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We present a family of algebraic structures, called rectangular bilattices, which serve as
a natural accommodation and powerful generalization to both intuitionistic fuzzy sets
(IFSs) and interval-valued fuzzy sets (IVFSs). These structures are useful on one hand
to clarify the exact nature of the relationship between the above two common extensions
of fuzzy sets, and on the other hand provide an intuitively attractive framework for
the representation of uncertain and potentially conflicting information. We also provide

these structures with adequately defined graded versions of the basic logical connectives,
and study their properties and relationships. Application potential and intuitive appeal
of the proposed framework are illustrated in the context of preference modeling.
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1. Introduction

As is well-known, fuzzy logic is aimed at handling the concept of partial truth

between ‘completely true’ and ‘completely false’ by drawing truth degrees from the

unit interval [0,1] (or, more generally, from a complete lattice L, as in Goguen’s
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L-fuzzy logic 1). Its importance derives from the fact that most modes of human

reasoning and especially commonsense reasoning are approximate in nature rather

than exact.

Fuzziness, however, cannot adequately cover all the imperfections inherent to

real-life situations, since the ‘one-dimensional’ ordering of truth degrees cannot

cope with information deficiency (i.e., a lack or excess of information). In previous

papers 2,3,4, we have already argued that bilattices (due to Ginsberg 5 and then

Fitting 6,7,8,9) can be used to complement the common notion of graded truth (or

membership) from (L-)fuzzy set theory, with a notion of graded knowledge. In this

sense, bilattices offer a naturally attractive candidate framework for representing

graded, uncertain and potentially conflicting information, a claim that is supported

also in 10,11,12.

In this paper, we vindicate this thesis by showing that so-called rectangular

bilattices provide an elegant framework for bridging between intuitionistic fuzzy

sets (IFSs) 13 and interval-valued fuzzy sets (IVFSs) 14, which are two frequently

encountered and syntactically equivalent generalizations of Zadeh’s fuzzy sets. In

particular, we will show that Atanassov’s decision to restrict the evaluation set

for L-intuitionistic fuzzy sets to consistent couples of the “square” L2 forces the

resulting structure to coincide with the “triangle” I(L) (see Section 2.3).

In the sequel, the developed framework is equipped with suitable implementa-

tions for the common logical connectives of negation, conjunction, disjunction and

implication. We also demonstrate the robustness of our framework in the context

of preference modeling, and show that (rectangular) bilattices are useful not only

for encoding the problem statement, but also for its generic solution strategy.

The remainder of this paper is organized as follows: in Section 2 we recall some

basic definitions regarding the underlying structures of our framework, namely:

bilattices, rectangular bilattices, and derived from them squares and triangles. Then,

in Section 3, we show the relationships of these structures to intuitionistic fuzzy sets

and interval-valued fuzzy sets. In Section 4 we consider graded versions of the basic

logical connectives for reasoning with uncertainty in our setting, and in Section 5

we discuss the application potential of our framework in the context of modeling

imprecise preference information. Finally, in Section 6 we conclude.

2. Preliminaries

2.1. Bilattices

Definition 1. A bilattice 5 is a triple B = (B,≤t,≤k), where B is a nonempty set

containing at least two elements, and (B,≤t), (B,≤k) are complete lattices.1

1Structures that meet this definition are sometimes called pre-bilattices. In such cases the notion
‘bilattices’ is reserved for some particular type of pre-bilattices which is determined according to
the way the two partial orders are related; see Definition 2.
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The two partial orders ≤t and ≤k of bilattices intuitively represent differences

in the degree of truth and in the amount of knowledge/information (respectively),

conveyed by the assertions. In the sequel, following the usual notations for the basic

bilattice operations, we shall denote by ∧ (respectively, by ∨) the ≤t-meet (the

≤t-join) and by ⊗ (respectively, by ⊕) the ≤k-meet (the ≤k-join) of B. While the

meaning of ∧ and ∨ corresponds to the standard logical role of these operators,

the intuition behind ⊗ and ⊕ is somewhat less transparent. Fitting 9 calls them

consensus and gullibility operations, respectively, to indicate that x⊗ y is the most

information ‘agreed’ upon by x and y, while x ⊕ y includes everything accepted by

at least one of x and y.

We denote by f and t the ≤t-extreme elements, and ⊥, ⊤ denote the ≤k-extreme

elements of B. Intuitively, these elements can be perceived as ‘false’, ‘true’, ‘un-

known’ (i.e., neither true nor false) and ‘contradictory’ (both true and false), re-

spectively. Thus, for instance, f ≤t ⊥ since the ‘degree of truth’ of a statement

which is known to be false is smaller than that of a statement about which there

is no information whatsoever. On the other hand, ⊥ ≤k f , since knowing that a

statement is false is more informative than knowing nothing at all about it.

Clearly, the more interesting forms of bilattices are those in which the two partial

orders are related in one way or another. Below are some common types of such

relations:

Definition 2. Let B = (B,≤t,≤k) be a bilattice.

• B is called distributive 5 if all the (twelve) possible distributive laws con-

cerning ∧, ∨, ⊗, and ⊕ hold (for instance, a ∧ (b ⊕ c) = (a ∧ b) ⊕ (a ∧ c)).

• B is called interlaced 6 if each one of ∧, ∨, ⊗, and ⊕, is monotonic with

respect to both ≤t and ≤k (for instance, if a ≤k b then a ∧ c ≤k b ∧ c).

• B is a bilattice with a negation 5 if there exists a unary operation ¬ satis-

fying, for every x, y in B, (1) ¬¬x = x, (2) if x ≤t y then ¬x ≥t ¬y, and

(3) if x ≤k y then ¬x ≤k ¬y.

• B is a bilattice with a conflation 8 if there exists a unary operation −
satisfying, for every x, y in B, (1) −− x = x, (2) if x ≤k y then −x ≥k −y,

and (3) if x ≤t y then −x ≤t −y.

• B is called classical 15, if it has a negation ¬ and a conflation − that

commute, and for every x in B it holds that x ∨ −¬x = t.

Originally, Ginsberg considered bilattices with negations. In this case a negation

is an involution with respect to the lattice (B,≤t) and an order preserving operation

of the lattice (B,≤k). Conversely, a conflation is an involution of (B,≤k) and an

order preserving operation of (B,≤t). Following Ginsberg, Fitting introduced the

family of interlaced bilattices and showed their usefulness for logic programming

(see e.g. 6,7). It is easily verified that distributive bilattices are also interlaced. In

the context of fuzzy sets, interlaced bilattices have been considered, e.g., in 16.



November 23, 2006 13:48 WSPC/INSTRUCTION FILE n˙ijufks

4 Deschrijver, Arieli, Cornelis, Kerre

Example 1. Figure 1 depicts double-Hasse diagrams of a four-valued bilattice

FOUR (after Belnap’s four-valued structure 17,18) and a nine-valued bilattice

NINE that contains, in addition to the four basic elements of FOUR, elements for

representing true/false default assumptions (dt, df) for reasoning with lack of infor-

mation, conflict situations that are ‘biased’ for true or false (bt, bf) for reasoning

with too much information, and a neutral, middle element m (see 19,20 for a more

detailed discussion on these structures and their applications). Both these bilattices

are distributive, and so they are interlaced as well. Note that FOUR is classical,

while NINE is not. An example of a (distributive) bilattice with an infinite amount

of elements is ([0, 1]2,≤t,≤k), consisting of pairs of elements from the unit interval,

with ≤t and ≤k defined as

(x1, x2) ≤t (y1, y2) ⇔ x1 ≤ y1 and x2 ≥ y2,

(x1, x2) ≤k (y1, y2) ⇔ x1 ≤ y1 and x2 ≤ y2.

It is worth mentioning that in the context of fuzzy set theory, the ≤t-ordering of

this bilattice has been studied in 21,22 and its ≤k-ordering is considered in 23.
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Fig. 1. The bilattices FOUR and NINE

The following proposition recalls some important properties of bilattices.

Proposition 1.

• 5 Let B = (B,≤t,≤k) be a bilattice with a negation ¬. For all x, y in B:

(a) ¬(x ∧ y) = ¬x∨ ¬y, ¬(x ∨ y) = ¬x ∧¬y, ¬(x⊗ y) = ¬x⊗¬y, ¬(x⊕ y) =

¬x ⊕ ¬y.

(b) ¬f = t, ¬t = f , ¬⊥ = ⊥, ¬⊤ = ⊤.

• 8 Let B = (B,≤t,≤k) be a bilattice with a conflation −. For all x, y in B:

(a) −(x∧y) = −x∧−y, −(x∨y) = −x∨−y, −(x⊗y) = −x⊕−y, −(x⊕y) =

−x ⊗−y.

(b) −f = f , −t = t, −⊥ = ⊤, −⊤ = ⊥.
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2.2. Rectangular bilattices

Definition 3. Let L = (L,≤L) and R = (R,≤R) be two complete lattices. A

rectangular bilattice, shortly rectangle, is a structure L ⊙ R = (L×R,≤t,≤k),

where, for every x1, y1 in L and x2, y2 in R,

(1) (x1, x2) ≤t (y1, y2) ⇔ x1 ≤L y1 and x2 ≥R y2,

(2) (x1, x2) ≤k (y1, y2) ⇔ x1 ≤L y1 and x2 ≤R y2.

We say that a structure is rectangular if it is isomorphic to a rectangular bilat-

tice. An element (x1, x2) of a rectangle L ⊙R may intuitively be understood such

that x1 represents the amount of belief for some assertion, and x2 is the amount of

belief against it. In the context of fuzzy sets, this corresponds to Atanassov’s theory

of intuitionistic fuzzy sets 13, which extends standard fuzzy set theory so that any

element u in a universe U is assigned not only a membership degree, µA(u), but

also a non-membership degree νA(u), where both degrees are drawn from the unit

interval [0, 1] and satisfy the condition µA(u) + νA(u) ≤ 1. Rectangular bilattices

generalize this idea by not imposing the latter condition, by considering arbitrary

lattices (not only the unit interval), and by defining the membership function and

the non-membership function over potentially different ranges (see also Section 3

below).

Denote the join and meet operations of a complete lattice L = (L,≤L) by ∧L

and ∨L, respectively. Then, for every x1, y1 in L and x2, y2 in R, we have

(x1, x2) ∧ (y1, y2) = (x1 ∧L y1, x2 ∨R y2),

(x1, x2) ∨ (y1, y2) = (x1 ∨L y1, x2 ∧R y2),

(x1, x2) ⊗ (y1, y2) = (x1 ∧L y1, x2 ∧R y2),

(x1, x2) ⊕ (y1, y2) = (x1 ∨L y1, x2 ∨R y2),

Moreover, denoting 0L = inf L and 1L = sup L, it holds that

⊥L⊙R = (0L, 0R), ⊤L⊙R = (1L, 1R), tL⊙R = (1L, 0R), fL⊙R = (0L, 1R).

It is easy to verify that a rectangular bilattice is indeed a bilattice (in the sense of

Definition 1). The next proposition summarizes some basic properties of rectangular

bilattices and shows their central role in the theory of bilattices:

Proposition 2.

a) 6 Every rectangular bilattice is interlaced.

b) 24 Every interlaced bilattice is rectangular.

c) 5 If L and R are distributive lattices then L ⊙R is a distributive bilattice.

d) 5,6 Every distributive bilattice is isomorphic to L ⊙ R for some distributive

lattices L and R.

In the context of item (b) of the proposition above, it is interesting to note that

every interlaced bilattice B = (B,≤t,≤k) is isomorphic to the structure L ⊙ R,
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where L = ({x | x ≥t ⊥}, ≤k) and R = ({x | x ≤t ⊥}, ≤k). These lattices are

unique up to an isomorphism (see 24). The same lattices may be used for item (d)

of the proposition above, together with the observation that if B is a distributive

bilattice, then L and R are necessarily distributive lattices.

2.3. Squares and triangles

An important family of rectangular bilattices are those in which L and R coincide.

These bilattices are called squares 2,3,21,22 and L ⊙ L is abbreviated by L2.

Example 2. The two bilattices shown in Figure 1 above are squares. In fact,

FOUR is isomorphic to L2
2, where L2 = ({0, 1},≤), and NINE is isomorphic

to L2
3, where L3 = (

{

0, 1

2
, 1

}

,≤), with ≤ in each case the usual ordering.

Again, it is easy to verify that every square L2 is interlaced, and that it is dis-

tributive when L is distributive. The following proposition shows that the converse

is also true.

Proposition 3. 24 Every interlaced bilattice with a negation is isomorphic to a

square, equipped with a negation ¬ defined, for every x, y in L, by ¬(x, y) = (y, x).

Remark 1. Proposition 3 implies the following two corollaries:

• Since every distributive bilattice is also interlaced, from Proposition 3 it follows

that distributive bilattices with a negation are isomorphic to squares.

• By Proposition 2 and Proposition 3, any rectangular bilattice with a negation

is isomorphic to a square.

In contrast to the previous proposition, the next one shows that squares are not

necessarily associated with classical bilattices (as we have seen, e.g., in the case of

NINE):

Proposition 4. Let L = (L,≤L) be a complete lattice with at least 3 elements and

let sup L = 1L and inf L = 0L, such that 1L is join irreducible.2 Then L2 is not

classical.

Proof. Consider some x in L different from 0L and 1L. Then: (0L, 0L) <k

(x, 0L) <k (1L, 0L). Hence, for any conflation − of L2, −(0L, 0L) >k −(x, 0L) >k

−(1L, 0L). Thus, (1L, 1L) >k −(x, 0L) >k (1L, 0L), and so −(x, 0L) = (1L, y) for

some y in L \ {0L, 1L}. But then, (1L, 1L) <t (1L, y) <t (1L, 0L). Hence, for any

negation ¬ of L2, (1L, 1L) = ¬(1L, 1L) >t ¬(1L, y) >t ¬(1L, 0L) = (0L, 1L). Thus,

¬ − (x, 0L) = ¬(1L, y) = (z, 1L) for some z in L \ {0L, 1L}. Since 1L is join-

irreducible, we obtain (x, 0L)∨¬− (x, 0L) = (x, 0L)∨ (z, 1L) = (x∨L z, 0L∧L 1L) 6=
(1L, 0L). Hence L2 is not classical.

2I.e., x ∨ y = 1L iff x = 1L or y = 1L.
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Corollary 1. Let L = (L,≤L) be a chain with at least 3 elements. Then L2 is not

classical.

The following family of related structures is due to Fitting 8.

Definition 4. Let L = (L,≤L) be a complete lattice, and let I(L) = {[x1, x2] |
(x1, x2) ∈ L2 and x1 ≤L x2}. A (bilattice-based) triangle is a structure I(L) =

(I(L),≤t,≤k), defined for every [x1, x2], [y1, y2] in I(L) as follows:

(1) [x1, x2] ≤t [y1, y2] ⇔ x1 ≤L y1 and x2 ≤L y2,

(2) [x1, x2] ≤k [y1, y2] ⇔ x1 ≤L y1 and x2 ≥L y2.

Note that, in fact, a triangle I(L) is not a bilattice, since the substructure

(I(L),≤k) is not a lattice (the supremum of any two elements does not necessarily

exist). Still, triangles are very much in the same spirit as bilattices, since the ≤k-

ordering also represents differences in the amount of information that each interval

exhibits. For this reason, I(L) is sometimes called a “≤k-lower pre-bilattice” 25 or

a “weak interlaced bilattice” 26.

Example 3. The triangles I(L2) and I(L3) are shown in Figure 2. It is easy to

see that, e.g., [0, 0] and [1, 1] have no common upper bound with respect to ≤k.
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Fig. 2. The triangles I(L2) and I(L3)

Definition 5. 8 Let B = (B,≤t,≤k) be a bilattice with a conflation −. An element

x in B is called exact w.r.t. this conflation if x = −x; it is consistent if x ≤k −x.

Intuitively, exact elements exhibit precise information about the underlying as-

sertions, while the consistent ones endorse unambiguous (non-contradictory) evi-

dence about their assertions.

Definition 6. Let − be a conflation of a bilattice B = (B,≤t,≤k). Denote by

C−(B) the substructure of B that consists of the consistent elements (w.r.t. −) of

B.
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The following proposition relates squares and triangles:

Proposition 5. 8 Suppose that L is a complete lattice with an involution N . Then

L2 has a conflation −N that is defined in terms of N , and it holds that I(L) is

isomorphic to C−N (L2).

In other words, Proposition 5 shows that the triangle I(L) is isomorphic to

the substructure of the square L2, consisting of the consistent elements of L2. The

isomorphism f between I(L) and C−N (L2) for the proposition above is given by

f([x1, x2]) = (x1,N (x2)).

In the next section we shall consider the consequences of Proposition 5 in the

context of fuzzy sets and some of their generalizations.

3. Relating Generalized Fuzzy Sets through Bilattices

In this section we elaborate on the observation given in 2 and 3, that the bilat-

tice structures considered in the previous section provide an elegant framework

for bridging between intuitionistic fuzzy sets (IFSs) and interval-valued fuzzy sets

(IVFSs). In particular, the syntactical equivalence of these two commonly encoun-

tered extensions of Zadeh’s fuzzy sets will be clarified.

The theory of intuitionistic fuzzy sets (IFS) 13 is an extension of Zadeh’s fuzzy set

theory 27, in which any element u in a universe U is assigned not only a membership

degree, µA(u), but also a non-membership degree νA(u), where both degrees are

drawn from the unit interval [0, 1]. While in fuzzy set theory always νA(u) = 1 −
µA(u), in IFS theory a weaker constraint is imposed: νA(u) ≤ 1 − µA(u).3 IFSs in

a universe U can also be regarded as a particular kind of L-fuzzy sets in the sense

of Goguen 1, i.e. as mappings from U into the complete lattice L∗, which is defined

as follows:

Definition 7. 29 Denote by L∗ = (L∗,≤L∗), where

• L∗ = {(x1, x2) | (x1, x2) ∈ [0, 1]2 and x1 + x2 ≤ 1}
• (x1, x2) ≤L∗ (y1, y2) iff x1 ≤ y1 and x2 ≥ y2.

Atanassov and Stoeva 30 introduced the following generalization of the IFS con-

struct, called an intuitionistic L-fuzzy set (ILFS).

Definition 8. Let L = (L,≤L) be a complete lattice with an involution N . An

intuitionistic L-fuzzy set in a universe U w.r.t. N is a mapping A from U to L2

such that if A(u) = (x1, x2) then x1 ≤L N (x2).

3The ‘intuitionistic’ characterizations of this approach should be understood here in a ‘broad’ sense,
as it loosely denies the law of excluded middle (whenever µA(u)+νA(u) < 1). This approach bears
no relationship to the conservative extension of intuitionistic logic, introduced in 28.
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The theory of interval-valued fuzzy sets (IVFS), apparently introduced inde-

pendently in 1975 by Grattan-Guinness 31, Jahn 32, Sambuc 14 and Zadeh 33, and

later also studied by e.g. Esteva et al. 10, Gorza lczany 34, and Türkşen 35, is an

alternative method of extending fuzzy set theory, motivated by the need to replace

crisp, [0, 1]-valued membership degrees by intervals in [0, 1] that approximate the

(unknown) membership degrees. Interval-valued fuzzy sets are also L-fuzzy sets, for

which the corresponding lattice is LI , defined as follows:

Definition 9. 36 Denote by LI the lattice (LI ,≤LI ), where

• LI = {[x1, x2] | (x1, x2) ∈ [0, 1]2 and x1 ≤ x2},

• [x1, x2] ≤LI [y1, y2] iff x1 ≤ y1 and x2 ≤ y2.

Remark 2. When L is the unit interval with the usual ordering, I(L) is a structure

that extends the lattice LI in the sense that LI is exactly (I([0, 1]),≤t) and more-

over, I(L) also contains the partially ordered set (I([0, 1]),≤k) that orders intervals

according to their exactness.

Now, in the context of fuzzy sets, Proposition 5 provides a direct relation between

IFSs and IVFSs. Moreover,

(a) In case that L is the unit interval, we can define the isomorphism of Proposi-

tion 5 by f([x1, x2]) = (x1, 1−x2), which is exactly the same transformation

considered in 29 for switching between IVFSs and IFSs. Proposition 5 shows

that the same transformation is useful not only for relating LI and L∗ (i.e.,

when the underlying lattice is the unit interval with the standard ordering and

involution), but also for any complete lattice with an involution.

(b) Proposition 5 may also serve as a clarification of Atanassov’s decision to con-

sider only the ‘lower triangle’ of [0, 1]2 (i.e., the elements (x1, x2) in [0, 1]2 s.t.

x1 + x2 ≤ 1): these are exactly the consistent elements of [0, 1]2 when the con-

flation is defined, for every (x1, x2) in [0, 1]2, by −(x1, x2) = (1 − x2, 1 − x1).

But in that case, it makes sense, and it is probably more intuitive, to work with

the lattice LI from IVFS theory to which L∗ is effectively isomorphic by Propo-

sition 5. The fact that we consider superlattices of L∗ (i.e., all the elements in

[0, 1]2 are considered) allows us to introduce elements such as (x1, x2) = (1, 1),

in which the membership degree (x1) and the non-membership degree (x2) are

both maximal. This means that we have a totally inconsistent belief in this

case. As an important aspect of fuzzy set theory is reasoning with uncertainty,

such values should not be ruled out.4

4Indeed, the need to represent and reason with contradictory information has been widely acknowl-
edged also outside the context of fuzzy set theory (see, e.g., 37,38,39 for some recent collections
of papers on this issue). As the level of inconsistency (or the ‘amount of contradictory belief’)
is, without a doubt, a fuzzy notion, the inconsistent elements considered here may be useful for
expressing different levels of contradiction (see also 40).
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(c) A largely analogous discussion applies to ILFSs, whose rationale Proposition 5

nicely embodies. Indeed, it is not difficult to see that the condition on A in

Definition 8 actually means that A(u) is restricted to be a consistent element

of L w.r.t. the conflation −N which is defined by −N (x1, x2) = (N (x2),N (x1)),

for all (x1, x2) in L2.

(d) Pankowska and Wygralak 41 introduced a kind of ILFSs based on ([0, 1],≤) with

an involution Nn defined for any positive real number n by Nn(x) = n
√

1 − xn.

It is easy to see that when n increases, so does the number of elements (x1, x2)

in [0, 1]2 for which x1 ≤ Nn(x2), or equivalently, x2 ≤ Nn(x1). In fact, if x 6= 1,

then lim
n→+∞

Nn(x) = 1, but when x = 1, always Nn(x) = 0. Hence, when n

approaches infinity, the set of consistent elements of [0, 1]2, with respect to the

conflation −Nn
, approaches [0, 1]2 without the elements (x1, 1) and (1, x2), for

which x1, x2 > 0. This shows that when L = ([0, 1],≤) it is possible to define a

conflation −N such that C−N (L2) is arbitrarily close, but not equal , to L2.

(e) Related to the previous item, in 42, Atanassov introduced a pair of bijections

between L∗ and [0, 1]2, which at first glance seems to shatter the remarks

made in item (b) that the latter is a more expressive structure. It was shown

in 21, however, that these bijections do not preserve order and hence they do

not constitute an isomorphism between L∗ and ([0, 1]2,≤t), or, for that matter,

between I(([0, 1],≤)) and ([0, 1],≤)2. The following proposition generalizes this

result to any complete lattice L with an involution N .

Proposition 6. For a complete lattice L = (L,≤L) with an involution N , the

structures L2 and C−N (L2) are not isomorphic.

Proof. The proposition simply follows from the fact that L2 is upward-closed (i.e.,

the supremum of every two elements of L2 is also an element of L2), while C−N (L2)

is not, so these structures cannot be isomorphic. Below we give another proof, which

extends that of 21 to arbitrary lattices.

Assume that there exists an isomorphism Θ from L2 to C−N (L2). Since Θ is

≤t-increasing, we easily find that Θ(0L, 1L) = (0L, 1L) and Θ(1L, 0L) = (1L, 0L).

Similarly, since Θ is ≤k-increasing, Θ(0L, 0L) = (0L, 0L).

Let a = (a1, a2) = Θ(1L, 1L). Since a is consistent, we have that (a1, a2) ≤k

(N (a2),N (a1)) and so a2 ≤L N (a1) or, equivalently, a1 ≤L N (a2).

If a2 <L N (a1), then let b = (a1,N (a1)). Clearly, b is consistent and a <k

b. Since Θ−1 is strictly ≤k-increasing, (1L, 1L) = Θ−1(a) <k Θ−1(b), which is a

contradiction, since (1L, 1L) is the greatest element of (L2,≤k).

If a2 = N (a1) >L 0L, then a1 <L 1L, since N is strictly L-decreasing. It

follows that a = (a1,N (a1)) and (1L, 0L) are ≤k-incomparable. On the other hand,

Θ−1(1L, 0L) = (1L, 0L) ≤k (1L, 1L) = Θ−1(a). Since Θ is ≤k-increasing, it follows

that (1L, 0L) ≤k a, which is a contradiction.

If a2 = N (a1) = 0L, then a1 = 1L, so a = (1L, 0L) and Θ−1(a) = (1L, 0L),

which is a contradiction.
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4. Graded (Bilattice-Based) Logical Connectives

In this section we recall some common extensions to L-fuzzy set theory of the main

connectives of classical logic (see, e.g., 43), and show how they can be related to

rectangular bilattices. A similar analysis for triangles and squares is given in 4.

In what follows, we assume that L = (L,≤L) is a complete lattice such that

0L = inf L and 1L = sup L. Proofs of the propositions in this section appear in the

appendix at the end of the paper.

4.1. Negation

Definition 10. A negator on L is any ≤L-reversing mapping N : L → L such that

N (0L) = 1L and N (1L) = 0L. If for every x, N (N (x)) = x, then N is an involutive

negator on L.

In the context of bilattices, the operation ¬ that appears in Definition 2 is an

involutive negator on the lattice (B,≤t). On a square L2, such an operator may be

defined as follows:

¬(x1, x2) = (x2, x1).

If a bilattice B has a conflation −, then by its definition this operation is an invo-

lutive negator on the lattice (B,≤k).

Suppose now that N is an involutive negator on L, i.e., every x in L has an

≤L-involutive element N (x) in L. Then, as we have noted before, a conflation −N
of L2 may be defined by

−N (x1, x2) = (N (x2),N (x1)).

In this case, another natural definition of a negator on (L2,≤t) is obtained by

combining ¬ and −N , that is, for every (x1, x2) in L2,

∼N (x1, x2) = ¬−N (x1, x2) = (N (x1),N (x2)). 5

One might wonder if there exist other ‘interesting’ negators apart from the proto-

typical ones described above. In 21, for the particular structure ([0, 1]2,≤t), it was

shown that all involutive negators can be generated by simple transformations of

the two basic choices ¬ and ∼N . The next proposition is a generalization of that

result to arbitrary rectangular bilattices:

Proposition 7. Let L = (L,≤L) and R = (R,≤R) be chains. A mapping N :

L×R → L×R is an involutive negator on (L×R,≤t) iff either there exist two

5This operator has also been studied by Wagner 44, mainly in the context of four-valued logics,
and by Doherty, Driankov and Tsoukias 45 in the framework of DDT-logic (an operational version
of Belnap’s four-valued logic 18,17; see also 46), where it is simply called ‘complement’.
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involutive negators N1 and N2 on L and R respectively such that, for all (x1, x2)

in L×R,

N(x1, x2) = (N1(x1),N2(x2)), (1)

or there exists an isomorphism ϕ between L and R, such that, for all (x1, x2) ∈
L × R,

N(x1, x2) = (ϕ−1(x2), ϕ(x1)). (2)

If L and R are not isomorphic, Equality (2) in Proposition 7 is excluded, and

so we have the following corollary:

Corollary 2. Let L = (L,≤L) and R = (R,≤R) be two non-isomorphic chains. A

mapping N : L×R → L×R is an involutive negator on (L×R,≤t) iff there exist

two involutive negators N1 and N2 on L and R, respectively, such that for every

(x1, x2) ∈ L×R, N(x1, x2) = (N1(x1),N2(x2)).

4.2. Conjunction and disjunction

Definition 11. A triangular norm (a t-norm, for short) on a lattice L = (L,≤L)

is a mapping T : L×L → L that is ≤L-increasing in both arguments, commutative,

associative, and satisfies, for every x in L, T (1L, x) = x.

Definition 12. A triangular conorm (a t-conorm, for short) on L = (L,≤L) is a

mapping S : L×L → L that is ≤L-increasing in both arguments, commutative,

associative, and satisfies, for every x in L, S(0L, x) = x.

Given a bilattice B = (B,≤t,≤k), its ≤t-meet ∧ and ≤k-meet ⊗ are clearly

t-norms on (B,≤t) and (B,≤k), respectively. Also, the ≤t-join ∨ and the ≤k-join

⊕ of B are t-conorms on (B,≤t), and (B,≤k), respectively. This implies that for

complete lattices L = (L,≤L) and R = (R,≤R) with meets ∧L and ∧R and joins

∨L and ∨R respectively, the following operations are t-norms on (L×R,≤t) and

(L×R,≤k), respectively: for all (x1, x2), (y1, y2) in L×R,

T≤t
((x1, x2), (y1, y2)) = (x1 ∧L y1, x2 ∨R y2),

T≤k
((x1, x2), (y1, y2)) = (x1 ∧L y1, x2 ∧R y2).

Similarly, the operations below are, respectively, t-conorms on (L×R,≤t) and on

(L×R,≤k): for all (x1, x2), (y1, y2) in L×R,

S≤t
((x1, x2), (y1, y2)) = (x1 ∨L y1, x2 ∧R y2),

S≤k
((x1, x2), (y1, y2)) = (x1 ∨L y1, x2 ∨R y2).

It is easy to see that T≤t
is the ≤t-greatest t-norm on (L×R,≤t) and T≤k

is

the ≤k-greatest t-norm on (L×R,≤k). Also, it is easy to see that S≤t
and S≤k

are,

respectively, the ≤t-smallest t-conorm on (L×R,≤t) and the ≤k-smallest t-conorm

on (L×R,≤k).
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As in the case of squares, the ≤k-extreme t-(co)norms are definable by the ≤t-

extreme t-(co)norms and the other way around (see also 47).

Proposition 8. In every rectangle L ⊙R, for all (x1, x2) and (y1, y2) in L×R,

T≤k
((x1, x2), (y1, y2))

= S≤t

(

S≤t

(

T≤t
((x1, x2), (0L, 0R)), T≤t

((y1, y2), (0L, 0R))
)

, T≤t
((x1, x2), (y1, y2))

)

,

S≤k
((x1, x2), (y1, y2))

= S≤t

(

S≤t

(

T≤t
((x1, x2), (1L, 1R)), T≤t

((y1, y2), (1L, 1R))
)

, T≤t
((x1, x2), (y1, y2))

)

,

T≤t
((x1, x2), (y1, y2))

= S≤k

(

S≤k

(

T≤k
((x1, x2), (0L, 1R)), T≤k

((y1, y2), (0L, 1R))
)

, T≤k
((x1, x2), (y1, y2))

)

,

T≤t
((x1, x2), (y1, y2))

= S≤k

(

S≤k

(

T≤k
((x1, x2), (1L, 0R)), T≤k

((y1, y2), (1L, 0R))
)

, T≤k
((x1, x2), (y1, y2))

)

.

The definition of T≤t
, S≤t

, T≤k
, and S≤k

is an example of an effective way

of generating t-(co)norms on rectangles L ⊙ R by taking advantage of existing

connectives on the underlying lattices L and R. Intuitively, this amounts to a kind

of divide-and-conquer strategy, where conjunction and disjunction on L ⊙ R are

split up into simpler operations on L and R. This leads us to define the notion of

(L,R)-representability.6

Definition 13. Let L = (L,≤L) and R = (R,≤R) be complete lattices. A t-norm

T on (L×R,≤t) (respectively, a t-conorm S) is called (L,R)-representable, if there

exist a t-norm T on L and a t-conorm S on R (respectively, a t-conorm S′ on L
and a t-norm T ′ on R) such that, for every (x1, x2), (y1, y2) in L×R,

T((x1, x2), (y1, y2)) = (T (x1, y1),S(x2, y2)), (3)

S((x1, x2), (y1, y2)) = (S′(x1, y1), T ′(x2, y2)). (4)

The operations T and S (resp. S′ and T ′) are called the representants of T (resp.

S).

Analogously, (L,R)-representable t-(co)norms on (L×R,≤k) can be defined in

the obvious way. In the sequel, if the identity of the lattices is clear from the context,

we shall simply be speaking about representable t-(co)norms.

The above definition allows a straightforward construction of t-(co)norms by

operations that meet Definitions 11 and 12; it suffices to take any t-norm T on L and

t-conorm S on R, and to use them as representants in formulas (3) and (4) above.

The converse, however, is not true; not any t-(co)norm on (L×R,≤t) can be obtained

6This definition extends the notion of t-representability, introduced in 48, and the notion of L-
representability, introduced in 4.
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by a representation. Define, for instance, the mapping T : (L×R)2 → (L×R), given

by, for all x, y in L×R,

T(x, y) = (inf(x1, y1, sup(f(x2), f(y2))), sup(x2, y2)), (5)

where f : R → L is an arbitrary decreasing mapping, the range of which contains

at least two elements, and for which f(0R) = 1L and f(sup(a, b)) = inf(f(a), f(b)),

for all a, b in R (note that e.g. the mapping f for which f(0R) = 1L and f(x) = 0L,

for all x ∈ R \ {0R}, satisfies these constraints). Then T is a t-norm on (L×R,≤t),

but it is not (L,R)-representable, since its first component also depends on x2 and

y2. Hence, on any rectangle there exist t-norms which are not (L,R)-representable.

Proposition 9. Let T (respectively, S) be an (L,R)-representable t-norm (respec-

tively, t-conorm) on (L×R,≤t). Then T (respectively, S) is increasing w.r.t. both ≤t

and ≤k. The same property holds for (L,R)-representable t-(co)norms with respect

to (L×R,≤k).

When a t-norm is not (L,R)-representable the proposition above is no longer

true. Indeed, in 4 it is shown that the t-norm defined in Formula (5) above is not

increasing w.r.t. ≤t.

Next we relate t-norms and t-conorms by appropriate negators. A natural way

of doing so is to impose de Morgan’s laws.

Definition 14. Let T be a t-norm on L, and let N be an involutive negator on L.

The N -dual of T is a t-conorm T ∗
N on L defined by, for all x, y in L,

T ∗
N (x, y) = N (T (N (x),N (y))).

The N -dual of a given t-conorm is defined as a t-norm on L in a similar way.

Proposition 10. Let L and R be two chains, T a (L,R)-representable t-norm on

(L×R,≤t) with representants T and S, and N an involutive negator on L×R. If

N(0L, 0R) = (1L, 1R), then the N-dual t-conorm T∗
N

of T is given by, for all x, y in

L×R,

T
∗
N(x, y) = (T ∗

N1
(x1, y1),S∗

N2
(x2, y2)),

where N1 and N2 are the representants of N (see Proposition 7).

If, on the other hand, N(0L, 0R) = (0L, 0R), then the N-dual t-conorm T∗
N

of T is

given by, for all x, y in L×R,

T
∗
N(x, y) = (Sϕ(x1, y1), Tϕ−1(x2, y2)),

where ϕ is an isomorphism between L and R, Sϕ denotes the ϕ-transform of S
defined, for all x1, y1 in L, by Sϕ(x1, y1) = ϕ−1(S(ϕ(x1), ϕ(y1))), and Tϕ−1 is the

ϕ−1-transform of T , is defined in a similar way.

As it can be verified from the proof of Proposition 7 (see the appendix), when

L and R are not isomorphic, the second part of Proposition 10 is excluded, and so

we have the following corollary (cf. Corollary 2):
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Corollary 3. Let L and R be non-isomorphic chains, T a (L,R)-representable t-

norm on (L×R,≤t) with representants T and S, and N an involutive negator on

L×R. Then the N-dual t-conorm T∗
N

of T is given by, for all x, y in L×R,

T
∗
N(x, y) = (T ∗

N1
(x1, y1),S∗

N2
(x2, y2)),

where N1 and N2 are the representants of N.

From Proposition 10 it also follows that the dual t-conorm of a t-representable

t-norm is also t-representable. If the involved involutive negator maps (0L, 0R) to

(1L, 1L), then the first component of the dual t-conorm is obtained using only

operations from L, and similarly for the second component, so the dual t-conorm

is obtained by calculating the dual operation of each component. On the other

hand, if the negator maps (0L, 0R) to (0L, 0R), then the first component of the

dual t-conorm is obtained using an operation from R, and similarly for the second

component. Similar properties holds for the dual t-norm of a t-representable t-

conorm.

4.3. Implication

Definition 15. An implicator on a lattice L = (L,≤L) is a mapping I : L×L →
L that is ≤L-increasing in its first component and ≤L-decreasing in its second

component, and for which I(0L, 0L) = 1L, I(1L, 0L) = 0L, I(0L, 1L) = 1L, and

I(1L, 1L) = 1L.

Given a t-norm T and an implicator I on L, it is usual to require the soundness

of fuzzy modus ponens , i.e., for every a, b, x, y in L, it should hold that if a ≤L x

and b ≤L I(x, y), then T (a, b) ≤L y. In particular, therefore, if for some z in L,

z ≤L I(x, y) then T (x, z) ≤L y. On the other hand, to allow I(x, y) to be as

large as possible, one would like to require the converse, that T (x, z) ≤L y implies

z ≤L I(x, y). Eventually, then,

T (x, z) ≤L y ⇔ z ≤L I(x, y) (6)

a condition which is known also as the residuation principle. It is well-known (see

e.g. 49,50) that (6) holds if and only if T satisfies, for any x in L and any subset Y

of L, T (x, supy∈Y y) = supy∈Y T (x, y), and if I is equal to the residuum IT of T ,

defined as follows.

Definition 16. Let T be a t-norm on L. An R-implicator IT (the residuum of T )

is defined, for every x, y in L, by IT (x, y) = sup{z ∈ L | T (x, z) ≤L y}.

In the sequel, we will say that a t-norm T satisfies the residuation principle if

(6) holds for T together with I = IT . The following proposition will be important

for our further exposition.
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Proposition 11. Let L = (L,≤L) and R = (R,≤R) be complete lattices and T
a t-norm on (L×R,≤t) satisfying the residuation principle. Then T is (L,R)-

representable.

Another definition of a family of implicators is motivated by the classical defi-

nition of the material implication x → y as ¬x ∨ y.

Definition 17. Let S be a t-conorm and N a negator on L. The S-implicator IS,N
(generated by S and N ) is defined for every x, y in L by IS,N (x, y) = S(N (x), y).

It is easy to verify that each R-implicator and each S-implicator is in partic-

ular an implicator. Moreover, these definitions reveal that very often implicators

are linked to “simpler” connectives. Also, we can exploit the classical equivalence

between the formulas x → f and ¬x, to define the following special kind of negators

on L.

Definition 18. Let L = (L,≤) be a complete lattice with an implicator I. The

induced negator of I is a mapping NI , defined for every x in L by NI(x) = I(x, 0L).

Examples of all the above operations on bilattice-based rectangles are thus easy

to generate using the constructs introduced in the previous sections. As an illus-

tration, and in view of its importance for the sequel, the following proposition

derives an explicit representation of R-implicators of (L,R)-representable t-norms

on (L×R,≤t).

Proposition 12. Let L = (L,≤L) and R = (R,≤R) be complete lattices and let

T be an (L,R)-representable t-norm on (L×R,≤t) with representants T and S,

where S is the N -dual t-conorm of a t-norm T ′ for some involutive negator N on

R. Then, for every (x1, x2), (y1, y2) in L×R,

IT((x1, x2), (y1, y2)) = (IT (x1, y1),N (IT ′(N (x2),N (y2)))).

The question of implicator classification, i.e., which particular instance to use in

which case, has received a considerable attention in the literature. A comprehensive

account for the situation in the lattice (I([0, 1]),≤t) appears in 36, and ([0, 1]2,≤t)

is examined in 21 and 22. In 4 the relationship between bilattice-based squares,

triangles and MV-algebras is discussed. We now relate rectangular bilattices to

MV-algebras.

Definition 19. 51,50 Let L = (L,≤L) be a complete lattice, and let T be a t-norm

on L that satisfies the residuation principle (Equation (6)) and such that, for every

x, y in L,

IT (IT (x, y), y) = IT (IT (y, x), x) = x ∨L y. (7)

Then (L,≤L, T ) is called an MV-algebra.

In an MV-algebra (L,≤L, T ), the mappings IT and IS,N , where N = NIT
and

S is the N -dual of T , are identical. This follows from a result of Jenei 52, who proves
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this identity in general for Girard monoids, of which MV-algebras are a specific case.

In 4 it is shown that the converse is not true in general, that is: coinciding R- and

S-implicators would not necessarily lead to an MV-algebra.

A necessary and sufficient condition for having coinciding R- and S-implicators

in arbitrary rectangles, is given in the following proposition.

Proposition 13. Let L = (L,≤L) and R = (R,≤R) be complete lattices, and let

T be a t-norm on (L×R,≤t). Then the R-implicator IT of T on (L×R,≤t) is

equal to the S-implicator IS,N generated by an involutive negator N on (L×R,≤t)

and the N-dual t-conorm S of T, if and only if there exist t-norms T and T ′ on

L and R respectively for which IT = IS,N and IT ′ = IS′,N ′ , where N and N ′

are involutive negators on L and R respectively and where S (respectively S′) is

the N -dual (respectively N ′-dual) t-conorm of T (respectively T ′) such that T is

(L,R)-representable with representants T and S′.

Proposition 14. Let L = (L,≤L) and R = (R,≤R) be complete lattices, and

let T be a t-norm on (L×R,≤t). Then (L×R,≤t, T) is an MV-algebra if and

only if there exist t-norms T and T ′ on L and R respectively such that (L,≤L, T )

and (R,≤R, T ′) are both MV-algebras, and such that T is (L,R)-representable with

representants T and S, where S is the N -dual t-conorm of a t-norm T ′ for some

involutive negator N .

5. Modeling Imprecise Preference Information

The purpose of this section is to consider the application potential of our framework.

We show it in the context of preference modeling.

The notion of preference is common in various contexts involving decision or

choice. Preference modeling provides declarative means for choosing among alter-

natives, including different solutions to problems, answers to database queries, de-

cisions of a computational agent, etc. This topic is gaining increasing attention in

diverse areas of artificial intelligence such as nonmonotonic reasoning, qualitative

decision theory, configuration, and AI planning. More recently, preference modeling

has also been used in constraint satisfaction and constraint programming, for treat-

ing soft constraints, for describing search heuristics, and for reducing search effort

(see, e.g. 53 and 54 for recent collections of papers on these topics).

Conventional preference modeling (see e.g. 55) is centered on the notion of classi-

cal preference structures 〈P, I, R〉, consisting of three fundamental binary relations

(strict preference P , indifference I, and incomparability R) that may hold among

the alternatives; usually the evidence in favour of these relations is captured by a

so-called outranking relation S that describes, for each couple (u, v) of alternatives,

whether u is (known to be) at least as good as v. In practice, it is common to

encounter situations where these relationships hold up to a certain degree, which

gives rise to the study of fuzzy preference structures (see e.g. 56,57,58).
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Fuzziness, however, cannot adequately cover all the imperfections inherent to

real-life data, since the ‘one-dimensional’ measurements induced by the ordering of

membership degrees in fuzzy sets have difficulties coping with information-deficient

data. As Tsoukiàs and Vincke noted in 59, fuzzy sets and logic per se do not pro-

vide “a clear distinction between situations where the information is missing, not

satisfactory and situations in which the information is too rich, contradictory, con-

flictual, ambiguous”. Indeed, stating that P (u, v) = 0 may either mean that u

(definitely) is not preferred to v, or simply that there is no information to establish

a preference of u over v, and there is no unambiguous way for a decision maker

to distinguish between the two situations. For this reason, several researchers have

considered more elaborate means of eliciting and representing preferences. In par-

ticular, in a number of papers (e.g. 60,61,62,63,59), the use of a four-valued logic called

DDT (derived from Belnap’s logic FOUR 17,18) and some of its graded extensions

has been advocated as a means of dealing preference modeling under incomplete

and/or conflicting information. In all of the mentioned papers, bilattice theory per

se plays only a subservient role as the convenient ‘language’ for modeling positive

and negative preference arguments separately, and for representing the associated

epistemic states of truth, falsity, ignorance and contradiction. As a consequence,

these approaches have to incorporate additional conventions and ‘tricks’ into their

modus operandi, making the results less intuitive and/or tedious.

By contrast, the aim of this section is to demonstrate and exploit the full ex-

pressive power of rectangular bilattices, and of squares in particular, for encoding

not just the problem statement for preference modeling, but also its generic solution

strategy. As such, the material presented in what follows is not a ‘new’ approach

to preference modeling, but rather a clarification, simplification and streamlining

of existing ones.

5.1. Encoding the evidence

The problem at hand is that of ranking a (finite) set U of alternatives from the

best to the worst, with respect to a number of given criteria. In order to do this,

we assume that partial information is available regarding the pairwise comparison

of alternatives. In binary preference modeling, it is common to express such infor-

mation by means of a two-valued outranking relation S in U (see e.g. 55), where

S(u, v) = 1 is read as “(there is evidence that) u is at least as good as v”. Such an

approach can be criticized for lack of expressivity, since explicit evidence that u is

not at least as good as v could only be captured by imposing S(v, u) = 1.7 Yet, as

Fortemps and S lowiński argue in 60, arguments in disfavour of a sentence are not

necessarily identical to arguments in favour of the opposite sentence!

For this reason, in 59 Tsoukiàs and Vincke propose to distinguish between posi-

7Note that S(u, v) = 0 means that there is no evidence that u is at least as good as v, which is
obviously different than claiming that u is not at least as good as v.
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tive and negative arguments regarding the claim ‘u is at least as good as v’ (u ≥ v,

for short). Essentially, this amounts to defining the outranking relation S as a

mapping from U2 to {0, 1}2, where the value of the first (respectively, the second)

component of S(u, v) reveals the presence of arguments in favour (respectively, in

disfavour) of u ≥ v. Clearly, this intuition fits our framework, and Belnap’s square

FOUR can be used to endow {0, 1}2 with an attractive epistemic structure in terms

of truth-hood (the ≤t-ordering: from only evidence against, to only evidence for the

claim) and of available information (the ≤k-ordering: from ignorance to conflict).

Definition 20. For ease of notation, in what follows we shall abbreviate T for

(1, 0), F for (0, 1), U for (0, 0), and K for (1, 1), to be read as true, false, unknown

and contradiction, respectively.

Of course, nothing stands in the way of generalizing this framework by allowing

for graded evidence. For instance, in 60 and 61 the square induced by the unit

interval L = ([0, 1],≤) was investigated. In general, S can be a mapping from U2 to

some rectangular bilattice L ⊙ R, reflecting that positive and negative arguments

may be evaluated according to two different scales.

5.2. Representing the preferences

Once the various outranking arguments have been provided, the objective then is

to present the decision maker with as close to reality and transparent as possible

a rendering of the actual state of affairs. In conventional preference modeling (i.e.,

when S(u, v) ∈ {0, 1}), a ‘decision’ concerning two alternatives u and v can take

four forms:

(1) u is (strictly) preferred over v if S(u, v) = 1 and S(v, u) = 0,

(2) v is (strictly) preferred over u if S(u, v) = 0 and S(v, u) = 1,

(3) u and v are indifferent if S(u, v) = 1 and S(v, u) = 1,

(4) u and v are incomparable if S(u, v) = 0 and S(v, u) = 0.

Evidently, all possible situations are covered in this way. Accordingly, one can build

three binary relations P (strict preference, corresponding to cases 1 and 2), I (in-

difference, corresponding to case 3) and R (incomparability, corresponding to case

4), such that U2 = P ∪P−1∪I ∪R. It is also said that 〈P, I, R〉 is a classical prefer-

ence structure; it is easy to see that it determines S unequivocally, and vice versa8;

weakened versions emerge when S becomes a fuzzy relation, a theme explored in,

e.g., 56,57,58. In what follows, we study the bilattice-valued generalizations of this

framework.

8Note that S = P ∪ I.
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A crisp four-valued approach

Let first S be a mapping from U2 to {0, 1}2. Each couple of alternatives (u, v)

corresponds to a couple (S(u, v), S(v, u)) in ({0, 1}2)2. For notational ease, and in

order to enhance the clarity of the exposition, we shall abbreviate these couples by

simply juxtaposing the two letters corresponding to their evaluations. For instance,

FK represents the element ((0, 1), (1, 1)) that exhibits a situation in which there

are only negative arguments for u ≥ v and conflicting (both positive and negative)

arguments for v ≥ u.

Remark 3. In 62,63,59, essentially the same representation, albeit in a more com-

plicated form, is obtained by defining, for every u, v in U ,

∆S(u, v) = 1 ⇔ S(u, v) = (1, x) for some x in {0, 1},
∆¬S(u, v) = 1 ⇔ S(u, v) = (x, 1) for some x in {0, 1},

read as, “there is presence of truth in saying that u is at least as good as v” and

“there is presence of truth in saying that u is not at least as good as v”, respectively.

Consequently the so-called true, false, contradictory and unknown extensions9 of

S(u, v) are defined by, respectively,

TS(u, v) = 1 ⇔ ∆S(u, v) = 1 and ∆¬S(u, v) = 0, (8)

FS(u, v) = 1 ⇔ ∆S(u, v) = 0 and ∆¬S(u, v) = 1, (9)

US(u, v) = 1 ⇔ ∆S(u, v) = 0 and ∆¬S(u, v) = 0, (10)

KS(u, v) = 1 ⇔ ∆S(u, v) = 1 and ∆¬S(u, v) = 1. (11)

In our notations FK denotes the case where FS(u, v) = 1 and KS(v, u) = 1.

Thus, a decision maker is confronted with any of sixteen (instead of four) possible

situations involving the alternatives u and v. As the prime determination is to try

to rank the alternatives, it is worthwhile to endow those various situations with

some meaningful structure, and it turns out that bilattices can go a long way in

doing just that.

Indeed, starting from the ≤t-ordering on FOUR, we can construct a bilattice-

based square on top of ({0, 1}2)2 with the following two orderings:

• (x1, x2) ≤t (y1, y2) ⇔ x1 ≤t y1 and x2 ≥t y2

Intuitively, if (x1, x2) = (S(u, v), S(v, u)) and (y1, y2) = (S(u′, v′), S(v′, u′)),
then (x1, x2) ≤t (y1, y2) expresses that the extent to which u is preferred over

v is less than the extent to which u′ is preferred over v′. The smallest element

is FT (it is not true that u ≥ v, while it is true that u ≤ v) and the biggest one

is TF (u ≥ v and not v ≥ u).

• (x1, x2) ≤k (y1, y2) ⇔ x1 ≤t y1 and x2 ≤t y2

9These are actually two-valued predicates. In 60 T, F, U and K are called ‘strong unary operators’.
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This ordering ranges between a state of incomparability (FF) and the one of

indifference (TT).

Starting from the ≤k-ordering on FOUR we can define two other orderings on

({0, 1}2)2 as follows:

• (x1, x2) ≤′
t (y1, y2) ⇔ x1 ≤k y1 and x2 ≥k y2.

Intuitively, if (x1, x2) = (S(u, v), S(v, u)) and (y1, y2) = (S(u′, v′), S(v′, u′)),
then x1 ≤k y1 means that we know less about u ≥ v than about u′ ≥ v′, and

x2 ≥k y2 means that we know more about u ≤ v than about u′ ≤ v′. So, the

bigger (x1, x2) according to this ordering, the more we know about u ≥ v and

the less we know about u ≤ v.

• (x1, x2) ≤′
k (y1, y2) ⇔ x1 ≤k y1 and x2 ≤k y2.

This ordering marks the amount of information at our disposition: from a short-

age of information (UU) to an excess (KK).

Remark 4. In 63,59, the authors present a dictionary-style solution to discriminate

among the sixteen states, giving concrete names and explanations to each one of

them. For instance, TF is called ‘strict preference of u over v’, KF in their terms

is ‘weak preference of u over v’, etc. This approach, apart from being tedious, is

also misleading. As an example, in their approach (as in ours) FF means that u and

v are incomparable, whereas UU is read as “u and v are semi incomparable”, and

FU as “u and v are weakly incomparable”. Such terminology implies an inaccurate

description of the state of affairs, since

a) the element UU bears no mark of incomparability whatsoever, and

b) referring to ≤k, the elements UF, FK and KF could claim the status of repre-

senting ‘weak incomparability’ with just as much justification as FU.

By contrast, the four order relations considered above serve to discriminate much

more naturally, and without bias, among the sixteen states, positioning each state

along four scales of measurement.

Extensions to arbitrary (possibly continuous) rectangular bilattices

Another important advantage of our approach is that it can be straightforwardly

generalized to graded evidence without the need for additional parameters . Indeed,

the four orderings ≤t, ≤k, ≤′
t, and ≤′

k can equally be defined on L ⊙ R for any

complete lattices L = (L,≤L) and R = (R,≤R). The orderings present the decision

maker with a rather complete picture of the situation; depending on the underlying

goals and attitudes, he or she may exploit the information in various ways.

Consider, for instance, the set ([0, 1]2)2 together with, e.g., the normalized Eu-

clidean distance function. For any value (S(u, v), S(v, u)) one can measure its dis-

tance to the external elements of each order. Such distances give graded infor-

mation which is often more helpful for the decision maker than just the orderings
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themselves. For example, when (S(u, v), S(v, u)) = ((0.1, 0.77), (0.25, 0.41)), the dis-

tance10 to FT is 0.44 and the distance to TF is 0.67, which indicates a preference

of v over u. Likewise, the distances 0.62 and 0.52 to UK and KU respectively may

indicate that the amount of available information is greater for “v ≥ u” than for

“u ≥ v”.

Note also that, as shown in Figure 3 (see the diagram on the bottom-left side),

the distance to FT (respectively, to TF) of each one of KT, UT, FU, FK, is 1/2

(respectively,
√

3/2), while the distance to FT (to TF) of TK, TU, UF, KF, is
√

3/2

(respectively, 1/2). This can be interpreted as follows: the elements on the middle

layer do not give any evidence that u ≥ v or u ≤ v, the elements on the second layer

from below give more evidence that u ≤ v, and the elements on the fourth layer

provide more evidence that u ≥ v. As Figure 3 shows, similar layered structures

and distance values are also induced by the other orders (see the bottom-right side

of this figure for ≤k, the top-left side for ≤′
t, and the top-right side for ≤′

k).

TF

TK TU UF KF

TT KK KU UK UU FF

KT UT FU FK

FT ?

1√
3

2√
2

2
1

2
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60
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2√
2
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2

1

TT

TK TU UT KT

TF KK KU UK UU FT
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TK FK UF UT

UK ?
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2√
2

2√
3

2

1

KK

TK KT KF FK

TT TF KU UK FT FF

TU UT UF FU

UU

Fig. 3. Euclidean distances to the extreme elements of ≤t (bottom left), ≤k (bottom right), ≤′
t

(top left), and ≤′

k
(top right).

Figure 3 reveals a nice symmetry among the four diagrams: there are eight

external elements each corresponding to a ‘definite’ state of affairs (TF and FT: strict

preference; TT: indifference; FF: incomparability; KK, UU, UK, KU: information

defect) and the eight remaining ones which float somewhat between the extremes

(they are always in second or the fourth layer). Note also that the middle layer of

each diagram always contains the six other external elements.

As the next proposition shows, the four order relations considered above preserve

these distance considerations for every element of the underlying bilattice:

10Note that the distance between two elements ((a1, a2), (b1, b2)) and ((c1, c2), (d1, d2)) of ([0, 1]2)2

is given by 1

2

√

(a1 − c1)2 + (a2 − c2)2 + (b1 − d1)2 + (b2 − d2)2.
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Proposition 15. Let � be any one of the above four orders (≤t, ≤k, ≤′
t, ≤′

k) on

([0, 1]2)2, and let d be the Euclidean distance function on it. Denote by 0 and 1

the �-minimal element and the �-maximal element, respectively. For every u, v in

([0, 1]2)2, if u � v then d(0, u) ≤ d(0, v) and d(u, 1) ≥ d(v, 1).

Proof. We show the claim for ≤t and its minimum FT; the other cases are similar.

Let u = (x1, x2) and v = (y1, y2). If u ≤t v then x1 ≤t y1 and x2 ≥t y2, which

means that dE(F, x1) ≤ dE(F, y1) and dE(T, x2) ≤ dE(T, y2), where dE denotes the

Euclidean distance on R
2. Thus, d(FT, (x1, x2)) = 1

2

√

dE(F, x1)2 + dE(T, x2)2 ≤
1

2

√

d(F, y1)2 + d(T, y2)2 = d(FT, (y1, y2)).

The above representation stands in sharp contrast to existing work relying on

the conventions described in Note 3. Indeed, devising graded versions of the predi-

cates T, F, U and K requires an explicit choice of how to model the conjunction in

the right-hand sides of their defining equalities (8)–(11). In 60 and 61, two different

choices involving different t-norms on the unit interval are put forward, each elab-

orately justified in its own terms. As our exposition reveals, however, this effort is

altogether superfluous since it can be avoided by working with the original outrank-

ing information. As we have shown, rectangular bilattices offer a simple and natural

way of encoding this information, even in cases that the argument in favour of a

certain preference and the argument in disfavour of that preference are specified in

terms of different ranges.

6. Conclusion

In this paper we introduced a general framework for uncertainty modeling, taking

advantage of the new opportunities offered by bilattice-based structures. The ‘tradi-

tional’ approach of evaluating membership functions by values that are arranged in

one (and usually total) order, is replaced here by more expressive ‘two-dimensional’

measurements that reflect different interpretations of the underlying orders, which

may be applied simultaneously. The main benefits of this approach are, among

others, the following:

(1) By not constraining ourselves to consistent elements only, a natural setting to

represent and handle contradictions emerges (see Section 2).

(2) The constructs of rectangular bilattices relate IVFSs and IFSs within one uni-

form and general framework (see Section 3).

(3) The definition and representation of suitable logical connectives within our

setting brings together results from both the theory of bilattices and L-fuzzy

set theory. Moreover, it raises many non-trivial questions regarding the inter-

relationships among the various alternatives (see Section 4).

(4) Some of the applicative aspects of our framework are demonstrated in the con-

text of preference modeling, where we have introduced a generic declarative so-

lution strategy to this problem. This solution fully exploits the order-theoretical



November 23, 2006 13:48 WSPC/INSTRUCTION FILE n˙ijufks

24 Deschrijver, Arieli, Cornelis, Kerre

ingredients of bilattice theory, and puts existing methods for preference model-

ing into a simple and unified perspective (see Section 5).

We conclude, therefore, that bilattice-based fuzzy sets provide a natural and at-

tractive framework for the representation of uncertain and potentially conflicting

information.
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61. P. Perny and A. Tsoukiàs, “On the continuous extension of a four valued logic for
preference modelling”, in Proc. Conf. on Information Processing and Management of
Uncertainty in Knowledge-Based Systems (IPMU’98) (1998), pp. 302–309.

62. A. Tsoukiàs, P. Perny and P. Vincke, “From concordance/discordance to the modelling
of positive and negative reasons in decision aiding”, in Aiding Decisions with Multiple
Criteria: Essays in Honor of Bernard Roy, eds. D. Bouyssou, E. Jacquet-Lagrèze,
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Proofs of the Propositions in Section 4

Many proofs of the propositions in Section 4 are derived from similar proofs that

appear in 4. In such cases, instead of repeating the corresponding proofs in their

adjusted version, we just give the reference to the original text.

Notation 1. The mappings pr1 and pr2 on L×R are defined as follows: pr1(x1, x2) =

x1 and pr2(x1, x2) = x2.

Proof of Proposition 7. We shall show that if N is an involutive negator on

(L×R,≤t) then either N(0L, 0R) = (1L, 1R) or N(0L, 0R) = (0L, 0R) (Lemma 7-

A); in the first case Formula (1) applies (Lemmas 7-B,C,D) and in the second case

Formula (2) applies (Lemmas 7-E,F,G).

Lemma 7-A: Let L = (L,≤L) and R = (R,≤R) be chains. For any involutive

negator N on (L×R,≤t) it holds that either N(0L, 0R) = (0L, 0R) or N(0L, 0R) =

(1L, 1R).

Proof: The proof is similar to the proof of Lemma 3-A in 4. Assume that N(0L, 0R) =

(x1, 0R), where x1 >L 0L. Then (0L, 0R) ≤t (x1, 0R) and (x1, 1R) ≤t (x1, 0R), but

(0L, 0R) and (x1, 1R) are incomparable w.r.t. ≤t. Since N is decreasing and involu-

tive, we obtain N(0L, 0R) ≥t N(x1, 0R) = (0L, 0R) and N(x1, 1R) ≥t N(x1, 0R) =

(0L, 0R). Hence the second component of both N(0L, 0R) and N(x1, 1R) must be

0R, thus N(0L, 0R) and N(x1, 1R) are ≤t-comparable. Now, since N is decreasing

and involutive, it also follows that (0L, 0R) and (x1, 1R) are ≤t-comparable, which

is a contradiction. For the other cases of N(0L, 0R) ∈ L×R \ {(0L, 0R), (1L, 1R)},

we obtain a contradiction in a similar way.

Lemma 7-B: Let L = (L,≤L) and R = (R,≤R) be chains. For any involutive

negator N on (L×R,≤t) such that N(0L, 0R) = (1L, 1R), the following holds for all
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x1 in L and x2 in R: N(x1, 0R) ≤t (1L, 1R), N(0L, x2) ≥t (1L, 1R), N(x1, 1R) ≥t

(0L, 0R) and N(1L, x2) ≤t (0L, 0R).

Proof: Similar to that of Lemma 3-B in 4.

Lemma 7-C: Let L = (L,≤L) and R = (R,≤R) be chains. For any involutive nega-

tor N on (L×R,≤t) such that N(0L, 0R) = (1L, 1R), it holds that pr1 N(x1, x2) =

pr1 N(x1, 0R) and pr2 N(x1, x2) = pr2 N(0L, x2), for all (x1, x2) ∈ L×R.

Proof: Similar to that of Lemma 3-C in 4.

Lemma 7-D: Let L = (L,≤L) and R = (R,≤R) be chains and let N be a negator

on (L×R,≤t) such that N(0L, 0R) = (1L, 1R). Furthermore, let the mappings

N1 : L → L and N2 : R → R be defined by N1(x1) = pr1 N(x1, 0R) and N2(x2) =

pr2 N(0L, x2), for all x1 ∈ L and x2 ∈ R. Then N is involutive if and only if N1 and

N2 are involutive negators on L and R respectively, and for all (x1, x2) in L×R we

have that N(x1, x2) = (N1(x1),N2(x2)).

Proof: Similar to that of Lemma 3-D in 4.

Lemma 7-E: Let L = (L,≤L) and R = (R,≤R) be chains. For any involutive

negator N on (L×R,≤t) such that N(0L, 0R) = (0L, 0R), the following holds for all

x1 in L and x2 in R: N(x1, 0R) ≤t (0L, 0R), N(0L, x2) ≥t (0L, 0R), N(x1, 1R) ≥t

(1L, 1R) and N(1L, x2) ≤t (1L, 1R).

Proof: Similar to that of Lemma 3-E in 4.

Lemma 7-F: Let L = (L,≤L) and R = (R,≤R) be chains. For any involutive negator

N on (L×R, ≤t) such that N(0L, 0R) = (0L, 0R), it holds that pr1 N(x1, x2) =

pr1 N(0L, x2) and pr2 N(x1, x2) = pr2 N(x1, 0R) for all (x1, x2) in L×R.

Proof: Similar to that of Lemma 3-F in 4.

Lemma 7-G: Let L = (L,≤L) and R = (R,≤R) be chains and let N be a negator

on (L×R, ≤t) such that N(0L, 0R) = (0L, 0R). Furthermore, define the mapping

ϕ : L → R by ϕ(x) = pr2 N(x, 0R), for all x ∈ L. Then N is involutive if and only

if ϕ is an isomorphism between L and R, and for all (x1, x2) in L×R we have that

N(x1, x2) = (ϕ−1(x2), ϕ(x1)).

Proof: Assume first that N is an involutive negator on (L×R,≤t) such that

N(0L, 0R) = (0L, 0R). Define the mappings ϕ1 : R → L and ϕ2 : L → R by

ϕ1(x) = pr1 N(0L, x) and ϕ2(x) = pr2 N(x, 0R). We will show that ϕ2 is an isomor-

phism between L and R.

• Let x and x′ be distinct elements of L and assume that ϕ2(x) = ϕ2(x′) = y.

Then, by definition of ϕ2 and by Lemma 7-E it follows that (0L, y) = N(x, 0R) =

N(x′, 0L). Thus, since N is an involution, N(0L, y) = (x, 0R) = (x′, 0L), which

is a contradiction. Hence ϕ2 is injective.

• Let arbitrarily y ∈ R. By Lemma 7-E it follows that there exists an x ∈ L such

that N(0L, y) = (x, 0R). Since N is involutive, N(x, 0R) = (0L, y), so ϕ2(x) = y.

Hence ϕ2 is surjective.
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• Finally we prove that for all x, x′ in L, x ≤L x′ ⇔ ϕ2(x) ≤R ϕ2(x′). Assume

first that x ≤L x′. Then (x, 0R) ≤t (x′, 0R), so N(x, 0R) ≥t N(x′, 0R). Hence

ϕ2(x) ≤R ϕ2(x′). Conversely, assume that ϕ2(x) ≤R ϕ2(x′). By Lemma 7-E it

follows that there exist y, y′ in R such that (0L, y) = N(x, 0R) and (0L, y′) =

N(x′, 0R). So from ϕ2(x) ≤R ϕ2(x′) it follows that (0L, y) ≥t (0L, y′). Since N

is ≤t-decreasing and involutive, we obtain that (x, 0R) ≤t (x′, 0R), so x ≤L x′.

Now, by Lemma 7-F, for every element (x1, x2) in L×R it holds that pr1 N(x1, x2) =

pr1 N(0L, x2) = ϕ1(x2) and pr2 N(x1, x2) = pr2 N(x1, 0R) = ϕ2(x1). In other words,

for every (x1, x2) in L×R, N(x1, x2) = (ϕ1(x2), ϕ2(x1)). Moreover, since N is

involutive, we have that N(N(x1, x2)) = (ϕ1(ϕ2(x1)), ϕ2(ϕ1(x2))) = (x1, x2), hence

ϕ1 = ϕ−1
2 .

Assume conversely that ϕ : L → R is an isomorphism between L and R and

define the mapping N : L×R → L×R by N(x1, x2) = (ϕ−1(x2), ϕ(x1)). Clearly,

N(0L, 0R) = (0L, 0R), N(0L, 1R) = (1L, 0R) and N(1L, 0R) = (0L, 1R). Since ϕ is

increasing, N is decreasing. Moreover, N(N(x1, x2)) = (ϕ−1(ϕ(x1)), ϕ(ϕ−1(x2))) =

(x1, x2), so N is an involutive negator on (L×R,≤t). �

Proof of Proposition 8. Similar to the proof of Proposition 8 in 4. �

Proof of Proposition 9. Similar to the proof of Proposition 9 in 4. �

Proof of Proposition 10. Assume first that N(0L, 0R) = (1L, 1R). For x =

(x1, x2), y = (y1, y2) in L×R we have,

T
∗
N(x, y) = (N1(T (N1(x1),N1(y1))),N2(S(N2(x2),N2(y2))))

= (T ∗
N1

(x1, y1),S∗
N2

(x2, y2)).

Assume now that N(0L, 0R) = (0L, 0R). For x, y in L×R we have,

T
∗
N(x, y) = (ϕ−1(S(ϕ(x1), ϕ(y1))), ϕ(T (ϕ−1(x2), ϕ−1(y2))))

= (Sϕ(x1, y1), Tϕ−1(x2, y2)).

�

Proof of Proposition 11. Similar to the proof of Proposition 11 in 4. The propo-

sition also follows from the fact (see 23,64) that if the partial mappings of T are

join-morphisms (which is always true if T is residuated 65), then T is decompos-

able as the direct product of a t-norm on L and a t-norm on R, i.e. T is (L,R)-

representable. �

Proof of Proposition 12. Similar to the proof of Proposition 12 in 4. �

Proof of Proposition 13. Similar to the proof of Proposition 15 in 4. �

Proof of Proposition 14. Similar to the proof of Proposition 16 in 4. �


