency level are inhibitedeven if they are not involved in any con
ict. Wedemonstrate this phenomenon in the following exam-ple:Example 5.2 Consider again the knowledge-base ofExample 3.4, and suppose that r(:p_:q)=1, r(p)=2,r(q) = 3, r(h) = 4. Then �(KB) = f:p_:q; pg, andso according to the possibilistic approach h is not aconsequence of KB, even though it is not involved inthe inconsistency. As Proposition 4.14(b) shows, thisis not the case with j=�W : Since h2Con2(KB), thenCon2(KB) j=4h, and so KB j=�W h.6 Conclusion and further workIn this paper we have considered a logic for rea-soning with incomplete and inconsistent knowledge-bases. The corresponding consequence relation, j=W ,is nonmonotonic, paraconsistent, and allows to drawconclusions that are not involved in any con
ict inthe knowledge-base. In practice, this means that incase that a small portion of a large knowledge-baseis contradictory, one would still be able to draw non-trivial conclusions based on the \robust" part of theknowledge-base, and so the inference process will notbe damaged by the \spoiled" data.In the second part of the paper we considered cases inwhich the formulae of the knowledge-bases are ranked.This additional information allowed us to re�ne theinference procedure so that we also draw conclusionswith contradictory data, provided that this data has asu�ciently high priority.The formalisms presented here are based on a four-valued semantics, which is particularly suitable for rea-soning with uncertainty, since it contains truth valuesthat can be viewed as representing lack of informationand too much information. The next natural step is toallow more than just four values. This will allow us,10Recall that j=�W stands here for either j=�ccW orj=�ciW .
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