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Abstract

We present an approach for drawing plausi-
ble inferences from inconsistent and incom-
plete knowledge-bases. The knowledge-bases
under consideration may be prioritized. Qur
method is based on four-valued semantics,
which is particularly suitable for reasoning
with uncertainty. The inference mechanism
is also closely related to some other well-
known formalisms for handling inconsistent
data, such as reasoning with maximal con-
sistent subsets and possibilistic logic. It is
shown that the method presented here is non-
monotonic, paraconsistent, and is capable of
managing ranked data without having the
“drowning problem”.

1 Introduction

The purpose of this work is to propose plausible meth-
ods for reasoning with uncertainty. The approaches
considered here are based on a four-valued semantics,
which seems to be particularly suitable for our goal,
since it contains truth values that can intuitively be
understood as representing incomplete and inconsis-
tent information.

Given a knowledge-base KB, the idea is to construct
a set of “worlds”, which are possible representations
of the information provided in KB. Each one of these
worlds is consistent, and preserves the semantics of
KB in the sense that it has a model in which all the
assertions of KB are true. As such, a possible world
description of KB might not be a maximal consistent
subset of KB, and so we trade maximal size considera-
tions with an obligation to closely reflect the semantics
of KB. Finally, a formulais accepted as a consequence
of KB when it can be inferred from all the possible
world descriptions of KB.

In the second part of the paper we extend the method
described above to cases in which the knowledge-bases
under consideration are prioritized. It is shown that
like many other formalisms for reasoning with inconsis-
tent and prioritized data (e.g., [1, 8, 9, 12, 18, 19, 20])
our method is also nonmonotonic and paraconsistent
[11]. In addition, unlike some other formalisms like
system Z [18], possibilistic logic [12], and default rea-
soning with conditional objects [10], the present ap-
proach is capable of managing ranked data without
having the “drowning problem” [9, 10].

2 Background

2.1 The algebraic structure

The approach that we consider here is based on Bel-
nap’s well-known algebraic structure, FOUR (Figure
1), presented in [6, 7]. This structure contains four
elements: the two classical values, £ and f, and two
other values, 1 and T, that respectively denote lack
of information and “too much” information, i.e.: con-
flicts.

Figure 1: FOUR



The main idea is to arrange the elements of FOUR
in two partial orders: One, <;, is usually understood
as reflecting differences in the “measure of truth” that
each value represents. According to this order f is
the minimal element, ¢ is the maximal one, and 1, T
are two intermediate values that are incomparable.
({t, f, T, L}, <¢) is a distributive lattice with an order
reversing involution —, for which = T=T and =1 =_1.
The meet and the join of this lattice will be denoted by
A and V, respectively. The other partial order, <, is
intuitively understood as reflecting differences in the
amount of knowledge that each truth value exhibits.
In this partial order | is the minimal element, T is
the maximal element, and ¢, f are incomparable.!

2.2 Syntax and semantics

The language we treat here is the standard proposi-
tional one. Atomic formulae are denoted by p, ¢, and
complex formulae are denoted by 1, ¢. Given a set S
of formulae, we shall write A(S) to denote the set of
the atomic formulae that occur in S. £(.S) denotes the
set of the literals that occur in S.

The various semantic notions are defined on FOUR
as natural generalizations of similar classical notions:
A valuation v is a function that assigns a truth value
from FOUR to each atomic formula. Any valuation
is extended to complex formulae in the obvious way.
The set of the four-valued valuations is denoted by V.
We will sometimes write v : b € v instead of v() =b.
A valuation v satisfies ¢ iff v(¢)€{t, T}. t and T are
called the designated elements of FOUR. A valuation
that satisfies every formulain a given set S of formulae
is a model of S. A model of S will usually be denoted
by M or N. The set of all the models of S is denoted
by mod(S).

The formulae that will be considered here are clauses,
i.e.: disjunctions of literals. A useful property of
clauses is given in the following lemma:

Lemma 2.1 Let ¢ be a clause and v — a valuation.

Then v(y)e{t, THiff e L(y) s.t. v()e{t, T}
Proof: By an induction on the structure of ¥. O

A set of clauses is called a knowledge-base, and is de-
noted by KB. As the following lemma shows, repre-
senting formulae in a clause form does not reduce the
generality.

Lemma 2.2 [3] For every formula 9 there is a finite
set S of clauses such that for every valuation v, v(¢) €

{T,t}iff v(p)€{T,t} for every p€S.

Y({t, £, T,1},<s) is also a lattice, and so a <j-meet
and a <g-join operators might be defined as well (see, e.g.,
[2, 5, 6, 7, 13, 14, 16, 17]).

2.3 Measurement of consistency
Definition 2.3 Inc(v)={p | v(p)=T}.

Definition 2.4 Let vy, € V.

a) vy is more consistent than v, iff Inc(v1) C Inc(va).
b) M € mod(KB) is a most consistent model of KB
(mcm, for short) if there is no other model of KB which
is more consistent than M.

The set of the most consistent models of KB is denoted
by mem(KB).

Definition 2.5 A valuation v is consistent if Inc(v) =
@. A knowledge-base is consistent if it has a consistent
model.

Proposition 2.6 [3, 4] A knowledge-base is consis-
tent iff it is classically consistent.

2.4 The basic consequence relation

Definition 2.7 [2] KB |4 if every four-valued mem
of KB satisfies 1.2

Example 2.8 —p,pVq =4 ¢ (the only mcm here is
M(p)=f, M(q)=t), while p, 7p,pVg 4 ¢ (a counter-
mcm: N(p)=T, N(g)=L1). This example shows, in
particular, that =4 is nonmonotonic and paraconsis-
tent. It also demonstrates the usefulness of considering
only the mcms of a given knowledge-base rather than
all it’s models; In the latter case {—p,pVg¢} does not
entail ¢, and so the Disjunctive Syllogism is always vi-
olated (even in cases in which the relevant formulae
are not involved in any conflict).

Denote by =2 the classical consequence relation. Un-
like =2, in the standard propositional language there
are no tautologies w.r.t. |=4. This follows from the
fact that if Vpe A(¢) v(p) =L then v(¢) =1 as well.
However, under certain assumptions it is possible to
draw the same conclusions with =2 and =4:

Lemma 2.9 [5] Let KB be a consistent knowledge-
base, and let ¥ be a clause that does not contain any
atomic formula and its negation.® Then KB }=5 ¢ iff

KB4 9.

Corollary 2.10 If KB is a consistent knowledge-base
and ¥ is a formula in a conjunctive normal form that
none of its conjuncts is a classical tautology, then

KBl=y % iff KB4 9.

Corollary 2.11 Suppose that KB U {¢} is a consis-
tent knowledge-base and ¥ is a clause that does not

>This relation is denoted by =con in [2, 4] and =% in
(5]-

%1.e., ¢ is not a classical tautology.



contain any atomic formula and its negation. Then

KB |41 implies that KB, ¢ =4 9.

Proof: By Lemma 2.9, and since =2 is monotonic. O

3 Reasoning with inconsistent data

3.1 World settings and the inference relation

Definition 3.1 A subset SC KB is consistent in the
contezt of KB if § has a consistent model N, and there
is a (not necessarily consistent) model M of KB s.t.

Vpe A(S) M(p)=N(p).

Definition 3.2 [1, 3, 4] A possible world setting of a
knowledge-base KB is a nonempty maximal subset of
KB that is consistent in the context of KB.* The set
of all the possible world settings of KB is denoted by
W(KB).

Intuitively, the models of a given knowledge-base rep-
resent the epistemic belief of the reasoner (which,
in principle, can be inconsistent), while the possible
world settings are supposed to reflect the ontological
belief. As such, a world setting should be consistent,?
and still it should be closely related to the assertions
of the knowledge-base.

Note that the elements of W(KB) are not neces-
sarily mazrimal consistent subsets of KB. This is
so since they should preserve the semantics of the
knowledge-base, while the maximal consistent subsets
might not do so. For example, the simplest inconsis-
tent knowledge-base KB = {p, -p} contains two max-
imal consistent subsets {p} and {-p}, but neither of
them truly reflect the intended meaning of KB. More-
over, each one of them even contradicts an ezplicit as-
sertion of KB (see also Subsection 3.3).

Definition 3.3 [3, 4] The set that is associated with
a valuation v is defined as follows:

S, (KB)={¢ € KB | v(¢¥) =t, A(¢) N Inc(v)=0}.

Example 3.4 Consider the knowledge-base KB =
{p, ¢, h, -pV—q}. Then W(KB) = {51, S2}, where
S1={p, h} and S; ={q, h}. These sets are associated
with the (most consistent) models {p:t, ¢: T, h:t}
and {p: T, q:t, h:t}, respectively. Note that S; is no
longer a possible world setting of KB’ = KB U {—p},
since there is no consistent model of S; that is expand-
able to a model of KB'.

*In [1, 3, 4] these sets are called recovered knowledge-
bases.

5The basic assumption here is that in reality things be-
have consistently.

As the following proposition shows, there is a strong
connection between the possible world settings of a
knowledge-base and its mcms. In particular, every
possible world setting of KB is associated with some
mcm of KB:

Proposition 3.5 [3, 4]
a) VSeW(KB) IM € mem(KB) s.t. S=Su(KB).
b) VM e mem(KB) 3S€ W(KB) s.t. Su(KB)CS.

Corollary 3.6 Let W(KB) = {Su(KB) | M
mem(KB)}. Then W(KB) = {S € W(KB) | -3T
W(KB) s.t. SCT}.

S
S

Definition 3.7 KBEw ¢ if VSEW(KB) SkEav.

Example 3.8 Consider the knowledge-base of Exam-
ple 3.4. Then KB [fw p, KB Ww q, and KB =y h.
This might be explained by the fact that unlike p, g,
the assertion h is not involved in any conflict in KB,
and so it is a more reliable conclusion (see also Propo-
sition 3.12 below).

3.2 Basic properties of

In this subsection we consider some basic properties of
Ew. The first result is that in case that a knowledge-
base is consistent, then its conclusions are the same as
those of the basic consequence relation:

Proposition 3.9 If KB is consistent then KB Ew 9
iff KB4,

Proof: Immediately follows from the fact that if KB
is consistent, then W(KB)={KB}. O

Proposition 3.10 |y is nonmonotonic and para-
consistent.

Proof: p,q=wgq, but p,q,~qlwg. O

The proof of the last proposition also shows that |y
is not reflexive.® However, in many reasoning systems
(especially those for making nontrivial inferences from
inconsistent data) the reflexivity condition need not be
valid in general (see, e.g., [15, 21]). Still, as it clearly
follows from Proposition 3.12 below, =y is reflexive
w.r.t. premises that are true in every possible world
setting:

Definition 3.11 Con(KB) = ({S | Se W(KB)}.

Proposition 3.12 Let ¢ be a clause that does not
contain any atomic formula and its negation. If

Con(KB) =49 then KB Ew 9.

®Hence, in particular, |=w is not the same as |=4.



Proof: Note, first, that since there are no tautologies
w.r.t. =4 in the propositional language, the condition
of the proposition assures that Con(KB) # . Now,
since Con(KB) C S for every S € W(KB), then by
Corollary 2.11 VS e W(KB) S =4%. Thus KB =w 9.
O

The converse of the last proposition is not true: In
Examples 3.4 and 3.8, for instance, Con(KB) = {h}
and so although Con(KB) [£4pVy, still KB =y pVg.

Proposition 3.13 If W(KB)#0 and KB |y 1, then
KB [y 1.

Proof: Follows from the fact that every element of
W(KB) is consistent, and so if S is a possible wold
setting s.t. S|Eav, then S}q—1p. Hence KB [y 1.
O

3.3 Inference with maximal consistent sets

A famous approach for reasoning with uncertainty
accepts formulae provided that they classically fol-
low from all the maximal consistent subsets of the
knowledge-base. Denote by e the corresponding
consequence relation. Then =y is usually at least as
cautious as FEame:

Proposition 3.14 If Con(KB)#( and v is a clause
that does not contain an atomic formula and its nega-
tion, then KB =y ¢ implies that KB e 9.

Proof: Denote by MC(KB) the set of the maxi-
mal consistent subsets of KB. If KB (pe ¢ then
T € MC(KB) s.t. T [£2 . By Lemma 2.9, then,
T {4 ¢ as well. Since T is a maximal consistent subset
of KB, and Con(KB) is an intersection of consistent
subsets of KB, then Con(KB)CT. But Con(KB)+#0,
thus there is a nonempty subset of T' that is consistent
in the context of KB, and so there is a set which is
maximal among the subsets of T that are consistent in
the context of KB. Denote this set by S. Since T }-4 ¢
then by Corollary 2.11, S|4 either. To conclude it
is left to show, therefore, that S € W(KB). Indeed,
otherwise there is a set '€ W(KB) s.t. SCS’. Thus
d¢ € 5\S s.t. SU{¢} is consistent in the context of KB
(since SU{¢}CS’), and so ¢ & T (otherwise S U {4}
would have been a subset of T' that is consistent in the
context of KB and properly contains S — a contradic-
tion to the choice of S). Since 7T is a maximal subset of
KB that is classically consistent, necessarily TU{¢} is
classically inconsistent. Hence T |=3 —¢. By Corollary
2.10 and since De-Morgan’s rules are valid in FOUR,
T |4 —¢. Now, by Proposition 2.6 S’ is in particular
classically consistent. So let M be a classical model of
S’, and let N € mod(KB) s.t. Vpe A(S') N(p)=M(p).
Since ¢ €5', so M(¢)=t. Thus N(¢)=t as well. On

the other hand, N is also a model of T, and T =4 —¢,
therefore N(¢)€{f, T} — a contradiction. O

The following proposition shows that our reasoning
process is analogous in spirit to that of Fpqe: Instead
of making classical conclusions from (all) the maximal
consistent subsets, we draw classical conclusions from
(all) the possible world settings.

Proposition 3.15 Let 3 be a clause which is not a
classical tautology. Then KB Ew ¢ iff ¥ classically
follows from every possible world setting of KB.

Proof: KB |y ¢ iff VS € W(KB) S a9, it VS €
W(KB) SE29 (Lemma 2.9). O

4 Prioritized knowledge-bases

4.1 Motivation and basic definitions

In many cases a knowledge-base contains formulae
with different importance or certainty. For instance,
rules that state default assumptions are usually con-
sidered as less reliable than rules without exceptions.
Also, inference rules are usually given a lower priority
than atomic facts. These kinds of considerations are
particularly common when reasoning with inconsistent
knowledge-bases; If some formulae are more certain
than others, one would probably like to reject the least
certain first.

A common method of prioritizing formulae assigns
them different ranks. All the formulae with the same
rank intuitively have the same importance; Different
ranks reflect differences in the certainty or reliability
attached to the assertions (see, e.g., [8, 9, 12, 18, 19,
20]). In this section we use this additional information
for refining the inference mechanism discussed in the
previous section.

Definition 4.1 A ranking of a knowledge-base KB is
a function r from the clauses in KB to {1,2,...,n}.

The ranking function determines a preference rela-
tion on the clauses of a knowledge-base. Intuitively,
a clause with a lower rank has a higher priority.

Notation 4.2 KB;={y € KB | r(¢) <i}.
Definition 4.3 [1]

e Wi(KB)={S,(KB) | veV, vemem(KB;)}.

e W;(KB) = {ScW;(KB) | ~3T € W;(KB) s.t.
ScT}.”

"By Corollary 3.6 the only difference from the non-
prioritized case is that when the knowledge-base is priori-
tized, the relevant valuations are mcms of KB; rather than

mcms of KB.



Each W;(KB) is a set of possible worlds that corre-
spond to the situation described in KB. Following [8]
we provide some criteria for choosing the preferred set
of worlds:

o set cardinality: W; >sc W; it VS €W, 3T € W;
s.t. |T<]S|.

o set inclusion: Wy > W; it VSEW; 3T cW; s.t.
TCS.

o cardinality of consistent consequences: W; >cc W;
iff VSeW; ITeW; st. [{I€L(KB) | TEL T
I} < HIEL(KB) | S|=L, SIET}.S

o inclusion of consistent consequences: W; >.; W;
if VSeW; 3T eW; s.t. {I€L(KB) | TEL T
I} C{leL(KB) | SEL S}

Definition 4.4 Let < be a preference criteria among
W;(KB), t=1,...,n. The optimal recovery level of KB
w.r.t. < is defined as follows: io=max{i | -3j #1 s.t.

W; >W;}.

The induced consequence relation is a natural gener-
alization of =y (cf. Definition 3.7):

Definition 4.5 Let ip be the optimal recovery level
of KB w.r.t. <. KBE<w ¢ if VSEW; (KB) S|=4%.

4.2 An example — Tweety dilemma

For the following example we first extend the discus-
sion to languages with predicates and variables. It is
possible to do so in a straightforward way, provided
that each clause that contains variables is considered
as universally quantified. Consequently, a knowledge-
base containing a non-grounded formula, %, will be
viewed as representing the corresponding set of ground
formulae formed by substituting each variable in %
with every possible element of the Herbrand universe,

U. Formally: KBY ={p(¢) | ¥ € KB, p:var(¢)—U}.

Example 4.6 Consider the following puzzle:

bird(z) — fly(z),

penguin(z) — —fly(z),

penguin(z)— bird(z),

bird(Tweety), bird(Fred), penguin(Tweety).
We denote the above knowledge-base by KB, and ab-
breviate the predicates bird, penguin, and fly by b,

8 As usual, [ denotes the complement of I, and KB =%
denotes that VM € mod(KB) M () is designated.

p, and f (respectively).® Also, T, F will stand for the
individuals Tweety and Fred. KB has three mcms (see
Figure 2), and each mcm has a set that is associated
with it:

b(F) f(F)

5(T)
¢
¢
T

=

f(T)
T
¢
f

=
N

mecm
M1
M2
M3

Figure 2: The mcms of KB

Sui(KB) = KBY \ {¢ e KBV | f(T)c A(¢)}
Smz(KB) = KBV \ {¢ ¢ KBV | p(T)c A(¥)}
Suz(KB) = KBY \ {¢ € KBY | b(T)c A(¢)}

KB is obviously inconsistent, so it is useless as far
as classical logic is concerned. Nevertheless, the am-
biguous data is related only to the information about
Tweety. |y “salvages” the consistent part of KB, and
allows us to draw nontrivial conclusions about Fred,
despite the inconsistency:

KBEwb(F), KBl f(F), KB —p(F),
KBty ~b(F), KBfw —f(F), KBy p(F).

Since the information about Tweety is inconsistent, so
Ew does not allow us to infer nontrivial conclusions
about Tweety. We claim, however, that this state of
things is due to the fact that the actual representation
of the problem does not properly reflect our intuitive
understanding of this particular puzzle: According to
the above representation every rule is given the same
importance. In this case, however, we give higher pri-
orities to the second and the third rules than to the
first rule. This is because the former rules are more
specific and unlike the latter one they do not have ex-
ceptions. In other words, we claim that a more accu-
rate representation of this problem should be accom-
panied with some mechanism for making precedences
among the rules. In our case this is a ranking function
r. A possible ranking of KB is the following:

r(b(T)) = r(b(F)) = r(p(T)) = 1,

r(p(z) == f(z)) = r(p(z) = b(z)) = 2,

r(b(z)— f(z)) = 3.
~ Note that the symbol f has double meanings here: ab-
breviating the predicate fly, and representing the truth

value false. Each occurance of f will be understood by
the context.



By Proposition 4.11 below it follows that the optimal
recovery level when the preference criteria is either <;
or <cc is % =2. In this case,

KB = {b(T),b(F), p(T), p(z) =~ f(z), p(z) = b(z)}.

The most consistent models of KBy are given in the
table of Figure 3.

mem | b(T) | p(T) | f(T) | b(F) | p(F) | f(F)
NI ¢ ¢ f ¢ f f
N2 ¢ ¢ f ¢ f ¢
N3 ¢ ¢ f ¢ f 1
N4 ¢ ¢ f ¢ ¢ f
N5 ¢ ¢ f ¢ 1 f

Figure 3: The mcms of KB,

Since Syy = KBY \ {b(T)— f(T)}, while Sppn =Sns =
Swa = Sws = KBV \ {8(T) — f(T), b(F) — f(F)}, it
follows that W, (KB) = {Sn2(KB)}. Thus, according
to E<..w and E<_,w one can deduce that Tweety is
a bird, a penguin,_and cannot fly, while Fred is a bird
that can fly and it is not a penguin. The converse
assertions are not deducible, as expected. It also can
be shown that the same conclusions are obtained by

F<..w and by F<,w.
4.3 Basic properties of =<y

First we show that =<y is an extension of =yy:

Proposition 4.7 If all the clauses in KB have the
same priority, then KB =< ¢ iff KB =y 9.

Proof: Immediate from Corollary 3.6 and Definition
4.3, since in this case KB=KB;. O

Some basic properties of =y remain valid also in the
case of F=<wy:

Proposition 4.8 If KB is consistent then KB =<y %
iff KB4,

Proof: Let n be the maximal rank in KB. If KB is
consistent then the optimal recovery level w.r.t. either
<sc, <gi» <cc, or < is n, and KB, = {KB}. The
claim now immediately follows from Definition 4.5. O

By the last proposition and Lemma 2.9 it follows that
if KB is consistent and % is a clause that is not a
classical tautology, then KB =<y ¢ iff ¥ classically
follows from KB. -

Proposition 4.9 =«yy is nonmonotonic and para-
consistent.

Proof: The same as that of Proposition 3.10, with »
s.t. either »(p) >7(q) or r(—g)>r(g). O

Proposition 4.10 Let 79 be the optimal recovery
level of KB w.r.t. <. If Wy, # 0 and KB =<y ¥

then KB %SW -,

Proof: The same as that of Proposition 3.13, replac-
ing W(KB) with W, (KB). O

In the rest of this paper, unless otherwise stated, we
will use either <. or <. as the preference criterion,
and so =<y will abbreviate either =« w or E<_w.
Also, %o will henceforth denote the optimal recovery
level w.r.t. either one of these criteria. Finally, in
what follows we assume that the set of the assertions
with the highest priority (i.e. KBj) is consistent.

Proposition 4.11 [1] io=max{i | KB; is consistent}.

Proposition 4.12 Let S€W;,(KB). Then there is a
(most) consistent model M of KB;, s.t. S=KB;, U
Sy (KB\KB;,).

Proof: By Definition 4.3, S =S (KB) for some M €
mcm(KBiD). Thus, §= SM(KBiD) @] SM(KB\KBiD).
But by Proposition 4.11 KB;, is consistent, and so
Sm(KBi,) = KB;,. It follows, therefore, that S =
KB;, U SM(KB\KBiD). O

Definition 4.13 Con; (KB)=({S | S€W,,(KB)}.

Proposition 4.14 Let ¢ be a clause that does not
contain any atomic formula and its negation.

a) If KBiD 'Z4¢ then KB ':<W ’L,b

b) If Con;,(KB) 4 then KB <y 9.

Proof: First note that since there are no tautologies
w.r.t. =4, the conditions of parts (a) and (b) as-
sure (respectively) that KB;, #0 and Con;,(KB)#0.
Now, part (a) follows from Proposition 4.12, since
VS € W,;,(KB) KB;, C §. Thus, since KB;, =4 ¢
then by Corollary 2.11, VS € W; (KB) S =4 9. The

proof of part (b) is similar, and follows from the fact

that YSeW,,(KB) Con;,(KB)CS. O

By Proposition 4.14 it follows that =« _w and E<_w
preserve the semantics of the clauses with the io-
highest priorities (see also Corollary 4.16 below). In
addition, it is possible to deduce conclusion that are
based on assertions with lower priorities than the op-
timal recovery level, provided that they are not in-
volved in any conflict. In Example 4.6, for instance,
b(z) — f(z) cannot be inferred in general, since it is
causes conflicts when z = Tweety. However, the in-
stance b(F) — f(F) is deducible, since it does not
harm the consistency of any possible world setting. In
particular this shows that =<y does not suffer from
the so called “drowning effect” (see Subsection 5.2 be-
low).



Corollary 4.15 Suppose that 1 € Con;,(KB). Then
KB %SW =1,

Proof: Follows from Propositions 4.14(b) and 4.10. O
Corollary 4.16 If ¢ € KB;, then KB |« —%.

Proof: By Corollary 4.15 and the fact that KB;, C
Con;,(KB) (see Proposition 4.12). O

5 Related systems

5.1 Coherent approaches for restoring
consistency

In order to make inferences from a given knowledge-
base, the method presented here considers all the
possible worlds that plausibly represent the intended
meaning of KB. In [1, 3, 4], on the other hand, only
one such world is chosen. This world is considered as
the “recovered” version of the “polluted” knowledge-
base. Since the recovered knowledge-base is (classi-
cally) consistent, it is possible to draw nontrivial clas-
sical conclusions from it. In particular, every conclu-
sion that is deducible by =y is also valid according
the approach taken in [3, 4], and every conclusion that
is drawn by |E<w is valid according to the approach
of [1]; The opposite directions are obviously not true.

The main difference between the approach of [1, 3, 4]
and the present one concerns with the way that they
refer to contradictory data: The present approach ac-
cepts inconsistency and tries to cope with it. This ap-
proach allows us to make nontrivial conclusions from
an inconsistent theory without throwing pieces of in-
formation away. The approach of [1, 3, 4] is sometimes
called coherent. It revises inconsistent information and
restores consistency. Thus, contradictory data is con-
sidered useless, and only a consistent part of the orig-
inal information is used for making inferences. See [9]
for a survey of coherent techniques for reasoning with
prioritized knowledge-bases.

5.2 The possibilistic approach

In [10, 12] Benferhat et al. present a well-known ap-
proach for reasoning with inconsistency in prioritized
knowledge-bases, called possibilistic logic. Briefly, the
idea is to consider a consistent subset m(KB) of KB,
so that in terms of Notation 4.2 m(KB)= KB;, where
1 1s the maximal index for which KB; is classically
consistent (in the extreme cases, 7(KB)=10 if KB, is
classically inconsistent, and m(KB)= KB if the whole
knowledge-base is classically consistent). A formula 1
is a possibilistic consequence of KB (KB = 9) if it
classically follows from n(KB).

Proposition 5.1 Suppose that KB; is consistent,
and let 9 be a clause that does not have an atomic for-
mula and its negation. If KB |=x ¢ then KB <y ¢.1°

Proof: If KB =, ¢ then n(KB) F29. But by Proposi-
tions 2.6 and 4.11 m(KB)=KB;,, so KB;, =2%. Since
1 is not a classical tautology and KB;, is consistent
(Proposition 4.11), then by Lemma 2.9 KB;, =4 %.
Hence, by Proposition 4.14(a), KB =<y %. O

The other direction of the last proposition is not true.
This follows from the fact that unlike the case of =<y,
the possibilistic consequence relation has the so called
“drowning problem” [9, 10]: Formulae with ranks that
are greater than the inconsistency level are inhibited
even if they are not involved in any conflict. We
demonstrate this phenomenon in the following exam-
ple:

Example 5.2 Consider again the knowledge-base of
Example 3.4, and suppose that r(—pvV—g¢)=1, r(p) =2,
r(¢) =3, r(h) = 4. Then n(KB)={-pV—q, p}, and
so according to the possibilistic approach A is not a
consequence of KB, even though it is not involved in
the inconsistency. As Proposition 4.14(b) shows, this
is not the case with =«w: Since h€ Cony(KB), then
Cony(KB) =4 h, and so KB FE<w h.

6 Conclusion and further work

In this paper we have considered a logic for rea-
soning with incomplete and inconsistent knowledge-
bases. The corresponding consequence relation, Fwy,
is nonmonotonic, paraconsistent, and allows to draw
conclusions that are not involved in any conflict in
the knowledge-base. In practice, this means that in
case that a small portion of a large knowledge-base
is contradictory, one would still be able to draw non-
trivial conclusions based on the “robust” part of the
knowledge-base, and so the inference process will not
be damaged by the “spoiled” data.

In the second part of the paper we considered cases in
which the formulae of the knowledge-bases are ranked.
This additional information allowed us to refine the
inference procedure so that we also draw conclusions
with contradictory data, provided that this data has a
sufficiently high priority.

The formalisms presented here are based on a four-
valued semantics, which is particularly suitable for rea-
soning with uncertainty, since it contains truth values
that can be viewed as representing lack of information
and too much information. The next natural step is to
allow more than just four values. This will allow us,

""Recall that =<w stands here for either =< w or
F<aw-



e.g., to use truth values that represent probabilities,
confidence factors, etc. One possible way of doing so is
to use bilattices [16, 17] (see also [2, 13, 14]), which are
algebraic structures that naturally generalize FOUR.
The idea is to consider arbitrary number of truth val-
ues, and to arrange them (as in FOUR) in two closely
related partial orders, each forming a lattice. Such
extensions will be considered in a future work.
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