
Context-Aware Distance Semantics for
Inconsistent Database Systems

Anna Zamansky1, Ofer Arieli2, and Kostas Stefanidis3

1 Department of Information Systems, University of Haifa, Israel
annazam@is.haifa.ac.il

2 School of Computer Science, The Academic College of Tel-Aviv, Israel
oarieli@mta.ac.il

3 Institute of Computer Science, Foundation for Research and Technology
Hellas (FORTH), Greece
kstef@ics.forth.gr

Abstract. Many approaches for consistency restoration in database sys-
tems have to deal with the problem of an exponential blowup in the
number of possible repairs. For this reason, recent approaches advocate
more flexible and fine grained policies based on the reasoner’s preference.
In this paper we take a further step towards more personalized inconsis-
tency management by incorporating ideas from context-aware systems.
The outcome is a general distance-based approach to inconsistency main-
tenance in database systems, controlled by context-aware considerations.

1 Introduction

Inconsistency handling in constrained databases is a primary issue in the context
of consistent query answering, data integration, and data exchange. The standard
approaches to this issue are usually based on the principle of minimal change,
aspiring to achieve consistency via a minimal amount of data modifications (see,
e.g., [2, 7, 10]). A key question in this respect is how to choose among the different
possibilities of restoring the consistency of a database (i.e., ‘repairing’ it).

Earlier approaches to inconsistency management were based on the assump-
tion that there should be some fixed, pre-determined way of repairing a database.
Recently, there has been a paradigm shift towards user-controlled inconsistency
management policies. Works taking this approach provide a possibility for the
user to express some preference over all possible database repairs, preferring
certain repairs to others (see [18] for a survey and further references). While
such approaches provide the user with flexibility and control over inconsistency
management, in reality they entail a considerable technical burden on the user’s
shoulders of calibrating, updating and maintaining preferences or policies. More-
over, in many cases these preferences may be dynamic, changing quickly on the
go (e.g., depending on the user’s geographical location). In the era of ubiquitous
computing, users want easy – and sometimes even fully automatic – inconsis-
tency management solutions with little cognitive load, while still expecting them

to be personalized to their particular needs. This leads to the idea of introducing
context-awareness into inconsistency management.

Context-awareness is defined as the use of contexts to provide task-relevant
information and services to a user (see [1]). We believe that inconsistency man-
agement has natural relations to the concept of context. To capture this idea,
we incorporate notions and techniques that have been studied by the context-
aware computing community to consistency management for database systems,
by combining the following two ingredients:

– Distance-based semantics for restoring the consistency of inconsistent databases
according to the principle of minimal change, and

– Context-awareness considerations for incorporating user preferences.

Example 1. Let us consider the following simple database instance:

empNum name address salary

1 John Tower Street 3, London, UK 70K$
1 John Herminengasse 8, Wien, AT 80K$
2 Mary 42 Street 15, New York, US 90K$

Two functional dependencies that may be violated here are empNum → address
and empNum → salary. Thus, a database with the above relation and integrity
constraints is not consistent. Minimal change considerations (which will be ex-
pressed in what follows by distance functions) imply that it is enough to delete
either the first or the second tuple for restoring consistency. Now, the decision
which tuple to delete may be context-dependent . For instance, for tax assessments
tuples with higher salaries may be preferred, while tuples with lower salaries may
have higher priority when loans or grants are considered. The choice between
the first two tuples may also be determined by more dynamic considerations,
such as geographic locations, etc.

2 Inconsistent Databases and Distance Semantics

For simplicity of presentation, in this paper we remain on the propositional level
and reduce first-order databases to our framework by grounding them. In the
sequel, L denotes a propositional language with a finite set of atomic formulas
Atoms(L). An L-interpretation I is an assignment of a truth value in {T, F} to
every element in Atoms(L). Interpretations are extended to complex formulas
in L in the usual way, using the truth tables of the connectives in L. The set
of two-valued interpretations for L is denoted by ΛL. An interpretation I is a
model of an L-formula ψ if I(ψ) = T , denoted by I |= ψ, and it is a model of
a set Γ of L-formulas, denoted by I |= Γ , if it is a model of every L-formula in
Γ . The set of models of Γ is denoted by mod(Γ). We say that Γ is satisfiable if
mod(Γ) is not empty.

Definition 1. A database DB in L is a pair ⟨D, IC⟩, where D (the database
instance) is a finite subset of Atoms(L), and IC (the integrity constraints) is a
finite and consistent set of L-formulas.

The meaning of D is determined by the conjunction of its facts, augmented
with Reiter’s closed world assumption, stating that each atomic formula that
does not appear in D is false: CWA(D) = {¬p | p ̸∈ D}. Henceforth, a database
DB = ⟨D, IC⟩ will be associated with the theory ΓDB = IC ∪ D ∪ CWA(D).

Definition 2. A database DB is consistent iff ΓDB is satisfiable.

When a database is not consistent at least one integrity constraint is vio-
lated, and so it is usually required to look for “repairs” of the database, that is,
changes of the database instance so that its consistency will be restored. There
are numerous approaches for doing so (see, e.g., [2, 7, 10] for some surveys on this
subject). Here we follow the distance-based approach described in [3, 5], which we
find suitable for our purposes since it provides a modular and flexible framework
for a variety of methods of repair and consistent query answering. In the context
of database systems this approach aims at addressing the problem that when
DB is inconsistent mod(ΓDB) is empty, so reasoning with DB is trivialized. This
may be handled by replacing mod(ΓDB) with the set ∆(DB) of interpretations
that, intuitively, are ‘as close as possible’ to (satisfying) DB, while still satis-
fying the integrity constraints. When DB is consistent, ∆(DB) and mod(ΓDB)
coincide (see Proposition 3 below), which assures that distance-based semantics
is a conservative generalization of standard semantics for consistent databases.

In what follows, we recall the relevant definitions for formalizing the intuition
above (see also [3, 5]).

Definition 3. A pseudo-distance on a set U is a total function d : U×U → R+,
which is symmetric (for all ν, µ ∈ U , d(ν, µ) = d(µ, ν)) and preserves identity
(for all ν, µ ∈ U , d(ν, µ) = 0 if and only if ν = µ). A pseudo-distance d is called a
distance (metric) on U , if it satisfies the triangular inequality: for all ν, µ, σ ∈ U ,
d(ν, σ) ≤ d(ν, µ) + d(µ, σ).

Definition 4. A (numeric) aggregation function is a function f , whose domain
consists of multisets of real numbers and whose range is the real numbers, sat-
isfying the following properties:
1. f is non-decreasing when a multiset element is replaced by a larger element,
2. f({x1, . . . , xn}) = 0 if and only if x1 = x2 = . . . xn = 0, and
3. f({x}) = x for every x ∈ R.
An aggregation function f is hereditary , if f({x1, . . . , xn}) < f({y1, . . . , yn})
entails that f({x1, . . . , xn, z1, . . . , zm}) < f({y1, . . . , yn, z1, . . . , zm}).

In what follows we shall aggregate distance values. Since distances are non-
negative numbers, aggregation functions in this case include the summation and
the maximum functions, the former is also hereditary.

Example 2. One may define the following distances on ΛL:

dU (I, I
′) =

{
1 if I ̸= I ′,

0 otherwise.
dH(I, I ′) = | {p ∈ Atoms(L) | I(p) ̸= I ′(p)} |.

dU is sometimes called the uniform distance and dH is known as the Hamming
distance. More sophisticated distances are considered, e.g., in [5] and [12].

Definition 5. A distance setting (for a language L) is a pair DS = ⟨d, f⟩, where
d is a pseudo-distance on ΛL and f is an aggregation function.

The next definition is a common way of using distance functions for main-
taining inconsistent data (see, e.g, [15, 16]).

Definition 6. For a finite set Γ = {ψ1, . . . , ψn} of formulas in L, an interpre-
tation I ∈ ΛL, and a distance setting DS = ⟨d, f⟩ for L, we denote: dDS(I, ψi) =
min{d(I, I ′) | I ′ |= ψi} and δDS(I, Γ) = f({dDS(I, ψ1), . . . , dDS(I, ψn)}).

Proposition 1. [3, 16] For every interpretation I ∈ ΛL and a distance setting
DS = ⟨d, f⟩, it holds that I |= ψ iff dDS(I, ψ) = 0 and I |= Γ iff δDS(I, Γ) = 0.

Definition 7. Given a database DB = ⟨D, IC⟩ in L and a distance setting
DS = ⟨d, f⟩ for L, the set of the most plausible interpretations of DB (with
respect to DS) is defined as follows:

∆DS(DB) =
{
I ∈ mod(IC) | I ′ ∈ mod(IC) =⇒

δDS(I,D ∪ CWA(D)) ≤ δDS(I
′,D ∪ CWA(D))

}
.

Note 1. Since IC is satisfiable, for every database DB = ⟨D, IC⟩ and a distance
setting DS for its language, it holds that ∆DS(DB) ̸= ∅.

Definition 8. Let DB = ⟨D, IC⟩ be a database and DS = ⟨d, f⟩ a distance
setting. We say thatR is a DS-repair of DB, if there is an I ∈ ∆DS(DB) such that
R = {p ∈ Atoms(L) | I(p) = T}. We shall sometimes denote this repair by R(I)
and say that it is induced by I (or that I is the characteristic model of R). The
set of all the DS-repairs is denoted by RepairsDS(DB) = {R(I) | I ∈ ∆DS(DB)}.

An alternative characterization of the DS-repairs of DB is given next:

Proposition 2. Let DB = ⟨D, IC⟩ be a database and DS = ⟨d, f⟩ a distance
setting. Let IS be the characteristic function of S ⊆ Atoms(L) (that is, IS(p) = T
if p ∈ S and IS(p) = F otherwise). The DS-inconsistency value of S is:

IncDS(S) =

{
δDS(IS ,D ∪ CWA(D)) if IS ∈ mod(IC),
∞ otherwise.

Then R ⊆ Atoms(L) is a DS-repair of DB iff its DS-inconsistency value is
minimal among the DS-inconsistency values of the subsets of Atoms(L).

Proof. LetR ⊆ Atoms(L) such that IncDS(R) ≤ IncDS(S) for every S ⊆ Atoms(L).
Since IC is satisfiable, IncDS(R) < ∞, and so IR ∈ mod(IC). Let now R′ be a
DS-repair of DB. Then there is an element I ′ ∈ ∆DS(DB) such that R′ = {p ∈
Atoms(L) | I ′(p) = T}. But δDS(IR,D ∪ CWA(D)) ≤ δDS(I

′,D ∪ CWA(D)), and
so IR ∈ ∆DS(DB) as well, which implies that R is a DS-repair of DB.

For the converse, let R be a DS-repair of DB and let S ⊆ Atoms(L). We have
to show that IncDS(R) ≤ IncDS(S). Indeed, if IS ̸∈ mod(IC) then IncDS(S) = ∞
and so the claim is obtained. Otherwise, both IR and IS are models of IC,
and since R is a DS-repair of DB, IR ∈ ∆DS(DB). It follows that δDS(IR,D ∪
CWA(D)) ≤ δDS(IS ,D ∪ CWA(D)) and so IncDS(R) ≤ IncDS(S). �

By Proposition 1 and Definition 8, we also have the following result:

Proposition 3. Let DB = ⟨D, IC⟩ be a database and DS a distance setting.
The following conditions are equivalent: (1) DB is consistent, (2) ∆DS(DB) =
mod(ΓDB), (3) RepairsDS(DB) = {D}, (4) The DS-inconsistency value of every
DS-repair of DB is zero.

Example 3. Let us return to the database in Example 1. The projection of the
database table on the attributes id and salary is: {⟨1, 70K$⟩, ⟨1, 80K$)⟩, ⟨2, 90K$⟩}.
After grounding the database and representing the tuple ⟨empNum, salary⟩ by a

propositional variable TempNum
salary , we have:

D ∪ CWA(D) =
{
T1
70K$,T

1
80K$,¬T

1
90K$,¬T

2
70K$,¬T

2
80K$,T

2
90K$

}
,

and the functional dependency empNum → salary is formulated as follows:

IC =
{
Tx
y → ¬Tx

z | y ̸= z, y, z ∈ {70K$, 80K$, 90K$}, x ∈ {1, 2}
}
.

Using the distance dH from Example 2 and f = Σ, we compute:

I dH(I,T1
70) dH(I,T1

80) dH(I,¬T1
90) dH(I,¬T2

70) dH(I,¬T2
80) dH(I,T2

90) δdH,Σ(I, ΓDB)

∅ 1 1 0 0 0 1 3
{T1

70} 0 1 0 0 0 1 2
{T1

80} 1 0 0 0 0 1 2
...

{T1
70,T

2
90} 0 1 0 0 0 0 1

{T1
80,T

2
90} 1 0 0 0 0 0 1

...

It follows that ∆⟨dH ,Σ⟩(DB) = {I1, I2} and RepairsDS(DB) = {R(I1),R(I2)},
where R(I1) = {T1

70,T
2
90} and R(I2) = {T1

80,T
2
90}}. Thus, only T2

90 holds in all
the repairs of DB, that is, only the salary of employee 2 is certain.

3 Context-Aware Inconsistency Management

3.1 Context Modeling

As defined in [1], “Context is any information that can be used to characterize
the situation of an entity. An entity is a person, place or object that is considered
relevant to the interaction between a user and an application, including the user
and application”. This notion has been found useful in several domains, such as
machine learning and knowledge acquisition (see, e.g., [8, 9]). We shall consider as
a context any data that can be used to characterize database-related situations,
involving database entities, user contexts and preferences, etc. [11]. There is a
wide variety of methods for modeling contexts. Here we follow the data-centric
approach introduced in [20], and refer to contexts using a finite set of special
purpose variables (which may not be part of the database).

Definition 9. A context environment (or just a context) C is a finite tuple of
variables ⟨c1, . . . , cn⟩, where each variable ci (1 ≤ i ≤ n) has a corresponding
range Range(ci) of possible values. A context state for C (a C-state, for short)
is an assignment S such that S(ci) ∈ Range(ci). The set of context states is
denoted by States(C).

Intuitively, a context environment C represents the parameters that may be
taken into consideration for the database inconsistency maintenance.

We are now ready to incorporate context-awareness into distance consid-
erations. We do so by making the ‘most plausible’ interpretations in DB, the
elements in ∆DS(DB), sensitive to context , in the sense that more ‘relevant’
formulas have higher impact on the distance computations than less ‘relevant’
formulas. Thus, while we still strive to minimize change, the latter will be mea-
sured in a more subtle, context-aware way.

Definition 10. A relevance ranking for a set Γ of formulas and a context en-
vironment C, is a total function R : Γ × States(C) → (0, 1].

Given a set Γ and a context environment C, a relevance ranking function
for Γ and C assigns to every formula ψ ∈ Γ and every state S of C a (pos-
itive) relevance factor R(ψ, S) indicating the relevance of ψ according to S.
Intuitively, higher values of these factors correspond to higher relevance of their
formulas, which makes changes to these formulas in computing database repairs
less desirable.4

Definition 11. A context setting for a set of formulas Γ is a triple CS(Γ) =
⟨C, S,R⟩, where C is a context environment, S ∈ States(C) is a C-state, and R
is a relevance ranking function for Γ and C. In what follows we shall sometimes
denote by CS(L) a context setting CS(Γ) in which Γ is the set of all the well-
formed formulas of L.

Consistency restoration for databases can now be defined as before (see Def-
initions 6 and 7), except that the underlying distance setting DS = ⟨d, f⟩ should
now be context-sensitive in the sense that dDS preserves the order induced by
ranking in the following way:

Definition 12. Let CS(L) = ⟨C, S,R⟩ be a context setting for a language L.
A distance setting DS = ⟨d, f⟩ is called CS-sensitive, if for every two atomic
formulas p1 and p2 such that R(p1, S) > R(p2, S), it holds that dDS(I2, p1) >
dDS(I1, p2) for every I1 ∈ mod(p1) \mod(p2) and I2 ∈ mod(p2) \mod(p1).

Clearly, Proposition 3 holds also for context-sensitive distance settings.

Next, we demonstrate the effect of incorporating context sensitive distance
settings on inconsistency management.

Proposition 4. Let DB = ⟨D ⊔ {p1, p2}, IC⟩ be a database5, CS = ⟨C, S,R⟩ a
context setting and DS = ⟨d, f⟩ a CS-sensitive distance setting in which f is
hereditary. If R(p1, S) > R(p2, S), for every D′ ⊆ Atoms(L) \ {p1, p2} such that
D′ ⊔ {p1} |= IC, the DS-inconsistency value of D1 = D′ ⊔ {p1} is smaller than
the DS-inconsistency value of D2 = D′ ⊔ {p2}.
4 Relevance factors may be thought of as a context-dependent interpretation of weights
in prioritized theories (see, for example, [4]).

5 We denote by D ⊔ {p1, p2} the disjoint union of D and {p1, p2}.

Proof. Let D′ ⊆ Atoms(L) \ {p1, p2} and D1 = D′ ∪ {p1}. Since D1 |= IC, we
have that IncDS(D1) < ∞. Thus, IncDS(D1) < IncDS(D2) whenever D2 ̸|= IC.
Suppose then that D2 |= IC as well. In this case, in the notations of Propo-
sition 2, we have that ID1 and ID2 differ only in the assignments for p1 and
p2 (I.e., ID1 satisfies p1 and falsifies p2 while ID2 satisfies p2 and falsifies p1.
Elsewhere, both interpretations are equal to ID′). Now, since DS is CS-sensitive,
by the facts that (i) R(p1, S) > R(p2, S), (ii) ID1 ∈ mod(p1) \ mod(p2) and
(iii) ID2

∈ mod(p2) \ mod(p1), we have that dDS(ID1
, p2) < dDS(ID2

, p1). Let
D∪CWA(D⊔{p1, p2}) = {ψ1, . . . , ψn}. By the assumption that f is hereditary,

IncDS(D1) = δDS(ID1 ,DB) =
f({dDS(ID1 , ψ1), . . . , dDS(ID1 , ψn), dDS(ID1 , p1), dDS(ID1 , p2)}) =
f({dDS(ID1 , ψ1), . . . , dDS(ID1 , ψn), 0, dDS(ID1 , p2)}) =
f({dDS(ID2 , ψ1), . . . , dDS(ID2 , ψn), 0, dDS(ID1 , p2)}) <
f({dDS(ID2 , ψ1), . . . , dDS(ID2 , ψn), 0, dDS(ID2 , p1)}) =
f({dDS(ID2 , ψ1), . . . , dDS(ID2 , ψn), dDS(ID2 , p2), dDS(ID2 , p1)}) =
δDS(ID2 ,DB) = IncDS(D2). �

It follows that when context-sensitive distances are incorporated, “more rel-
evant” formulas are preferred in the repairs. This is shown next.

Corollary 1. Let DB = ⟨D ⊔ {p1, p2}, IC⟩ be a database, CS = ⟨C,S,R⟩ a con-
text setting and DS = ⟨d, f⟩ a CS-sensitive distance setting in which f is heredi-
tary. If DB1 = ⟨D ⊔ {p1}, IC⟩ is a consistent database, R(p1, S) > R(p2, S), and
IC ∪ {p1, p2} is (classically) inconsistent, then no DS-repair of DB contains p2.

Corollary 1 can be generalized as follows:

Corollary 2. Let DB = ⟨D, IC⟩ be a database, CS = ⟨C, S,R⟩ a context setting
and DS = ⟨d, f⟩ a CS-sensitive distance setting in which f is hereditary. Suppose
that D = D′⊔D′′ can be partitioned to two disjoint nonempty subsets D′ and D′′

such that (1): DB′ = ⟨D′, IC⟩ is a consistent database, (2): ∀p′′ ∈ D′′ ∃p′ ∈ D′

such that IC∪{p′, p′′} is not consistent, and (3): ∀p′ ∈ D′ and ∀p′′ ∈ D′′ it holds
that R(p′, S) > R(p′′, S). Then for every DS-repair R of DB, R∩D′′ = ∅.

3.2 A Simple Construction of Context-Sensitive Distance Settings

Below we provide a concrete method for defining context-sensitive distance set-
tings and exemplify some of the properties of the settings that are obtained.

Definition 13. Let CS(L) = ⟨C, S,R⟩ be a context setting for L and let g be
an aggregation function. The (pseudo) distance dCSg on ΛL is defined as follows:

d CS
g (I, I ′) = g({R(p, S) · |I(p)− I ′(p)| | p ∈ Atoms(L)}).

It is easy to verify that for any CS and g, the function dCSg is a pseudo-
distance on ΛL. In particular, for any context setting CS(L) = ⟨C, S,R⟩ where
R is uniformly 1, dCSΣ coincides with the Hamming distance dH in Example 2.
The next proposition provides a general way of constructing context-sensitive
distance settings, based on the functions in Definition 13.

Proposition 5. Let CS = ⟨C,S,R⟩ be a context setting and let DS = ⟨dCSg , f⟩
be a distance setting, where g is a hereditary. Then DS is CS-sensitive.

Proof. Let p1 and p2 be atomic formulas such that R(p1, S) > R(p2, S), and
let I1 ∈ mod(p1) \ mod(p2) and I2 ∈ mod(p2) \ mod(p1). Below, we denote
g(0, x) = g({0, . . . , 0, x, 0, . . . , 0}). By Definition 6,

dDS(I1, p2) = min{d CS
g (I1, J) | J |= p2}

= min{g({R(p, S) · |I1(p)− J(p)| | p ∈ Atoms(L)}) | J |= p2}.
Since g is hereditary, the minimum above must be obtained for a model J of p2
that coincides with I1 on every atom p ̸= p2. It follows, then, that dDS(I1, p2) =
g(0, R(p2, S)). By similar considerations, dDS(I2, p1) = g(0, R(p1, S)). Now, since
R(p1, S) > R(p2, S) and since g is hereditary, dDS(I2, p1) > dDS(I1, p2). �

The next proposition demonstrates how CS-sensitive distance settings of the
form defined above give precedence to “more relevant” facts.

Proposition 6. Let CS = ⟨C,S,R⟩ be a context setting and let DS = ⟨dCSg , f⟩
be a distance setting, where g and f are hereditary aggregation functions. Let
DB = ⟨D ⊔ {p1, p2}, IC⟩ be a database such that:

1. R(p1, S) > R(p2, S) (i.e., p1 is more relevant than p2), and
2. IC ∪ {p1, p2} is not consistent but DB1 = ⟨D ⊔ {p1}, IC⟩ is consistent6.

Then ∆DS(DB) = {I1}, where I1 is the (unique) model of DB1.

Proof. Again, we denote: g(0, x) = g({0, . . . , 0, x, 0, . . . , 0}). Then, for all p, I,

dDS(I, p) =

{
0 if I |= p,
g(0, R(p, S)) otherwise.

Suppose that D∪CWA(D⊔{p1, p2}) = {ψ1, . . . , ψn}. Let I ∈ ∆DS(DB) and I1 ∈
mod(ΓDB1

) (Such a model exists, since DB1 is consistent). By Corollary 1, since
DS is CS-sensitive (Proposition 5), I ̸|= p2, and so dDS(I, p2) = g(0, R(p2, S)).
Now,

δDS(I,DB) = f({dDS(I, ψ1), . . . , dDS(I, ψn), dDS(I, p1), dDS(I, p2)}) =
f({dDS(I, ψ1), . . . , dDS(I, ψn), dDS(I, p1), g(0, R(p2, S))}).

and so, since f is non-decreasing,

δDS(I,DB) ≥ f({0, . . . , 0, 0, g(0, R(p2, S))) =
f({dDS(I1, ψ1), . . . , dDS(I1, ψn), dDS(I1, p1), dDS(I1, p2)}) =
δDS(I1,DB).

Thus, I1 ∈ ∆DS(DB). On the other hand, if there is some q ∈ {ψ1, . . . , ψn, p1}
for which dDS(I, q) ̸= 0, then since f is hereditary the above inequality becomes
strict, which contradicts the assumption that I ∈ ∆DS(DB). It follows that for
every q ∈ {ψ1, . . . , ψn, p1} dDS(I, q) = dDS(I1, q) = 0, i.e., I |= q. One concludes,
then, that I is a model of DB1, that is, I = I1. �

Proposition 6 may be extended in various ways. Below is one such extension.

6 DB2 = ⟨D ⊔ {p2}, IC⟩ may be consistent as well, but this is not a prerequisite.

Proposition 7. Let DB = ⟨D, IC⟩ CS = ⟨C, S,R⟩ and DS = ⟨dCSg , f⟩, where g
and f are hereditary aggregation functions. Suppose that D can be partitioned to
two nonempty subsets D′ and D′′, such that

1. DB′ = ⟨D′, IC⟩ is a consistent database,
2. ∀p′′ ∈ D′′ ∃p′ ∈ D′ s.t. IC ∪ {p′, p′′} is not consistent, and
3. ∀p′ ∈ D′ and ∀p′′ ∈ D′′, R(p′, S) > R(p′′, S).

Then ∆DS(DB) = {I ′}, where I ′ is the (unique) model of DB′.

Proof. The proof is similar to that of Proposition 6. We omit the details. �

Example 4. Consider again the database in Example 1. By Example 3, the dis-
tance setting DS = ⟨dH , Σ⟩ leads to the following two equally good repairs:

Repair 1 : Repair 2 :
eNum name address salary

1 John ..., UK 70K$
2 Mary ..., US 90K$

eNum name address salary

1 John ..., AT 80K$
2 Mary ..., US 90K$

Sensitivity to context may differentiate between these repairs, preferring one to
another. Let us again denote by T1

UK, T
1
AT and T2

US the tuple according to which
John lives in the UK and is payed 70K$, John lives in Austria and is payed
80K$, and the tuple with the information about Mary.

Now, consider the context setting CS(L) = ⟨C,S,R⟩ and the distance set-
ting DS = ⟨dCSΣ , Σ⟩, where C = {country}, Range(country) = {US,UK,AT},
S(country) = UK, and the relevance ranking is given by the following functions:

R(Ti
c, S) =

{
1, if c = S(country),

0.5, otherwise.
R(¬Ti

c, S) =

{
0.5, if c = S(country),

1, otherwise.

Computation of ∆DS is given below (where we abbreviate d(ψ, S) for dCSΣ (ψ, S)).

I d(I,T1
UK,S) d(I,T1

AT,S) d(I,¬T1
US,S) d(I,¬T2

UK,S) d(I,¬T2
AT,S) d(I,T2

US,S) δDS(I, Γ, S)
∅ 1 0.5 0 0 0 0.5 2

{T1
UK} 0 0.5 0 0 0 0.5 1

{T1
AT} 1 0 0 0 0 0.5 1.5

{T1
US} 1 0.5 1 0 0 0.5 3
...

{T1
UK,T

2
US} 0 0.5 0 0 0 0 0.5

{T1
AT,T

2
US} 1 0 0 0 0 0 1

...

According to CS, the single element in ∆DS(DB) satisfies {T1
UK,T

2
US}, and so

Repair 1 is preferred. Dually, in a state S′ where S′(country) = AT, Repair 2 is
preferred. Thus, context-aware considerations lead us to choose different repairs
according to the relevance ranking, as indeed guaranteed by Propositions 6 and 7.

4 Conclusion

As observed in [13], contexts have largely been ignored by the AI community.
In the database community context awareness has only recently been addressed
in relation to user preference in querying (consistent) databases [17, 19]. To the

best of our knowledge, the approach presented here is the first one to combine in-
consistency management with context-aware considerations. Combined with the
extensive work available on personalization and automatically determining user’s
context and preferences (see, e.g., [6, 14]), it may open the door to new inconsis-
tency management solutions and novel database technologies. Implementation
and evaluation of the methods in this paper is currently a work in progress.

References

1. G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith, and P. Steggles.
Towards a better understanding of context and context-awareness. In Handheld
and Ubiquitous Computing, pages 304–307. Springer, 1999.

2. M. Arenas, L. Bertossi, and J. Chomicki. Answer sets for consistent query answer-
ing in inconsistent databases. TPLP, 3(4–5):393–424, 2003.

3. O. Arieli. Distance-based paraconsistent logics. International Journal of Approxi-
mate Reasoning, 48(3):766–783, 2008.

4. O. Arieli. Reasoning with prioritized information by iterative aggregation of dis-
tance functions. Journal of Applied Logic, 6(4):589–605, 2008.

5. O. Arieli, M. Denecker, and M. Bruynooghe. Distance semantics for database
repair. Annals of Mathematics and Artificial Intelligence, 50(3–4):389–415, 2007.

6. M. Baldauf, S. Dustdar, and F. Rosenberg. A survey on context-aware systems.
International Journal of Ad Hoc and Ubiquitous Computing, 2(4):263–277, 2007.

7. L. Bertossi. Consistent query answering in databases. SIGMOD Record, 35(2):68–
76, 2006.

8. C. Bolchini, C. Curino, G. Orsi, E. Quintarelli, R. Rossato, F. A. Schreiber, and
L. Tanca. And what can context do for data? Comm. ACM, 52(11):136–140, 2009.

9. P. Brézillon. Context in artificial intelligence: I. A survey of the literature. Com-
puters and Artificial Intelligence, 18(4), 1999.

10. J. Chomicki. Consistent query answering: Five easy pieces. In Proc. ICDT’07,
LNCS 4353, pages 1–17. Springer, 2007.

11. A. Dey. Understanding and using context. Personal and Ubiquitous Computing,
5(1):4–7, 2001.

12. T. Eiter and H. Mannila. Distance measure for point sets and their computation.
Acta Informatica, 34:109–133, 1997.

13. H. R. Ekbia and A. G. Maguitman. Context and relevance: A pragmatic approach.
In Modeling and Using Context, pages 156–169. Springer, 2001.

14. K. Henricksen and J. Indulska. Developing context-aware pervasive computing
applications: Models and approach. Pervasive and Mobile Comput., 2:37–64, 2006.

15. S. Konieczny, J. Lang, and P. Marquis. DA2 merging operators. Artificial Intelli-
gence, 157(1–2):49–79, 2004.

16. S. Konieczny and R. Pino Pérez. Merging information under constraints: A logical
framework. Logic and Computation, 12(5):773–808, 2002.

17. E. Pitoura, K. Stefanidis, and P. Vassiliadis. Contextual database preferences.
IEEE Data Engeneering Bulletin, 34(2):19–26, 2011.

18. S. Staworko, J. Chomicki, and J. Marcinkowski. Prioritized repairing and consistent
query answering in relational databases. Ann. Math. Artif. Intel., 64:209–246, 2012.

19. K. Stefanidis and E. Pitoura. Fast contextual preference scoring of database tuples.
In Proceedings of EDBT’2008, pages 344–355. ACM, 2008.

20. K. Stefanidis, E. Pitoura, and P. Vassiliadis. Managing contextual preferences.
Information Systems, 36(8):1158–1180, 2011.

