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Abstract

In this paper, we consider assumption-based argumentation frameworks that are based on contrapositive logics
and partially-ordered preference functions. It is shown that these structures provide a general and solid platform
for representing and reasoning with conflicting and prioritized arguments. Two useful properties of the preference
functions are identified (selectivity and max-lower-boundedness), and extended forms of attack relations are
supported (3—attacks and V-attacks), which assure several desirable properties and a variety of formal settings for
argumentation-based conclusion drawing. These two variations of attacks may be further extended to collective
attacks. Such (existential or universal) collective attacks allow to challenge a collective of assertions rather than
single assertions. We show that these extensions not only enhance the expressive power of the framework, but in
certain cases also enable more rational patterns of reasoning with conflicting assertions.

Keywords: Formal argumentation, assumption-based argumentation, preferences, inconsistency management

1 Introduction

Formal argumentation is a useful approach for modeling defeasible reasoning with many fruitful applications
(see, for instance [43, 54, 58]). One of the central approaches in argumentation-based reasoning is known as
assumption-based argumentation (ABA, [15]), where deductive rule-based systems, assumptions, and their con-
traries are incorporated for capturing different forms of non-monotonic inferences (see, e.g., [24, 32, 55] for some
tutorials on ABA systems). In [7, 36] it is shown that simple contrapositive ABA frameworks, a class of ABA
frameworks (ABFs, for short) induced by logics that preserve the rule of contraposition', and whose contrary op-
erator is represented by a negation operator, are particularly suitable for reasoning in the presence of conflicting
arguments and counterarguments.

So far, simple contrapositive ABFs were assumed to be either non-prioritized [36], or based on linear preference
orders among the assumptions [7]. However, in many settings, assuming a total order greatly limits the realistic
modelling capabilities of a formal system, e.g., when different sources of information have different preferences
over the assumptions, or when several considerations should be taken into account for reaching a decision. This is
illustrated in the following example:

Example 1. Suppose that one wants to compare reviews of hotels in a certain city, not only by their final scores,
but by taking into account several considerations, such as location, price, quality of service, etc. In this case, tuples

!Contraposition, or transposition, refers to the process of going from a conditional inference into its logically equivalent contrapositive
inference, in which a formula in the premises and the formulas in the conclusion of the original inference are inverted (negated) and flipped.
See also Section 2.



of values are compared (for example, one hotel may be preferred over the other if it is superior at i > 5 out of the
n components of the respective tuples), and hence the comparison is not strictly linear. Similar comparisons of
numeric tuples are very common in e.g. evaluation systems that take into account multiple ranking criteria (like
search engines of webpages, or reviewing systems of papers submissions). We shall return to this in Examples 7,
8, and 12 below.

The present work takes simple contrapositive ABFs one step forward and shows that the incorporation of partial
orders for making preferences among arguments considerably extends the expressive power of such frameworks
while preserving much of their properties shown in earlier works. Thus, for instance, we introduce several criteria
for comparing sets of arguments, the elements of which are not necessarily mutually comparable with respect to
the preference relations, and consider a new property of the preference setting (‘selecting’ setting, which requires
that the aggregated value assigned to a set of values is one of these values), under which the set of the stable or
preferred extensions of the ABF coincide with the preferred maximally consistent subsets of the set of assumptions.
Together with another property (‘max-lower-boundedness’, which requires that the aggregated value assigned to a
set of values is bounded by these values), further rationality postulates are guaranteed in this setting.

It is important to note that partially-ordered preference relations in ABFs have already been considered in
the literature, most notably in ABA™ systems [23, 26]. However, the latter is adequate only for the weakest link
principle for comparing arguments (taking into consideration the least preferred assumptions of an argument),
while we do not confine ourselves to a particular preference setting. Moreover, as the deducibility relation is
closed under contraposition, we are able to assure some rationality postulates (like tolerance, see Section 6.2),
which are not necessarily satisfied in other prioritized ABFs (such as ABA™, see a discussion in [23]). Finally,
the incorporation of partial orders allows us to consider new forms of attack relations (J-attacks and V-attacks),
which are not supported by strict preferences [7]. This enables some new types of reasoning which were not
available previously. Moreover, in the last part of the paper (Section 7) these two forms of attacks are further
extended to collective attacks, which allow to challenge sets of assumptions rather than single assumptions. This
turns out to be very useful in some cases which are discussed in the paper. In passing, we provide in that part some
new results, including the characterization of grounded extensions in prioritized ABFs (with standard attacks or
collective attacks). To the best of our knowledge, such a characterization has not been obtained before.

This paper is a revised and extended version of the conference papers in [8] (Sections 3-6) and [9] (Section 7).
More specifically, in this paper we provide full proofs for all the results in [8, 9] (For instance, the proofs of
Propositions 1-4 were only highlighted in [8]), as well as some additional results (Propositions 6—8 were omitted
therein), and corrected statements (Proposition 18 explicitly mentions that the underlying logic must be uniform,
i.e., satisfy the condition in Definition 22. This requirement was mistakenly omitted in [9, Proposition 5.18]).
Finally, in comparison to [8, 9], this paper provides further illustrations, more detailed explanations of the technical
notions, discussions of the results, and extended references to related works.

The rest of this paper is organized as follows: The next section contains some preliminaries on (linearly priori-
tized) simple contrapositive ABA. In Section 3 we extend the setting to non-linear preferences. Some properties of
the frameworks that are obtained, including consistency, closure and the existence of extensions, are considered in
Section 4. Relations to reasoning with maximal consistency is discussed in Section 5, and some preference-related
rationality postulates are studied in Section 6. In Section 7 we consider the extension of our setting to collective at-
tacks and again study the consequences of this extension on the resulting frameworks and their semantics. Finally,
in Section 8 we review some related work and conclude.

2 Preliminaries

This section contains some background material for the paper. It is mainly a review of the main concepts that are
introduced in [7, 36]. More specifically, we start with the basic notion of logics (Definition 1), define the simple
contrapositive argumentation frameworks that are based on them (Definition 2), extend these frameworks with
(linear) preferences (Definition 4), and consider the induced entailment relations (Definition 7).



In what follows we shall denote by . an arbitrary propositional language. Atomic formulas in . are denoted
by p,q,r, compound formulas are denoted by y, ¢, o, and sets of formulas in . are denoted by I', A, ® (possibly
primed or indexed). The powerset of .Z is denoted by #(.Z).

Definition 1 (logic). A logic for a language .Z is a pair £ = (Z,}), where I is a (Tarskian) consequence relation
for ., that is, a binary relation between sets of formulas and formulas in ., satisfying the following conditions:

* Reflexivity: if y € T'then I' - .
* Monotonicity: if U yand ' CI”, then I - .
e Transitivity: if Ty and I, w = ¢ then I, T” I ¢.
In addition to the three conditions above, we shall assume that £ satisfies the following standard conditions:
* Structurality (closure under substitutions): if I' - y then 6(T") F 6 () for every .£-substitution 6.
* Non-triviality: there are a non-empty set I" and a formula y such that I" I/ y.
In what follows we shall assume that the language . contains at least the following connectives and constant:
* al-negation —, satisfying: p I/ —p and —p I/ p (for every atomic p).
* al-conjunction A, satisfying: Ty A ¢ iff T wand T'F ¢.
* al-disjunction V, satisfying: ', ¢ Vy - o iff ¢ Foand ', y - o.
* al-implication D, satisfying: I';¢ -y iff ' ¢ D y.
* a-falsity F, satisfying: F - y for every formula .2

We abbreviate {—y| y € T'} by —I', and when T is finite we denote by AL (respectively, by \/I'), the conjunction
(respectively, the disjunction) of all the formulas in I".

Given a logic £ = (Z,F), the F-transitive closure of a set " of .Z-formulas is the set Cn-(I') = {y | T F y}.
When | is clear from the context or arbitrary, we will sometimes just write Cn(I"). Now,

* We say that y is F-tautological if y € Cni-(0), and that I is F-consistent if Cny(T") # £ (Thus, I' t/ F).
Otherwise, we say that I is F-inconsistent.

 £is called explosive, if for every £-formula y the set {y, -y} is F-inconsistent.

» £ is called contrapositive, if (a) = —F and (b) for every nonempty I" and v it holds that I" - -y iff either
y = For for every ¢ € I' we have that '\ {¢ }, w - —¢.

Example 2. Perhaps the most notable example of a logic, which is both explosive and contrapositive, is classical
logic, CL. Intuitionistic logic, the central logic in the family of constructive logics, and standard modal logics, are
other examples of well-known formalisms having these properties.

Note 1. A useful property of an explosive logic £ = (%,F) is that for every set S of #-formulas and every
Z-formulas ¥ and ¢, if Sk y and S+ -y, then S+ ¢.

The following family of assumption-based argumentation frameworks [15] is shown in [36] to be a useful
setting for argumentative reasoning.

Definition 2 (simple contrapositive ABFs). An assumption-based framework (ABF, for short) is a tuple ABF =
(£,T,Ab,~) where:

2In particular, F is not a standard atomic formula, since F - —F.



o £= (% ) is apropositional Tarskian logic.

 T"(the strict assumptions) and Ab (the candidate/defeasible assumptions) are distinct (and countable) sets of
Z-formulas, where the former is assumed to be --consistent and the latter is assumed to be nonempty.

o ~:Ab — () is a contrariness operator, assigning a finite set of .£-formulas to every defeasible assump-
tion in Ab, such that for every consistent and non-tautological formula y € Ab\ {F} it holds that y I/ A~y

and A~y i/ .

A simple contrapositive ABF is an assumption-based framework ABF = (£, T, Ab, ~), where £ is an explosive and
contrapositive logic, and ~ y = {—y}.

Example 3. A party is planed, and the organizers are debating which snacks to get. Some of them are in favor of
having pineapple pizza (p), while others are opposing to this choice (—p). On the other hand, everyone supports
quesadilla (g). We, as guests, do not know what was eventually decided. This simple situation may be represented
by the assumption-based argumentation framework ABF = (£,T,Ab,~), where £ = CL,I' =0, Ab = {p,—p,q},
and ~y = {—y}. In this case we don’t have any strict assumption, while the set of the defeasible assumptions is
inconsistent. As this ABF is based on classical logic, by Example 2 it is simple contrapositive.

Defeasible assertions in an ABF may be challenged (attacked) in the presence of a counter defeasible informa-
tion. This is described in the next definition.

Definition 3 (attacks). Let ABF = (£,T",Ab,~) be an assumption-based framework. We say that A C Ab artacks
v eAb (wrt. ) iff I, A ¢ for some ¢ € ~y. Accordingly, A C Ab attacks ® C Ab, if A attacks some y € ©.

Example 4. Consider again the ABF of Example 3. The attack diagram for this ABF is shown in Figure 1a, where
an arrow represents an attack from the set at the origin of the arrow on the set that is indicated by the arrow.’
Note that since in classical logic inconsistent sets of premises imply any conclusion, the classically inconsistent
set {p,—p,q} attacks all the other sets in the diagram (For instance, {p,—p,q} attacks {¢}, since p,=p,q+ —¢q).*

In [7], simple contrapositive ABFs are augmented with preferences among the defeasible assumptions. Intu-
itively, in what follows smaller values indicate higher preferences.

Definition 4 (linearly prioritized settings and pABFs). A (linearly) prioritized assumption-based framework
(linear pABF, for short) is a pair pABF = (ABF, Z?), where ABF is a simple contarpositive assumption-based
argumentation framework and & = (g, f) is a linear prioritized setting, in which:

* g:Ab — Nis a total function, called linear allocation function, We denote: g(A) = {g(8) | 6 € A}.

* fis a numeric aggregation function: a total function that maps multisets of non-negative natural numbers
into a non-negative real number, such that Vx € N f({x}) = x. We also assume that an aggregation function is
C-coherent in its values, namely, it is either non-decreasing with respect to the subset relation (f(X’) < f(X)
whenever X’ C X) or non-increasing with respect to the subset relation (f(X’) > f(X) whenever X’ C X).

Intuitively, g(¢) represents the strength of the assumption ¢, where lower numbers indicate higher strengths.
Aggregation functions then provide a method to assign a single strength value to a set of assumptions on the basis
of the strengths of the composite members. These values are taken into account when defining attacks in pABFs,
to prevent situations in which the set of attacking arguments is strictly weaker than the attacked argument:

3By Note 2 below, we include in the diagram only closed sets (i.e., only subsets A C Ab such that A = AbNCn (TUA) (see Definition 6).
Thus, the set {p, —p} is omitted from the diagram.

“#Notice furthermore that the emptyset does not attack {p,—p}, as 0t/ p and @ I/ —p: the attacks used in assumption-based argumentation
are pointed in the sense that the contrary of a single assumption needs to be derived for an attack to take place. This restriction will be relaxed
in Section 7.



Definition 5 (linear p-attack). Let pABF = (ABF, &) be a prioritized ABF with &2 = (g, f), and suppose that
A C Ab attacks y € Ab (Definition 3).

» The H-attacking value of A on y is defined by:

vals o (A, w) = min{f(g(A")) | A" is a C-minimal subset of A that attacks y}.>

» We say that A linearly p-attacks y if valy o (A, y) < f(g(y)). We say that A linearly p-attacks © if A linearly
p-attacks some y € O.

Thus, a set of assumptions A linearly p-attacks an assumption y iff A attacks y and the Z?-attacking value
of A on v is less than or equal to the &-value of y. The attacking value of A is determined according to the
P-value of the C-smallest subsets of A that attacks y. The reason for considering only C-smallest subsets is to
avoid including in the attacking sets irrelevant formulas that might unjustifiably affect the &?-value of these sets.

Example 5. Consider the pABF that is obtained from the ABF of Example 3, together with the allocation function
g(p) =1, g(—p) =2, g(g) = 3, and the aggregation function f = max. The diagram of the linear p-attack of the
prioritized ABF is shown in Figure 1b.

{r.q} /NO {p.q} /NO

{p.—p.q} — {4} {p,~p.qa} — {4}
o en =" 0 o en 0
(a) Example 4: All the attacks (excluding preferences) (b) Example 5: Only the linear p-attacks

Figure 1: Attack Diagrams for the ABF in Example 3

The last definition gives rise to the following adaptation to pABFs of the usual Dung-style semantics [31] for
abstract argumentation frameworks.

Definition 6 (extensions and semantics). Let pABF = (ABF, &7) be a pABF, where ABF = (£,T",Ab,~), and let
A C Ab. Below, the maximum and the minimum are taken with respect to set inclusion. We say that:

» Ais closed (in pABF) if A= AbNCn-(TUA).
¢ Ais conflict-free (in pABF) iff there is no A’ C A that linearly p-attacks some ¥ € A.

* Ais naive (in pABF) iff it is closed and maximally conflict-free.

A defends (in pABF) a set A" C Ab iff for every closed set © that linearly p-attacks A’ there is A” C A that
linearly p-attacks ©.

e Ais admissible (in pABF) iff it is closed, conflict-free, and defends every A’ C A.
* Ais a complete extension (in pABF) iff it is admissible and contains every A’ C Ab that it defends.

* Ais a well-founded extension (in pABF) iff A = N{® C Ab | ® is complete}.5

SWhen A’ = 0, we let f(g(A")) =0.
6Clearly, the well-founded extension of a pABF is unique.



* Ais a grounded extension (in pABF) iff it is minimally complete.
* Ais a preferred extension (in pABF) iff it is maximally admissible.’
* Ais a stable extension (in pABF) iff it is closed, conflict-free, and linearly p-attacks every ¥ € Ab\ A.

Note 2. As shown in [7, 36], for (linearly ordered) simple contrapositive ABFs the closure requirement in Defini-
tion 6 is redundant. We shall therefore disregard it in what follows (see also Section 4.2 below).

The set of the complete (respectively, the naive, grounded, well-founded, preferred, stable) extensions of pABF
is denoted Cmp(pABF) (respectively, Naive(pABF), Grd(pABF), WF(pABF), Prf(pABF), Stb(pABF)). In what
follows we shall denote by Sem(pABF) any of the above-mentioned sets. The entailment relations that are induced
from an pABF (with respect to a certain semantics) are defined as follows:

Definition 7 (entailments). Given a prioritized assumption-based framework pABF = (ABF,#?) and Sem €
{Naive,Cmp, WF, Grd, Prf,Stb}, we denote:

* pABF |~ yiff [,AF y for every A € Sem(pABF) (these entailments are called skeptical).
* pABF |~ W iff T,A - y for some A € Sem(pABF) (these entailments are called credulous).
Note 3. Some remarks are in order here:

1. The consequence relation |- is defined by the core logic £ of ABF (Definition 2) and as such it determines
the attack relations between the defeasible assertions in ABF. In particular, this relation is monotonic (Defi-
nition 1). The entailment relations |~ in Definition 7 are constructed on top of F-. They are used for drawing
conclusions from the underlying assumption-based framework. In general, these relations are not monotonic
(see, e.g., [7, 35], as well as Section 6 below).

2. Unlike the standard consequence relations -, which are relations between sets of formulas and formulas,
the entailments |~ that are defined in Definition 7 are relations between pABFs and formulas. This will not
cause any confusion in what follows.

3. As indicated previously, in our formalism preferences are used for validating attacks, namely: to prevent
situations in which arguments with lower priority attack arguments with higher priority. Instead, one could
think of using priorities to filter out some conclusions (e.g., those below a certain threshold value). Some
problematic consequences of such an alternative application of argumentative semantics and its undesired
effects on the entailments relations that are obtained are demonstrated in [53, Section 3.2.1] (see in particular
Examples 13 and 16 therein).

Example 6. Consider again Example 3, where £ = CL, I' = 0, and Ab = {p,—p,q} (see also Figure la). Here,
Naive(ABF) = Prf(ABF) = Stb(ABF) = {{p,q},{-p,q}}.} thus ABF |~<_ ¢ for every * € {U,N} and Sem €
{Naive, Prf,Stb}. Also, Grd(ABF) = WF(ABF) = {0}, since there are no unattacked arguments, thus when all the
assumptions have the same priority, we have that for x € {U,N} and Sem € {Grd, WF} it holds that ABF |~ ¢ v
only if V¥ is a classical tautology.

When preferences are incorporated as in Example 5 (see Figure 1b), we have that Cmp(pABF) = Grd(pABF) =
WF(pABF) = Prf(pABF) = Stb(pABF) = {{p,q}}. It follows that pABF |~¢.., p and pABF |~¢.. ¢ for every
semantics Sem € {Cmp, WF, Grd, Prf,Stb} and every * € {U,N}. Note that in case that the value of ¢ is smaller
than those of p and —p, the set {p,—p,q} does not attack the sets {¢} and {p,q}, in which case the set {g} also
belongs to Cmp(pABF). In this case, Grd(pABF) = WF(pABF) = {{¢}}, while Prf(pABF) = Stb(pABF) =

{{p,q}}.

7Preferred extensions are sometimes regarded as maximally complete sets. It can be verified that the two definitions are equivalent. This
and other relations among the concepts in this definition, as well as further types of Dung-style semantics, can be found e.g. in [11, 12].
8Note that {p} is not complete (thus it does not belong to any of the above-mentioned sets), since it defends ¢, which is not in {p}.




3 Non-Linear Preferences

We now generalize the setting to preferences that do not necessarily have a strict (linear) order. This considerably
extends the expressive power of the frameworks, as demonstrated next.

Example 7. The following scenario resembles the motivating illustration in the introduction (Example 1). A tourist
considers two restaurants r;, ro and a coffeehouse c, where one restaurant at the most may be visited. This may
be represented by an ABF with a strict assumption —(r; Ary) and the set {r;,rs, c} of defeasible assumptions.

In a linear comparison, only one numerical value can be attributed to each dining place, while in a comparison
according to a partial order ratio one can refer to a vector of values taking into considerations several aspects, e.g.,
(g, p,s), representing food quality, price, and service. Suppose, for instance, that a website offers evaluations of
these places along these three criteria, on a descending scale of 1 to 5 (i.e., 1 is the highest value) . Suppose further
that r is evaluated by (2,3,3), the scores of rj are (4,2,2), and the scores of c are (3,3,3). One way to compare
these vectors is by deciding that one place is preferred (<-smaller) over the other iff it receives equal or higher
scores in all aspects. Then r, is preferred over c, while r, is <-incomparable with both r; and c.

For supporting non-linear preferences, we generalize the definitions of Section 2 in several ways:
* Linear allocation functions are traded by allocation functions whose values need not be linearly ordered,

* Numeric aggregation functions are replaced by aggregation functions that need not be numeric: their ranges
are sets of (partially ordered) valued rather than numbers,

* A quantitative evaluation indicator + € {3,V} indicates how the aggregated sets should be collectively
evaluated. Accordingly, we trade linear p-attacks by f-p-attacks.

In the following definition, as in the linear case, v{ < v; is intuitively understood as a preference of v; over v;.
Thus, vi < v, means that vy is ‘at least as preferred as’ v,.

Definition 8 (prioritized settings; Definition 4 extended). Let P = (V, <) be a partial order.
e vy € Vis (strictly) 3-P-stronger than V, C V iff there is some v, € V, such that vi < v,.
e vy € Vis (strictly) V-P-stronger than V, C V iff for all v, € V; it holds that v < v;.

* A P-allocation function on Ab (or just an allocation function, when P is known or arbitrary) is a total function
g:Ab — V. We denote g(A) = {g(8) | § € A}.

* An aggregation function on V is a total function f : g(V) — @(V)\ 0, such that £(S) =S if S is a singleton.”

* A prioritized (or preference) setting for Ab is a quadruple &2 = (P, g, f, ), where g is a P-allocation function
on Ab, f is an aggregation function on {g(A) | A C Ab}, and T € {3,V}.

Thus, prioritized settings endorse two ways of comparing a set V of values with a single value v: by 3-P-
comparison it suffices to find a single value in V that is weaker than v, whereas the V-P-comparison requires that
every value in V is weaker than v.

Note 4. Clearly, there are other possibilities to compare a value to a set of values, but the ones in Definition 8
are probably the most natural comparisons. A different comparison may be, for instance, to define that v; € V is
max-P-stronger than V, C V iff v; < v; for every vo € max(V2), where max(S) = {x € S| =3y € S such that y > x}.
Another option would be to define that v; € V is 3,,-P-stronger than V, C 'V if there are at least n distinct elements
vz € V5 such that vi < v,. We conjecture that most of such alternative comparisons can be captured by a clever
adaptation of the original aggregation. For example, ‘max-P-stronger’ can be captured by using max(f(g(-))),
where f and g are respectively the original aggregation and allocation functions, whereas ‘3,-P-stronger’ can be
represented by adapting the aggregation function to the one that selects n maximal elements from f(g(V»)) and
using the V-P-comparison.

In what follows we shall usually identify singletons with their elements.



Example 8. In Example 7, g(r;) = (2,3,3), g(r2) = (4,2,2), and g(c) = (3,3,3) form a partial order in which
g(r1) < g(c) and the other values are incomparable. Thus, g(r;) is 3-stronger, but not V-stronger, than {g(r),g(c)}.
Aggregation functions in this case (or for any complete lattice) may be, e.g., the identity, the summation Xycgx, the
least-upper-bound lub(S), the <-maximum max(S) = {x € § | =3y € S such that y > x}, the greatest lower bound
glb(S), the <-minimum min(S) = {x € S | =3y € S such that y < x}, and so forth.

Note 5. Let P = (V, <) be a partial order.

1. Clearly, for every v € V and V C V, if v is V-P-stronger than V, then v is 3-P-stronger than V, but not
necessarily vice-versa (as Example 8 shows).

2. For any t € {3,V}, the relation “strictly t-P-stronger” preserves the relations < on singletons: v; < vy iff v;
is strictly T-P-stronger than {v, }.

3. When P is linear, the claim that v is strictly 3-P-stronger than V means that v < max (V) and the claim that v
is strictly V-P-stronger than V means that v < min(V).

Next, we consider some properties of preference settings. These properties will later be useful in showing
rationality postulates and other attributes of the resulting entailment relations. We start with reversibility.

Definition 9 (reversibility). Let & = (P, g, f, ) be a preference setting for Ab, A C Ab a nonempty set of formulas,
and Y € Ab a formula.

* ¢ <p Aif f(g(¢)) is strictly t-P-stronger than f(g(A)).
o P is reversible, if when ¢ <5 A, thereisa d € Asuchthat d £ AU{¢}\{d}.

Thus, & is reversible if, whenever an assumption ¢ is strictly {-P-stronger than A, we can substitute ¢ for
some & € A and end up with a set of assumptions AU{¢} \ {0} that is not strictly -P-weaker than §. As we will
show in what follows, reversibility is an important condition to ensure several basic rationality postulates, such as
consistency (see Proposition 1).

The next lemma shows that the notions above generalize the corresponding notions for linear orders.

Lemma 1. Let 3= (P, g, f,3) and Py = (P, g, f,V) be two preference settings in which P is linear, and the range
of f is restricted to singletons (that is, f is of the form (V) — 'V, similar to the way it is defined in Definition 4).
Then:

(a) Quantifications over the priority values has no role in this case: <z, = <g,. Furthermore, for every
TE{IVLif o <z, Athen ¢ <z, A and § <z, Aiff ¢ 2, A.

(b) Both <, and < g, are total.

(c) Forevery t € {3,V}, P is reversible according to [7, Definition 10] iff it is reversible (according to Defi-
nition 9).10

Proof. Let &5 and 22, be as in the lemma. Then:

(a) For every X C V there is some x € V such that f(X) = {x}. Thus, f(g(¢)) is strictly 3-P-stronger than
f(g(A)) iff f(g(¢)) is strictly V-P-stronger than f(g(A)). It follows, then, that under the conditions of the
lemma, the definitions of <4, and <, coincide.

(b) Consider some AU{¢} C Ab. Clearly, since f(g(9)) < f(g(A)) or f(g(9)) > f(g(A)) (where the compari-
son is over singletons whose elements are linearly ordered), < P is total for every T € {3,V}.

101 [7] the settings are triples, without quantitative indicators, but as Item (a) of the lemma shows, under the assumption of the lemma
quantitative indicators are not relevant.



(c) Let ¥ € {3,V}. For the =-direction, consider some AU{¢} C Ab s.t. A >z, ¢. Then A >4, ¢ (see
Item (a) of this lemma) and with reversibility according to [7, Definition 10], there is some § € A s.t.
AU{¢}\ {0} <, 0, and again by the first item of this lemma, AU{¢}\ {3} #», &

For the <-direction, consider some AU {¢} C Ab s.t. A >z, ¢. A% », ¢ then we can set ¢ = S. By the
second item of the lemma, A <. ¢. Thus AU{¢}\ {8} <. 6. Otherwise, with reversibility, there is some
0 €As.t. AU{¢}\ {6} ¥, 6. By the second item of the lemma, this implies that AU{¢ } \ {6} <5, 6. O

Example 9. As shown in [36], for every allocation function g, the linear preference settings (g, min) and (g, max)
are reversible. Thus, by Definition 9, for every T € {3,V}, the preference settings (N, g, min, T} and (N, g, max, )
are reversible as well. It is not difficult to check that this carries on to every finite partial order P (so every set
has a minimum and a maximum). For similar reasons, for every complete lattice P, allocation function g, and
t € {3,V}, the preference settings (P,g,glb,t) and (P, g,lub,t) are reversible. Clearly, the summation is not
reversible (consider, e.g., a summation over a uniform allocation).

The next property ensures that f(g(A)) is a selection of values in {f(g(5)) | 6 € A}, i.e., f(g(A)) does not
introduce ‘new’ values other than those that are assigned to the elements in A.

Definition 10 (selecting property). A preference setting &2 = (P, g, f, 1) for Ab is called selecting, if for every
nonempty set A C Ab it holds that f(g(A)) C Usca f(g(8)).

Example 10. The preference settings (P, g, min, T) and (P, g, max, 1), where max(X) = {x € X | Ay € X s.t. y > x}
and min(X) = {x € X | Ay € X s.t. y < x} are selecting for every g and 1 € {3,V}.

Note 6. Suppose that & = (P, g, f, 1) is a selecting preference setting, where P is linear and the range of f is
restricted to singletons. Then mingcp f(g(8)) < f(g(A)) < maxgea f(g(8)). The fact that f(g(A)) is bounded
above by maxgea f(g(0)) is called in [7] max-upper boundedness.

Lemma 2. A selecting preference setting is also reversible.

Proof. Let Z be a selecting preference setting, and suppose that ¢ < 5 A. We show that there is a 8’ € A such that
&8 £ AU{¢}\ &' Indeed, by the assumption, f(g(¢)) is strictly T-P-stronger than f(g(A)), thus f(g(¢)) < x
for some (when T = 3) [for all (when T = V)] x € f(g(A)). Consider some 8’ € A such that f(g(6")) £ f(g(J)) for
every 8 € A. Suppose towards a contradiction that 8’ <z AU{¢}\ 6’. Then for some [for all] x € f(g(AU{¢}\
8’)) it holds that f(g(8")) < x. By the selecting property, there is some y € AU{¢}\ d s.t. f(g(y)) =x. Since
f(g(8") &£ & for every & € A, necessarily 8’ = ¢. Thus, f(g(8")) = f(g(¢)) < x for some [for all] x € f(g(A)).
But then (again, by the selecting property), there is some & € A s.t. f(g(6")) < f(g(8)), a contradiction to the
choice of &' O

Definitions 2 and 4 are now generalized as follows:

Definition 11 (pABF). A prioritized assumption-based framework (prioritized ABF, or pABF, for short) is a
pair pABF = (ABF, &), where ABF = (£,T",Ab, ) is a simple contrapositive assumption-based argumentation
framework and & is a prioritized setting for Ab. We shall say that pABF = (ABF, &) is reversible/selecting, if so
is Z.

The attack relations in pABFs are generalized as well.

Definition 12 (p-attack; Definitions 3 and 5 extended). Let pABF = (ABF, %) be a prioritized ABF with
ABF = (£,T,Ab,—) and & = (P, g, f,T). Letalso A,® C Ab and y € Ab.

* We say that A attacks y (w.r.t. I') iff I, A= —y. Accordingly, A attacks ® if A attacks some y € ©.
* Suppose that A attacks y . The Z-attacking values of A on y are the elements of the set

vals o (A, w) = {f(g(A")) | A" is a C-minimal subset of A that attacks y}.!!
1 Again, we let f(g(A')) = 0 when A’ = 0.




» We say that A t-p-attacks y iff A attacks y and there is a set of attacking values V € valy4(A, y) (i.e.,
V = f(g(A")) for some C-minimal subset A" of A that attacks ), such that f(g(y)) is not strictly -P-
stronger than V. We say that A f-p-attacks @ if A {-p-attacks some y € ©.

Thus, a set A f-p-attacks a formula v if it has a subset A’ that attacks ¥ and @ £ 5 A’. The intuition behind
T-p-attacks is that an attack by A on the assumption y is successful if the attacking A is not strictly weaker than the
attacked assumption y according to the preference setting #2.'2 In more detail, the attack forms may be described
as follows:

* A V-p-attacks y if there is a C-minimal subset A" of A that attacks y, and there is a v € f(g(A")) s.t.

f(g(y)) £v.

¢ A F-p-attacks y if there is a C-minimal subset A’ of A that attacks y, and there is no v € f(g(A")) s.t.
fle(y) <v.

Lemma 3. If A 3-p-attacks y then A V-p-attacks .

Proof. Suppose that A 3-p-attacks y. Then A attacks y and there is a set of attacking values V € valy4(A, y)
such that f(g(y)) is not strictly 3-P-stronger than V. Thus, f(g(y)) is not strictly V-P-stronger than V, and so A
V-p-attacks y. O

Example 11. Consider again the ABF of Example 3, this time with the preference values V = {a,b,c,d} in which
a,b,c are <-incomparable and x < d for every x € {a,b,c}, and where the allocation function g is defined by:
8(p) =a. g(-p) = b and g(q) = c. Now, A= {p,~p,q} attacks g, but:

1. If £(S) = lub(S), then we have that vals4(A,q) = {f(¢({p,—p}))} = {{d}}, and since d > ¢ = f(g(q)) it
follows that A does not T p-attack ¢ for any € {V,3}.

2. If f(S) =min(S) ={xe S| -Jye Ss.t. y <x}, thenvals, (A, q) = {f(g({p,—r}))} = {{a,b}}, and c =
f(g(q)) is not <-smaller than a or b. Thus, A T-p-attacks g for every t € {V,3} in this case.

3. Suppose that ¢ < a < d, and the rest is the same as in the previous item (namely: a,b are <-incomparable,
x < d for every x € {a,b,c}, and the aggregation function is f(S) = min(S)). Then we still have that
valyo(A,q) = {{a,b}}, so this time f(g(g)) is not strictly V-P-stronger than valy ¢(A,q) (since ¢ and b are
<-incomparable), but it is strictly 3-P-stronger than vals 4 (A, q) (since ¢ < a). Thus, A V-p-attacks ¢ but it
does not 3-p-attacks ¢.'3

Note 7. Let T € {3,V}. A set A t-p-attacks y iff T-valJIé,(A, y) # 0, where T-valf_é(A, y), the set of the f-p-
attacking subsets of A on y, is defined as follows:

T-val;lg (A, ) ={A"| A is a C-minimal subset of A that attacks ¥, and ¥ £ » A'}.

Note 8. When P = N and f is a numeric aggregation function, Definitions 8 and 12 are respectively equivalent
to Definitions 4 and 5 (since f(g(A)) < f(g(¢9)) iff f(g(A)) # f(g(¢)) for any total order <), thus the formers
definitions are a generalization to arbitrary partial orders of the latter definitions.

As in the non-prioritized case and when priorities are linearly-ordered, also in the non-linear case (f-p-)attacks
are closed under supersets:

Lemma 4. If A f-p-attacks ©, so does any superset of A.

12 A5 attacks take place from sets of assumptions to single assumptions, it is sufficient to have a way to compare a set of assumptions with a
single assumption (as in Definition 8), and it is not necessary to compare two sets of assumptions.
3 This also shows that the converse of Lemma 3 does not hold.
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Proof. Let A C A and suppose that A f-p-attacks ©. Then there is a ¥ € © such that A attacks , and there is
some A, € T—val;;(A, y), i.e., A C Ais a minimal subset that attacks y, and ¥ %T@ A

Now, by the monotonicity of -, A’ also attacks W. Moreover, A,, is still a C-minimal subset of A’ that attacks
v €O (and ¥ £ Ay), thus A, € T—val;lg(A’7 v). By Note 7, then, A’ also f-p-attacks y. O

All the other definitions (including those of the semantics and the induced entailment relations) are similar to
those of linear preferences (i.e., as in the previous section), where 7-p-attacks replace linear p-attacks.

Example 12. Let’s reconsider the prioritized ABF from Examples 7 and 8 with the setting & = (P, g, f, 1), where
f is either min or max and € {3,V}. The corresponding attack diagram is presented in Figure 2.4

{rn} ~———{n}

{c}

{r2, ¢} =———{r1,¢}
Figure 2: An attack diagram for Example 12

It follows that according to the grounded or the well-founded extension, which is {c} in this case, the tourist
will visit only the coffeehouse, while according to the preferred or the stable extensions (which are {r;,c} and
{ra,c}) the tourist will visit also (exactly) one of the restaurants. The scores do not dictate which restaurant should
be chosen, so further considerations may be taken in this case (e.g., the total distances from the present location of
the tourist to the destinations).

To illustrate the modularity of the framework, we conclude with a demonstration of reasoning with a pABF
that is based on an epistemic logic. Clearly, different epistemic logics can be incorporated for different settings.

Example 13. A layman /, believing —p, consults with two experts: one (e) thinks that p A g while the other (e;)
thinks that p A —q. The superiority of the experts’ opinions over that of the laymen is represented by a partial order
P =(V,<) in which V = {ey,e2,l}, where e; <[ and e, < I.

We want to realize the common belief (preceded by the modal operator B) on the basis of this scenario. For
this, we incorporate modal operators B, for expressing the belief of the agents x € {e1,e;,/}, and introduce strict
premises by the scheme B,y O By for each such x. This may be represented by a KD-based'> framework pABF =
(ABF, &7), in which:

* ABF = (KD,I",Ab,-), where I' = {B,y D By | x € {e},e2,l}} and Ab = {B,, (p Aq), Be, (P N—q), Bi(—p)},

o = (P,g f, 1), withg(B., (pNq)) =e1, 8(Be,(PNq)) = €2, g1(Bi(—p)) =1, f € {min, max} and } € {V,3}.

We show, for instance, that in this setting B,, (p A —¢q) attacks B;(—p): Suppose that B., (p A —q). By Axiom K
we have B.,(p), and by the strict assumptions we get B(p). Now, by Axiom D we infer —B(—p), and since
—B(—p) D —B;(—p) (contraposition of one of the strict assumptions), Modus Ponens gives —B;(—p), as required.

The f-p-attack diagram is then represented in Figure 3.

This results in the following preferred (and stable) extensions: {B., (p Aq)} and {B.,(p A—q)}. The well-
founded and grounded extension, on the other hand, is the emptyset in this case. We thus conclude that, e.g., Bp is
derived from both preferred/stable extensions (accepting the consensual part of the conflicting experts’ opinions),
but it is not derived from the grounded extension.'®

Notice, for instance, that {r2,c} -attacks r even though g(r1) < g(c), since vals¢({r2,c},r1) = {f(g({r})} = {(4,3,3)} and g(r1) %
(4,3,3).

15For a description of KD and other modal logics, see, e.g., [22].

161nterestingly, if the assumptions were Be, P, Be, —q, B., p and B,, g, the grounded extension would be different: {B,, ~q,B.,q}, but still it
wouldn’t allow to infer Bp.
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{Bi(=p)}

/N

{Bez(p/\_‘q {Bm p/\Q)}
~N—_

Figure 3: An attack diagram for Example 13

4 Basic Properties of pABF's

In this section we consider some basic properties of pABFs and their extensions. Three primary aspects of the
extensions are considered: their consistency (Section 4.1), closure (Section 4.2), and existence (Section 4.3).

4.1 Consistency of Extensions

We start by showing that the (conflict-free) extensions of reversible pABFs are consistent (Corollary 1 below). For
this, we first need two lemmas.

Lemma 5. Let pABF = (ABF, &) with ABF = (£,T',Ab,—) and & = (P, g, f, ) be a reversible prioritized ABF,
and let A C Ab be a conflict-free set of assumptions. Then for no 8 € A it holds that T',A - —0.

Proof. We show this by induction on the size of A.

e For the base case let A= {0}. If ", 0 - =4, then and since for any aggregation function f, f(g(5)) = g(9),
we get that {0} f-p-attacks &, a contradiction to A being conflict-free.

e For the induction step, suppose that the lemma holds for any proper subset of A. Suppose towards a contra-
diction that I, A+ -6 for some & € A, and let A’ be a C-minimal subset of A such that I, A" - —8. If f(g(8)) is
not strictly t-P-stronger than f(g(A')) (i.e., § £ A), then A’ € t-val; l(A 8), and so A’ f-p-attacks §, which by
Lemma 4 means that A -p-attacks 9, contradicting the assumption that A is conflict-free.

Suppose then that f(g(8)) is strictly T-P-stronger than f(g(A")) (i.e., 8 <» A'). By reversibility, there is
a formula 6’ € A’ such that f(g(8')) is not strictly T-P-stronger than f(g(A’U8\ 8’)) (s0o &' £ A'US\ &').
Since ABF is contrapositive, I, A" U8 \ 6’ - —=8’. Suppose first that there is no proper subset @ C A'U S\ &’ s.t.
[L®F 8. Then AU\ € T-valj?\y}g (A, 8"), thus (Note 7) A p-attacks &', contradicting A being conflict-free.
Suppose now that there is some @ C A’U 8\ 8’ such that I, ® - =§’. Since § € A, it holds that A'US\ 6’ = A\ &'.
Thus, ® U6’ C A. Since A is conflict-free, @ U &’ is conflict-free. But then I', @ U &’ - =8’ is a contradiction to the
induction hypothesis. O

Lemma 6. Ler pABF = (ABF, &) with ABF = (£, T",Ab,—) and &? = (P,g, f,T) be a reversible prioritized ABF,
and let A C Ab be a conflict-free set of assumptions. If A attacks y then either A t-p-attacks y or there is § € A
such that A\ {8} U{y} T-p-attacks d.

Proof. Since A attacks y, we have that I',A - —y. Consider a C-minimal set A’ C A such that T,A’ - —y. If
f(g(w)) is not strictly t-P-stronger than f(g(A’)) (i.e., w £ A), then A’ € T—val;fg(A, y), and so by Note 7 it
follows that A f-p-attacks y, which implies the lemma.

Suppose then that f(g(y)) is strictly {-P-stronger than f(g(A")) (i.e., w <4 A’). By reversibility, there is
6’ € A such that f(g(8')) is not strictly t-P-stronger than f(g(A"Uw\ §')) (i.e., 8’ £ AUw\ &’). Since by
contraposition I, AUy \ §' = —8’, namely: A'Uy\ 8’ attacks &, it remains to show that A’U y\ &’ is a C-minimal
subset of A that attacks §', from which it will follow that A’ U y\ &’ T-p-attacks &'.

Indeed, suppose towards a contradiction that there is a ® C A'U y\ &’ that attacks &’. Suppose first that v & ©.
Then ® C A/, which with monotonicity means that I’ A’ - —4. But this contradicts Lemma 5 and A’ being conflict-
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free. Suppose now that y € ©. Then by contraposition, [,@U &’ \ w = —y. Since ® C AUy \ 8’ and 8’ € A, it
holds that ® U 8"\ w C A/, and thus we have a contradiction to the C-minimality of A. O

Note 9. By Lemma 2, the last two lemmas hold in particular for selecting pABFs. Moreover, by Lemma 6 and
the proof of Lemma 2 it can be shown that if pABF = (ABF, &) is selecting, and A C Ab is a conflict-free set that
attacks v, then either A f-p-attacks y, or there is a 8 € A, where f(g(0)) C Usea(f(g(0))), such that A\ dU{y}
t-p-attacks &.

By the lemmas above, we can show the following proposition:

Proposition 1. Let pABF = (ABF, &) be a reversible prioritized ABF. Then pABF satisfies the following consis-
tency postulate [19]: There is no conflict-free set A C Ab such that I',A = —y for some y € A.

Proof. Suppose for a contradiction that I', A = -y for some conflict free A C Ab and y € A. By Lemma 6, either
A f-p-attacks y or there is a 8 € A such that A\ 6 U{y} T-p-attacks 8. Since A\ d U{y} C A, in both cases we
get a contradiction to the assumption that A is conflict-free. O

Consistency now immediately follows from the last proposition:

Corollary 1. Let pABF = (ABF, 2?) be a reversible prioritized ABF. If A C Ab is conflict-free, then TUA is
F-consistent.

Proof. Follows from Proposition 1: If 'UA is not F-consistent, then in particular I',A - =y for every y € A,
contradicting Proposition 1. O

In [7] is it shown that the reversibility requirement from the aggregation function in Proposition 1 (and in
Lemma 5) is indeed necessary, even for the particular case that the aggregation function is numeric (and so linear)
and its range consists of singleton sets.

4.2 Closure of Extensions

Next, we consider the closure requirement from extensions (see Definition 6). First, we note that as shown e.g.
in [7, Example 13], this requirement is in general not redundant in prioritized ABFs. However, as we show below,
under the assumption that the aggregation function is reversible, the closure requirement may be lifted. This
result generalizes similar results shown in [36] for simple contrapositive ABFs without priorities and in [7] for
linearly-ordered prioritized ABFs (see also Note 2).

First, we show the redundancy of the closure requirement in the definition of stable semantics.

Proposition 2. Let pABF = (ABF, &), where ABF = (£,T",Ab,—) and & = (P, g, f,1), be a reversible prioritized
ABF. Then the closure requirement is redundant in the definition of stable extensions (Definition 6): Any conflict-
free A C Ab that t-p-attacks every W € Ab\ A is closed.

Proof. Suppose that A f-p-attacks every ¥ € Ab\ A, yet I';A+ ¢ for some ¢ € Ab\ A. Since A T-p-attacks ¢, it
holds that I'; A —¢. Thus, by Note 1, we have that I', A+ F. On the other hand, since A is conflict-free and pABF
is reversible, by Corollary 1, I'UA is --consistent, a contradiction. O

For a similar result concerning preferred extensions, we need the following lemma:

Lemma 7. Let pABF = (ABF, 2?), where ABF = (£,T",Ab,—) and & = (P, g, f,1), be a selecting prioritized
ABE, and let A be a conflict-free set in Ab. Then A is maximally admissible iff it T-p-attacks any ¥ € Ab\ A.
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Proof. One direction is clear: as already shown in [31] (for regular attacks), if a conflict-free A {-p-attacks any
Yy € Ab\ A it must be maximally admissible. Let now A be a maximally admissible set and suppose towards a
contradiction that there is some y € Ab\ A s.t. A does not t-p-attack y. Let {y1,..., ¥, } = Ab\ A s.t. g(y;) #
g(w;) when i < j (that is, the y;’s are all the assumptions not in A, arranged in a partial order according to theirs
strengths). We now construct an admissible set A* s.t. A C A*, which contradicts the maximal admissibility of A.
We define: A* = Uizo A;, where: Ag =A and forevery 0 <i<n-—1,

Ay = AUy} T A i,
" A; otherwise.

e We first show that [C1]: forno i > 0, if y; € A; then T, A; F —y;.

The case where i = 0 is clear, since A is conflict-free. Now, given any i > 0, suppose towards a contradiction that

(*) Wit € Aigr, yet (o) T Aip g = =gy

By the construction of A;1, (%) means that I',A; i/ =yt 1. Thus A;; # A; (otherwise we get a contradiction to
(x%)),1.., Air1 = A;U{¥;11}, and so (xx) means that T', A;, W11 F =iy . By contraposition, I', A;\ 8, Wi F -6
for any & € A;, and by contraposition again I', A;, = =y;. 1, a contradiction to the assumption that T', A; I/ =y, ;.

e We now show that [C2]: for every i > 0, A; is conflict-free.

We show this by an induction on i: The inductive base is clear since A is conflict-free. For the induction step,
suppose that [C2] holds for A; and suppose towards a contradiction that A;;; p-attacks some ¢ € A;y;. This
means, in particular, that I'; A1 - —¢. If y;11 € Aiy1 then A; = A1 and by the induction hypothesis A; = Ay is
conflict-free, so we are done. If W1 € A;1 then by C1, ¢ # w11, and so ¢ € A; (since A;r; = A;U{y;41}). By
contraposition, I', (Ai+1 \ Wit1),¢ b —yiy 1. Notice that since ¢ # W;11, we have that (A;1; \ Y1) U@ = A; and
thus the last entailment means that I', A; - =y 1, which contradicts W1 € Aj41.

e We now show that [C3]: A* is admissible.

Suppose towards a contradiction that some ® C Ab f-p-attacks A* and A* does not T-p-attack ®. Since A* does not
t-p-attack ©, and A C A*, A does not T-p-attack ® (Lemma 4). Since {1, ..., ¥, } contains all the assumptions not
t-p-attacked by A, we have that (®\ A*) C {y1,...,y,}. Let ¢ € ®\ A* (Note that since by C2, A* is conflict-free,
® Z A* and so such ¢ exists). Since ¢ & A* yet ¢ = y; for some 1 < k < n, necessarily I';A;_ - —¢. Since A*
does not f-p-attack ¢, by Lemma 4, also A;_; does not -p-attack ¢, and thus ¢ < A;_y, i.e. there is some'”
x € f(g(Ak—1)) s.t. f(g(9)) < x. By the selecting property, there is some & € Ag_; s.t. x = f(g(8)). Suppose
first that 0 € A, i.e. for some 1 <i <k, f(g(¢)) = f(g(wk)) < f(g(y:)). This contradicts the construction of
{yi1,...,¥n}. Thus, 6 € A. Take 6* € A s.t. f(g(8)) < f(g(6*)) and for no &' € A, f(g(6*)) < f(g(8")). We
show that:
0" £ M 1UP\ 5"

Indeed, suppose towards a contradiction that there is some x € f(g(Ar—1 U{9}\ {6%)) s.t. f(g(6%)) < f(g(x)).
Again, by the selecting property, there is some Y € A1 U{¢} s.t. x = f(g(7)). Suppose first that y & A. Then since
F(2(8)) < F(2(5%) and £(2(9)) < £(2(8)), £(2(8)) < f(g(¥)), contradiction to the construction of {1, ..., Y }
(which are arranged according to their strengths). Thus, ¥ € A, but this contradicts the way 6* was selected.

We have shown that 6* £ 4 Ar_; U@ \ 6*. This means that A,_; U{¢}\ {6} t-p-attacks 6* € A, and thus,
by the admissibility of A, A {-p-attacks Ay_; U{¢}\ {8*}. Since A is conflict-free, this attack is in (A U{¢}\
{0*}H)\A=A;_1U{¢}. By C2, this attack is on ¢.

e We finally show that [C4]: A C A*.

17We show the claim for ¥ = 3. The proof for ¥ =V is similar.
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Suppose towards a contradiction that A = A;. This means that I', A+ —y;. By Lemma 6, since A is conflict-free
and it does not T-p-attack i, thereisa ¢ € As.t. AUy \ ¢ T-p-attacks ¢ (and ¢ # ;). Since A is admissible, A
t-p-attacks some ¢ € (A\ ¢) U ;. Since A is conflict-free, c = y;, which contradicts the assumption that A does
not f-p-attack y;. We thus conclude that A C A} C A*.

By [C3] and [C4] we get a contradiction to the maximal admissibility of A, and so the proposition is obtained. [
Next, we show the redundancy of the closure requirement in the definition of preferred semantics.

Proposition 3. Let pABF = (ABF, &) be a selecting prioritized ABF. Then the closure requirement is redundant
in the definition of preferred extensions (Definition 6): Any A C Ab that is conflict free and maximally admissible
is closed.

Proof. Suppose that A C Ab is conflict free and maximally admissible. By Lemma 7, A attacks every A € Ab\ A.
By Proposition 2 (which holds in our case by Lemma 2), this means that A is closed. O

4.3 Ecxistence of Extensions and Their Relations

We now examine the existence of the extension relations in Definition 6, and check the relations among them.

Grounded and well-founded extensions

By its definition, the well-founded extension is always unique. Yet, as the following example shows, already in the
linear case there may be several grounded extensions for a prioritized ABF.

Example 14. Let £ =CL,Ab={p,—p,q}, T ={r,r D> q}, g(p) =g(—p) =g(g) =1, f = min, and t = 3 (clearly,
many other prioritized settings will do here). Note that the emptyset is not closed (since I' F ¢) and {g} is not
admissible (since p,—p - —¢g). The two minimal complete extensions are {p,q} and {—p,q}, thus there is no
unique grounded extension in this case.

It follows, then, that in prioritized ABFs well-founded semantics and grounded semantics do not always coin-
cide. As the next result shows, the (unique) well-founded extension of a prioritized ABF equals to the intersection
of all the grounded extensions:

Proposition 4. Ler pABF be a prioritized ABF. Then WF(pABF) = (" Grd(pABF).

Proof. The fact that WF(pABF) = (N Cmp(pABF) C (N Grd(pABF) immediately follows from the fact that by
definition, Grd(pABF) C Cmp(pABF). For the converse, note that every element in (| Grd(pABF) belongs to
every C-minimal complete extension of pABF, and so it belongs to every complete extension (not necessarily
minimal) of pABF, thus () Grd(pABF) C (N Cmp(pABF) = WF(pABF). O

By Proposition 4 we thus have the following result:

Corollary 2. The grounded and the well-founded semantics of pABF coincide iff pABF has a unique grounded
extension.

Note 10. In [36] it is shown that in the non-prioritized case, when F € Ab, the grounded and the well-founded
semantics coincide and are unique.
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Naive, stable, and preferred extensions

In [36] it is shown that in non-prioritized simple contrapositive ABFs, the set of naive, preferred and stable exten-
sion coincide. However, as shown in [7], when priorities are involved, this is no longer the case and the three types
of semantics may yield different sets for the same pABF. Yet, it is also shown in [7] that preferred and stable exten-
sions still coincide for what is called there ‘max-bounded’ linearly-ordered prioritized ABFs. Below we recapture
this result for the more general case where priorities may not be linearly ordered.

Proposition 5. The stable extensions and the preferred extensions of a selecting pABF coincide.

Proof. By Lemma 7, using Propositions 2, 3 and Lemma 2. O

5 Representation of Extensions by Preferred Maximally Consistent Sets

In this section we represent the stable and preferred extensions of pABFs in terms of a generalized notion of pre-
ferred subtheories (for non-linear settings). The organization of this section is as follows: First (Definition 13),
we consider an order relation (<) between sets of formulas, and define the notion of maximally consistent sets
of assumptions in a pABF that are preferred with respect to this order (the elements of MCS ., (pABF), see Defi-
nition 14). Then (Proposition 6), we show that for linearly-ordered pABFs, these sets are identical to similar sets
that are determined by Brewka’s preferred subtheories [16]. The main result of this section is given in Corol-
laries 3 and 4, where we show that (under rather common conditions on pABFs) MCS_ g(pABF) consists of the
stable/preferred extensions of pABF. This characterization result is obtained by Propositions 7 and 8, which pro-
vide the two necessary containments for the proof.

Definition 13 (<4). Let pABF = (ABF, &) where ABF = (£,I',Ab, —) and & = (P, g, f, T) be a prioritized ABF.
and let A; # Ay C Ab. We denote Aj <, A; iff there is some §; € A; \ Ay such that for every 8, € Ay \ A it holds
that g(81) < g(62).

Thus, A is preferred than A; if there is at least one element in A; that is strictly preferred than all the elements in
A, which are not already in A;. This definition has commonalities with the elitist lifting known from ASPIC* [49].

Note 11. By its definition, <, is anti-symmetric.

The notion defined next, of maximal consistent subsets [51], is central in many formalisms for non-monotonic
reasoning and inconsistency handling.

Definition 14 (MCS(ABF) and MCS_, (ABF)). Let pABF = (ABF, ) be a prioritized ABF, where ABF =
(£,T,Ab,—) is a simple contrapositive ABF based on a logic £ = (Z,F).

e A C Ab is a maximally consistent set (MCS) in ABF, if TUA is F-consistent, and U A’ is not --consistent
for every A C A’ C Ab. The set of the maximally consistent sets in ABF is denoted MCS(ABF).

» A C Ab is a preferred (or prioritized) maximally consistent set (pMCS) in pABF, if A € MCS(ABF) and
there is no ® € MCS(ABF) such that ® <, A. The set of the preferred maximally consistent sets in pABF is
denoted MCS, (ABF) (or just MCS,(ABF)).

Example 15.

1. Recall the pABF of Example 5, where I' = 0, Ab = {p,—p,q}, and g(p) = 1, g(=p) = 2, g(q) = 3.'® Then
MCS(ABF) = {{p.q}.{~p,q}}. Since {p,q} < {~p,q}, we have that MCS . (ABF) = {{p,q}}.

181n this example, f and  may be arbitrary.
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2. Let pABF = (ABF, #?) be a prioritized ABF, based on classical logic, where Ab = {q1,q2,p1,p2}, I =
{=(q1 A p2),~(g2 A p1)}, and g is an allocation function s.t. g(q1) > g(p1) and g(q2) > g(p2). The strict
assumptions in this case dictate that MCS(ABF) = {{p1,p2},{p1,91},{P2,92},{q1,92}}. The definition
of g implies that the sets in MCS(ABF) are <,-incomparable (For instance, {p1,p2} and {q1,¢>} are not
~g-comparable, since g(p1) and g(g») are <-incomparable, and so are g(g;) and g(p»). Thus, in this case,
MCS_, (ABF) = MCS(ABF).

Note 12. The definition above of preferred maximally consistent set with respect to the order <, in Definition 13
is a generalization to the non-linear case of maximally consistent sets that can be defined with respect to Brewka’s
preferred subtheories [16] in the linear case. To see this, consider a linear allocation function g : Ab — N (Defi-
nition 4). The sets Ab; = {y € Ab | g(y) = i} induced by this function form a partition of Ab, which in turn may
be viewed as a stratified set. This will be sometimes denoted by Ab = Ab| & ... P Ab,. Now, Brewka’s preference
relation on Ab and the corresponding definition of preferred maximally consistent subsets pABF, may be defined
as follows:

Definition 15 (preferred subtheories; Cg). Let Ab=Ab; @ ... ®Ab, be a stratification of Ab according to a linear
allocation function g, and let A,® C Ab.

» We say that A is preferred than ® (with respect to g), denoted A C¢ © (or just A = ® when g is known or
arbitrary), iff there is an 1 <i <n such that Ab;NA =Ab;NO forevery 1 < j <i, and Ab;NA D Ab; ne.!?

* We define MCSc, (ABF) in a similar way to MCS (ABF), where  replaces <.

Example 16. Continuing Item 1 in Example 15, and in terms of Definition 15, we have that Ab; = {p}, Ab, =
{—=p},and Ab3 = {g}. Since MCS(ABF) = {{p,q},{—p,q} } and {p,q} C¢ {—p,q}, it follows that MCS, (ABF) =
{p,q}}

Note that for the pABF in Item 1 in Example 15 and Example 16, we have that MCS . (ABF) = MCS, (ABF).
The next proposition shows that this is not a coincidence.

Proposition 6. Let pABF = (ABF, &) be a prioritized ABF with a linear allocation function g. Then MCS, (ABF)
and MCS . (ABF) coincide.

Proposition 6 follows from the following lemma:

Lemma 8. Let pABF = (ABF, &) be a prioritized ABF with a linear allocation function g. Then for any A,® C Ab
it holds that ACT¢ @ iff A <, ©.

Proof. [=]: Suppose that A C, ®. This means that there is some i s.t. for every j < i, Ab;N A =Ab;N O and
Ab;N® C Ab;NA. But then there is some § € (Ab;NA)\ (Ab;NO) s.t. g(8) < g(6) for every 6 € @\ A C
(Ab\ U/, Ab;), thus A <, ©.

[«=]: Suppose that A <, O, i.e. there is some 0 € A\ @ s.t. for every 6 € ®\ A, g(8) < g(0). Let § € A\ ® be such
a formula, and suppose that g(8) = i. Then, clearly, Ab; N A = Ab; N O for every j < i. Also, since g(§) < g(0)
forevery 8 € @\ A, Ab;NO\Ab;NA=0,ie.,Ab;NO C Ab;NA. Thus A, ®. O

Since g is not defined for non-linear prioritized ABFs, Proposition 6 cannot be generalized to such ABFs.
We now show the relation between < g-preferred maximally consistent set in pABF (alternatively, between
C ¢-preferred maximally consistent set in pABF, when g is linear), and the stable extensions of pABF.

Proposition 7. Let pABF = (ABF, &) be a prioritized ABF where & is selecting. If A € MCS,(ABF) then A is
a stable extension of pABF.

19This definition is originally from [16], and here it is reproduced and adapted to the setting of [7].
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Proof. Let A € MCS,(ABF).
e We first show that A is conflict-free.

Suppose towards a contradiction that A T-p-attacks some 8 € A. This means, in particular, that ", A+ —§. But then,
since by reflexivity I', A= §, we have that "'UA is not consistent, a contradiction to A € MCS, (ABF) C MCS(ABF).

e We now show that A f-p-attacks every y € Ab\ A.

Let y € Ab\ A. Since A € MCS,(ABF) C MCS(ABF), AU{y} is inconsistent in pABF. Thus, I' A, y - =4 for
(every) 6 € A, and by contraposition we get I, AF —y. Now, let A = {Ay,...,} be all the subsets of A such that
I',A; - =y and for no A; C A; it holds that I', A} - ~y Suppose that T = 3 (the proof for ¥ =V is similar). We
distinguish between two cases:

1. If there is A’ € A such that y A5 A’ (i.e., f(g(y)) is not T-P-stronger than f(g(A"))), we are done: A’ €
3—va|}é(A, V), thus by Note 7 A 3-p-attacks .

2. Otherwise, for every A’ € A we have that f(g(y)) is 3-P-stronger than f(g(A’)). Since f is selecting, this
means that: for every A’ € A there is some 8y € A’ such that f(g(y)) < f(g(8s)). We show that this leads
to a contradiction:

First, we show that (A\ Upep 6a) U W is consistent. Suppose otherwise. Then I', (A\ Uprep Op) Uy F =6
for (every) 8 € A. Thus, by contraposition, I'; A\ Uacp Op) F =W, and so there is some A* C A\ Uprep o)
s.t. T,A* - =y and for no A* C A* it holds that ', A* - —y. Since A* C A, necessarily A* = A” for some
A" € A. But then § € A” C A\ Unrep 8y). in a contradiction to 8 € A” = A*. Thus, (A\ Uprep On)) U W is
consistent.

Let now ® € MCS(ABF) be a set such that (A\ U <<, 0;) Uy C ©. We have that for every 6 € A\ 0, i.e.,
for every &; (1 <i<n), f(g(y)) < f(g(8)), and thus ® <4 A. But this contradicts the assumption that
A € MCS,(ABF). O

For the converse of the last proposition we need the following definition:

Definition 16 (7-max lower boundedness). A preference setting &2 = (P, g, f,1) for Ab is called max-lower-
bounded, iff for every nonempty set A C Ab, one of the following conditions holds:

(ift=3) Vxemax{f(g(d))|d €A} thereissomey € f(g(A)) s.t. x <y, or
(ff=V) Vxcmax{f(g(8))|8 €A} it holds that x <y for every y € f(g(A)). ?°

Note 13. If & = (P, g, f,t) is max lower-bounded, then for every nonempty set A of formulas, every x; €
{f(g(8))| 6 € A} for which there is xo € max{f(g(5)) | 6 € A} s.t. x; < xp, is strictly f-P-stronger than f(g(A)).

Proposition 8. Let pABF = (ABF, &) be a prioritized ABF where & is max lower-bounded and reversible. If A
is a stable extension of pABF then A € MCS,(ABF).

Proof. Let A be a stable extension of pABF.
e We first show that A € MCS(ABF).

To see that AUT is consistent, suppose otherwise. Then I';A\ 6 - =6 for every 0 € A. Since A is conflict-free
(because it is stable), by Lemma 6, this means that A {-p-attacks itself, which contradicts the assumption that A is
(stable thus) conflict-free.

e We now show that A is maximally consistent.

20Both cases are a generalization to the non-linear case of a similar property in [7, Definition 10].

18



Indeed, since A is stable, I'; A - =y for every y € Ab\ A. By monotonicity, I'; A, =F I -y, and by contraposition,
I',A, = F for every v € Ab\ A. Thus, for every A’ C Ab that properly contains A, we have that A’ UT is not
consistent.

e We show now that A is <,-preferred in MCS(ABF), i.e., for no ® € MCS(ABF), ® <, A.

Suppose for a contradiction that there is such @. This means that there is some 8 € ® \ A such that every 6 € A\ ©
it holds that g(6) < g(0) (and so, somewhat abusing the notations, f(g(0)) < f(g(8))). In particular, f(g(0)) < x
for some x € max{f(g(5)) | 0 € A}. By max-lower-boundedness, f(g(0)) is strictly t-P-stronger than f(g(A))
(Note 13), thus A cannot f-p-attack 6 although 8 ¢ A, contradicting the assumption that A is stable. O

Example 17. The stable extensions of the pABF in Item 2 of Example 15 are {p1,p2}, {p1,91}> {p2,92}. {q1,92}
and as indicated that example, these are also the elements of MCS, (ABF), as indeed the last proposition suggests.

Note 14. The pABF in Item 2 of Example 15 also shows that common preference orders other than the one in
Definition 13 may not work. For instance, consider the preference order in [4], where:

A} C A, iff for every 8, € Ay \ Ay, there is some §; € A; \ A, such that g(8;) < g(62).

This order relation is also anti-reflexive and anti-symmetric, but Proposition 8 fails for this order, since e.g. in our
example there is only one C-preferred MCS: {p,p2} (indeed, any set A containing g; instead of p; (i = 1,2), for

every x € A\ {p1,p2}, f(g(x)) = f(g(q:)) > f(g(pi)) (fori=1,2).)

We have obtained the main results of this section, given in the next two corollaries:

Corollary 3. Let pABF = (ABF, &) be a prioritized ABF where & is max lower-bounded and selecting. Then A
is a stable extension of pABF iff A € MCS_ (ABF).

Proof. One direction follows from Proposition 7. The converse follows from Proposition 8, using Lemma 2. [
By the last corollary and Proposition 5, we also have:

Corollary 4. Let pABF = (ABF, ) be a prioritized ABF where & is max lower-bounded and selecting. Then A
is a preferred extension of pABF iff A € MCS (ABF).

Note 15. By Proposition 6, the last two corollaries hold also for Cg-preferred maximally consistent sets in linear
pABFs. These corollaries are therefore a generalization of a similar result shown in [7]:

Corollary 5. Let pABF = (ABF, &) be a linearly prioritized ABF where & is max lower-bounded and selecting.
Then A is a stable extension of pABF, iff A is a preferred extension of pABF, iff A € MCSc, (ABF).

6 A Postulates-Based Study

Next, we consider some properties of entailments (Section 6.1) and extensions (Section 6.2) of pABFs. A summary
of these properties, and the conditions under which they are satisfied with respect to the stable semantics of pABFs,
is given in the table at the end of the section.

6.1 Postulates for pABF-based Entailments

We start by checking properties of the entailment relations that are induced by pABFs (Definition 7). The following
properties were introduced by Kraus, Lehmann and Magidor in [44] and [45], and their formulations are adjusted
to our setting. Below, for some ABF = (£,T",Ab,—) and a formula ¢, we let ABF? = (£.TU{¢},Ab,-).
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Definition 17 (--cumulativity, -preferentiality, --rationality). Let £ = (£ }) be a logic. A relation |~ be-
tween pABFs that are based on £ and .Z-formulas is called F-cumulative (or just cuamulative, if F is known or
arbitrary), if the following conditions are satisfied:

* Cautious Reflexivity (CR): For every --consistent formula y € T" it holds that ABF |~ .
« Cautious Monotonicity (CM): If ABF |~ ¢ and ABF |~ v, then ABF? |~ .
« Cautious Cut (CC): If ABF |~ ¢ and ABF? |~ v, then ABF |~ y.
« Left Logical Equivalence (LLE): If ¢ - y and y I ¢, then ABF? |~ p iff ABFY |~ p.
* Right Weakening (RW): If ¢ - y and ABF |~ ¢, then ABF |~ y.
A cumulative relation is called preferential, if it satisfies the following condition:
« Distribution (OR): If ABF? |~ p and ABFY |~ p then ABF®VY |~ p.

Our purpose is to show the preferentiality of pABF-based entailments. For this, we need the following lemma,
indicating that the set of the <-preferred MCS of the assumptions of the pABF is closed under enhancements
of the strict assumptions (I') of the pABF by any formulas (¢) that logically follows from the formulas in the
intersection of the MCS (these formulas also known as the free formulas of the ABF).

Lemma 9. Let pABF = (ABF, &) be a prioritized ABF with ABF = (£, T",Ab,—) and a prioritized setting &,
and let pABF W ¢ = (ABFW ¢, F) be a prioritized ABF with ABFW ¢ = (£, T'U{¢},Ab,—)) and the same setting
prioritized setting 2. If T,(\MCS__ (ABF) - ¢ then MCS (ABF) = MCS_ (ABFw ¢).

Proof. Suppose that I', TMCS_ (ABF) I- ¢. We first show that
(*) MCS<,(ABF) C MCS. (ABFw¢) = MCS, ((£,TU{¢},Ab,—)).

Indeed, let A € MCS_ (ABF). First, we observe that A is consistent in (£,T'U{¢},Ab,—), since otherwise
Fru{¢},AFF, and since I';A+ ¢, we get I'AF F, which is a contradiction to the consistency of A in ABF.
Secondly, A must be maximally consistent in (£, TU{¢},Ab,—), since if there is ® D A for which I',®, ¢ / F,
then I',® - ¢ and I',® t/ F, but this is a contradiction to A being maximally consistent in ABF. Thus, A €
MCS_, ((£,TU{¢},Ab,—)),ie., A€ MCS (ABFw¢).

‘We now show that
(%x) MCS<g(ABF) D) MCS<g(ABFLﬂ¢) = MCS<X(<£,FU{¢},Ab,—|>).

For this, let A € MCS_, ((£,TU{¢},Ab,—)). Clearly, A is also consistent in ABF. Suppose that there is some
O D As.t.T,0FF. Let ® be such a maximal set, i.e., ® € MCS_, (ABF). Notice that TU{¢},® I# F and thus
[',® i/ F. This implies that ® ¢ MCS (ABF), i.e., there is some A € MCS_ (ABF) s.t. A <, ©, i.e. there is some
A € A\Os.t forevery 8 € ®\ A, g(1) < g(0). Since A C ©, it also holds that A € A\ A and for every & € A\ A,
g(A) < g(0). Thus, A <, A. Since A € MCS_ (ABF), by (x) we have that A € MCS~, ((£,TU{¢},Ab,—)). But
this contradicts that A € MCS<, ((£,TU{¢},Ab,—)). Thus, A is maximally consistent in ABF.

We can now show the main claim. Suppose first that A € MCS_ (ABF). By (x), we have also that A €
MCS_, ((£,TU{¢},Ab,—)). Suppose now towards a contradiction there is some ® € MCS. ((£,TU{¢},Ab,—))
s.t. ® <z A. Let © be such a <,-most preferred set, i.e., ® € MCS_ ((£,TU{¢},Ab,—)). By (x*) it holds that
©® € MCS., (ABF), but this is a contradiction to the assumption that A € MCS_, (ABF). The other direction is
analogous. O
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Note 16. The last lemma does not hold when ¢ is a defeasible assumption rather than a strict assumption. To
see this, let ABF = (£,T',Ab,—), where £=CL, I'={pDs; r Ds; p,s D —r}, Ab={p,r} and let g(p) =2,
g(r) =3 (see also [7, Exmple 19]). Clearly, I, YMCS ., (ABF) I- 5. Consider now ABF' = (£,I",AbU {s},—) with
g(s) = 1 (the g-values of the other formulas remain the same as before). We have that {s,p} € MCS_( ABF')\
MCS_, (ABF).

By Lemma 9 we can now show the preferentiality of |~5.  for Sem € {Prf,Stb}.

Proposition 9. Let pABF = (ABF, %) be a prioritized ABF with ABF = (£,T",Ab,—) where & is max lower-
bounded and selective. Then |~ is preferential for Sem € {Prf,Stb}.

Proof. We first show the proof for Sem = Stb. Let )~ = |~&,,. By Corollary 3 we have that ABF |~ v iff for every
A € MCS (ABF) it holds that I', A - y. Now,

CR: Clear, since a premise ¥ € I' cannot be attacked.

CM: Suppose that ABF |~ ¢. By Lemma 9, Stb(pABF) = Stb(pABF?), and thus ABF |~ y (which means that
[, AF y for every A € Stb(pABF)). This implies that I, A - y for every A € Stb(pABF?). Thus, ABF? |~ .

CC: Analogous to the proof of CM.

LLE: Trivial, since by the assumptions of LLE, MCS<g(ABF¢) = MCS_, (ABFY), thus by Corollary 3 also
Stb(ABF?) = Stb(ABFY).

RW: If ABF |~ ¢ then ', A= ¢ for every A € Stb(pABF) and thus with transitivity of -, we have that I', A - y for
every A € Stb(pABF), i.e., ABF |~ .

OR Suppose towards a contradiction that ABF® |~ p and ABFY |~ p, but ABF?YY | p. Then there is a A €
MCS<g(ABF¢V"’) such that TU{¢ Vy}, At/ p,and soTU{¢}, At/ p or TU{y} Al p. We show that
this implies that A € MCS<, (AB F)or A € MCS_, (ABFY), contradicting the assumption that AB Flep
and ABFY |~ p. Note, first, that it is not possible that both TU{y} A+ F and TU{¢}, A+ F, otherwise
T'U{yVve¢},AFF, andsoalsoTU{¢V y} Al p. Without loss of generality, we assume that TU{y}, A/ F.
If there were some A’ D As.t. TU{y},A’ I/ F, then also TU{¢ V w},A’ I/ F, contradicting the assumption
that A € MCS ., (ABF®V¥). Thus, A € MCS(ABFY). To see that A € MCS., (ABFY), suppose that there is
some ® € MCS(ABFY) s.t. ® <, A. It can be shown that in this case there is some ® € MCS(ABFY"?)
with @ D O (since TU{y},®#F implies TU{yV ¢},01/F). Thus, ® <, A (as ® <, A implies that there
is some 8; € ®\ A s.t. for every & € A\ @, g(81) < g(8,), and since ® D @, §; € @), a contradiction to
Ae MCS<g(ABF¢V"’). Thus, A € MCS<g(ABF"’), but as noted above, this contradicts that ABFY |~ p.

The case where Sem = Pref follows from the proof above by Proposition 5. O

Note 17. Another property that is considered in [45], called rational monotonicity (RM), requires that if ABF |~ ¢
and ABF [ -y, then ABFY |~ ¢. In [36, Example 11] it is shown that RM fails for |~} ¢ and |~§,, already when
ABF is not prioritized. In the same paper it is also shown that |~ is not preferential for Sem € {Prf,Stb}.

6.2 Postulates for pABF-based Extensions

Next, we consider several postulates that are concerned with the handling of preferences in prioritized ABFs. The
following postulates are shown to hold for linearly-ordered preference (see [7] for proofs, as well as discussions
on the postulates):

Empty Preferences (for Sem) [2, 18]:
If & is a degenerated preference setting (i.e., if g is a uniform allocation function), then Sem(pABF) =
Sem(ABF).
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Extensions Selection (for Sem) [52]:
If A € Sem(pABF) then A € Sem(ABF).

Conflict Preservation (for Sem) [2, 4, 47]:
If A € Sem(pABF) and @, p-attacks ®,, then either ®; £ A or @ £ A.

Preferred Arguments (for Sem) [4, 23]:
Ming(Ab) = {y € Ab | -3¢ € Abs.t. g(¢) < g(y)} C A for every A € Sem(pABF).

Brewka-Eiter (BE) Principle (for Sem) [17]:
If A=AU{¢} € Sem(ABF) and ® = AU{y} € Sem(ABF) (where ¢,y ¢ A) and g(y) < g(¢), then
A & Sem(pABF).

Principle of Tolerance (for Sem):
If Sem(ABF) # 0 then Sem(pABF) # 0 as well.

Below, we check these postulates for partially ordered preferences. For this, as before, we fix a prioritized
assumption-based framework pABF = (ABF, %), where ABF = (£,T",Ab,—) is simple contrapositive and & =
(P, g, f,t) is a prioritized setting on Ab.

We start with empty preferences. The following proposition is similar to the one shown in [7]:

Proposition 10. Let f be an aggregation function that is invariant under multiple occurrences (that is, if V is a set
and V' is a multiset with the same elements as V,*' then (V) = f(V')). Then pABF satisfies the empty preferences
postulate for every Sem.

Proof. The empty preferences postulate assumes that g is uniform. Thus, under the condition on f, for every
&' € A we have: f(g(A)) = f({g(d)] 6 € A}) = f(g(8")) = g(&'). Again, since g is uniform, we conclude that
f(g(A)) is the same for every A C Ab. It follows that t-p-attacks coincide, for every 1 € {V,3}, with (standard,
non-prioritized) attacks, and so Sem(pABF) = Sem(ABF) for every semantics Sem. O

‘We now turn to extension selection:

Proposition 11. Let pABF = (ABF, &) be a selecting prioritized ABF. Then pABF satisfies the extensions selec-
tion postulate for Sem € {Naive, Prf, Stb}.

Proof. Let A C Ab.
e We first show that if A is conflict-free in pABF then it is conflict-free in ABF.
Suppose towards a contradiction that A attacks some & € A. This means that I, A - —§. If T—val;}g(A, v) #£0

then by Note 7, A cannot be conflict-free in pABF. Suppose then that T—val;l,(A, ) = 0. This means that for

every minimal subset A’ C A such that I', A’ = =6, it holds that A’ =4 &. By reversibility (which, by Lemma 2
holds since pABF is selecting), for such a subset A', there is a 8’ € A’ such that A’ U {6} \ &’ #» &', and by
contraposition, [;A'U{8}\ 6’ - —d’. Tt follows that A" p-attacks 6’ € A’, a contradiction again to the assumption
that A is conflict-free in pABF.

e We now show that if A is stable in pABF then it is stable in ABF.

We have already shown above that A is conflict-free in ABF. Now, since A is stable in pABF, A f-p-attacks every
W € Ab\ A, which in particular means that I'; A - =y for every such y. Thus, A attacks every ¥ € Ab\ A, and so
it is stable in ABF.

e We now show that if A is preferred in pABF then it is preferred in ABF.

2150 V' may have multiple instances of the same element in V, but there is no element in V' that is not in V.
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Indeed, suppose for a contradiction that A is not preferred in ABF. As is shown in [36], A is not stable as well. By
the previous case, this means that A is not stable in pABF. By Proposition 5, this implies that A is not preferred in
pABF, a contradiction.

e It remains to show that if A is naive in pABF then it is naive in ABF.

We already know that A is conflict-free in ABF. Suppose for a contradiction that there is some A C A’ C Ab such
that A’ is conflict-free in ABF. Since A’ is not conflict-free in pABF (due to the assumption that A is naive in
pABF), there is some 8’ € A’ such that I, A’ - =&’ (yet, T-val;}g(A/ﬁ’) # (). But then A’ attacks &’ in ABF, a

contradiction to the assumption that A’ is conflict-free (in ABF). O

Conflict preservation follows in our case from the fact that every A € Sem(pABF) is conflict-free. This property
is not so obvious in other formalisms in which attacks are sometimes discarded due to preference over arguments
(see [23] for some examples).

The principle of preferred arguments cannot hold in our setting unless Ming(Ab) itself is F-consistent (other-
wise A is not conflict free). A sufficient condition for assuring this principle for stable semantics in max-lower-
bounded and reversible pABFs is given next.?>

Proposition 12. Let pABF be a max-lower-bounded and reversible pABF. If Ming(Ab) C (YMCS,(ABF) then
pABF satisfies the principle of preferred arguments for the stable semantics.

Proof. Let A be a stable extensions of pABF. By Proposition 8, A € MCS,(ABF). Now, since Min,(Ab) C
MMCS, (ABF), we get that Ming(Ab) C A. |

Note that, by Proposition 7, when pABF is selecting, the condition that Ming(Ab) C (MCS,(ABF) is also
necessary for assuring the satisfaction of the preferred argument postulate for stable and preferred semantics. We
therefore have the following corollary:

Corollary 6. Let pABF be a max-lower-bounded and selecting pABF. Then pABF satisfies the principle of pre-
ferred arguments for the stable and preferred semantics iff Ming(Ab) C (TMCS,(ABF).

Proof. The proof for stable semantics follows from Proposition 12 and the paragraph below its proof. The result
for preferred semantics then follows from Proposition 5, since pABF is selecting. O

In [7, Example 17] it is shown that BE-principle doesn’t hold for prioritized ABFs even for linear preference
orders. However, as the next proposition shows, for selecting max-lower-bounded pABFs this postulate does hold
for the stable and the preferred semantics.

Proposition 13. Let pABF = (ABF, &) be a selecting pABF that is max-lower-bounded. Then pABF satisfies the
BE-principle for the stable and preferred semantics.

Proof. Let pABF = (ABF, #2) be as in the proposition. Let A,® € Stb(ABF) and AU{¢,y} CAbs.t. p,y € A
and A=AU{¢} and ® = AU{y} and g(y) < g(¢). Since A,® € Stb(ABF), it is shown in [36] that A,® €
MCS(ABF). However, ©® <, A (recall Definition 13), and so A ¢ MCS (ABF). By Proposition 8, A ¢ Stb(pABF).

O

The principle of tolerance for complete and preferred semantics is clear by the fact that pABF is in particular
an argumentation framework, and so Cmp(pABF) and Prf(pABF) are not empty. This principle for stable and
preferred semantics holds for selecting and max-lower-bounded pABF by Corollary 6.23

Table 1 summarizes the conditions under which the postulates considered in this section are satisfied with
respect to the stable semantics.

22This proposition generalized to the non-linear case a similar result in [7].

23 As noted in [23], when the prioritized assumption-based framework ABA™ is concerned (see [26]), the principle of tolerance does not hold
for the stable semantics.

241f Ming (Ab) C MMCS,(ABF).
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Property of the pABF

Conditions on the priority setting

Result

Consistency of extensions
Closure of extensions

Stb O MCS,

Stb € MCS,

I~&.,, is preferential
Empty preferences
Extension selection
Conflict preservation
Preferred assumptions
Brewka-Eiter postulate

Reversible

Reversible

Selecting

Reversible & Max-lower-bounded
Selecting & Max-lower-bounded
Invariance of multiple-occurrences
Selecting

Selecting & Max-lower-bounded®*
Selecting & Max-lower-bounded

Proposition 1
Proposition 2
Proposition 7
Proposition 8
Proposition 9
Proposition 10

Proposition 11

Corollary 6
Proposition 13

Tolerance

Selecting & Max-lower-bounded

Table 1: Summary of the postulates for the stable semantics

7 Extensions to Collective Attacks

In this section, we study the notion of collective attacks, which allow to attack a set of assumptions without having
to specify a single member of that set that is attacked. In Section 7.1 we give some motivation and definitions. In
Section 7.2 we consider preferred and stable semantics, provide conditions under which they coincide (Proposi-
tion 14), and show that the skeptical entailment induced by them is preferential (Proposition 15). In Section 7.3
we consider well-founded and grounded semantics, show their relations (Proposition 16), characterize them in
terms of the free formulas (Proposition 17), and show that the entailments induce by them satisfy non-interference
(Proposition 18).

7.1 Motivation and Definition

It is possible to further extend the notion of attacks to reflect a challenge on a collective information depicted
by sets of formulas rather than by specific formulas. We call this collective attacks.> This may be done by the
following generalization of Definition 12:

Definition 18 (collective p-attack; Definition 12 extended). Let pABF = (ABF, &?) be a prioritized ABF with
ABF = (£,T,Ab,—) and & = (P, g, f,T). Let also A,® C Ab and y,...,y, € Ab.

» We say that A collectively attacks {yi,..., ¥, } (wrt. I)iff [,AF - A, y;. This notion is carried on to
supersets: A collectively attacks @ if A collectively attacks some {y1,...,y¥,} C ©.

* Suppose that A collectively attacks {y1,...,¥,}. The P-attacking values of A on {y,...,y,} are the
elements of the following set:

valro (A {w1,....yn}) = {f(g(4")) | A" is a C-minimal subset of A that collectively attacks {1, ..., y,}}.

» We say that A collectively t-p-attacks {y,...,y,} iff A collectively attacks {y1,..., ¥, } and there is a
set of attacking values V € vals o (A, {y1,..., ¥, }) such thatnox € {f(g(y1)),..., f(g(Wn))} is strictly -P-

25This notion should be distinguished from a similar notion considered in [50], where the term ‘collective’ refers to multiple attackers (in
abstract argumentation frameworks). While the latter is ‘built in’ in our approach (allowing sets of assumptions as premises in the attack
consideration), we further extend attacks to multiple attacked formulas.
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stronger than V. We say that A collectively t-p-attacks @ if A collectively t-p-attacks some set {yy,..., ¥, } C
0.

Dung-style semantics for pABFs with collective attacks may now be defined just as in Definition 6, where the
attacks are collective.

Clearly, Definition 12 is a particular case of Definition 18 when n = 1, thus if A f-p-attacks ®, then A also
collectively f-p-attacks ®. As the next example shows, the converse does not always hold.

Example 18. Consider again the ABF and the pABF from Example 3 and Example 5 (respectively), using this
time collective (p-)attacks instead of ‘pointed’ (p-)attacks (in the sense of Definitions 5 and 12). Figures 4a and 4b
extend, respectively, Figures 1a and 1b to this case. Dashed arrows denote attacks that are applicable only when
incorporating collective attacks (see also Footnote 4).

{r.a} /NO {p.a} /NO

T T
{p.-pay {4} {p,~p.q} {q}
/ AR R / AN .
{=pr.q} {-pr} {} {=pr.q} {-pr} {}
(a) All the collective attacks (b) Only the collective f-p-attacks

Figure 4: Diagrams for Example 18. Dashed lines denote collective attacks that are not pointed attacks.

Note that when collective attacks are allowed, not only the ‘contaminating’ set {p,—p,q} attacks the set {g},
but also there is an attack in the other direction. Moreover, {p,—p,q} is now also collectively attacked by the
emptyset (since @ - ~(p A —p)), thus {g} is defended both by itself and by 0.2° This demonstrates another advan-
tage of having collective attacks: when only pointed attacks are allowed, the grounded extension is the emptyset,
while when collective attacks are allowed, both the grounded and the well-founded extensions consist of the set
{q}. As g should not be contaminated by the inconsistency about p and —p, having {g} as the grounded extension
looks more rational in this case. Indeed, returning to the motivation of this example (in Example 3), the fact that
quesadillas is served, is independent of any agreements as to whether pineapple on pizza is a suitable topping.

In the prioritized case, the grounded extension is {p,q}. Intuitively, p and ¢ belong to the grounded extension
in this case for two different reasons: p due to its high priority (in particular, p is strictly preferred over —p), and ¢
since it is not related to the inconsistency in Ab. In what follows, we shall show that this is not a coincidence.

For another illustration of the difference between pointed and collective attacks, consider the following example
(a variation of example from [7]):

Example 19. Consider a pABF with £ =CL, I'={pA¢D —s,rDs,s Dr}, Ab={s,p,q,r}, g(s) =1, g(p) =
g(q) =2, g(r) =3 and f = min, where the attacks are collective. The 3-p-attack diagram is partly shown in
Figure 5.

Although {s} is not attacked, it is not closed since I', {s} - , and so it cannot be a grounded extension in this
case. Thus, the grounded extension here is {r,s}. Note that when only pointed attacks are incorporated, {r,s}
does not defend itself from {p, ¢}, thus the pABF with only pointed attacks has two minimal complete extensions:
{p,s,r} and {q,s,r} (which are also preferred and stable in both cases).

Let pABF = (ABF, #?) be a pABF (Definition 11), with collective attacks (Definition 18). In [36] it is shown
that in the non-prioritized case (namely, when the framework consists of a simple contrapositive ABF with col-
lective attacks), when the underlying logic satisfies de-Morgan laws = AA - \/=A and \/-A F = AA (so collective
attacks may be defined disjunctively: in Definition 18, =/AA may be replaced by \/—A), the following hold:

26Note that although ¢ collectively attacks {p, —p, g}, it does not collectively p-attack this set, since g is less preferred than both p and —p.
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R

{r} {p.s} ——{gq,s.r} {r}
~
{r.q} <=-------- {s}
/ I‘\\\«
{q} {g.s} ——{ps.r} "~ {sr}

e

Figure 5: An attack diagram for Example 19. Dashed lines denote collective attacks that are not pointed attacks.

1. the preferred and stable extensions of ABF coincide, and they are the elements of MCS(ABF),
2. the grounded extension and the well founded extension of ABF are the same, and are equal to (\MCS(ABF).

Below, we show that the two facts above carry on to the prioritized case (with some obvious adjustments). In
particular, the extension of the second fact to prioritized argumentation frameworks provides, to the best of our
knowledge, a novel characterization of the grounded semantics in such frameworks.

7.2 Preferred and Stable Semantics

First, we consider preferential semantics. It turns out that, under an additional assumption on the framework
(conservatism under union, see Definition 19), stable semantics and preferred semantics coincide also for collective
attacks (cf. Proposition 5). This is shown next.

Definition 19 (conservatism under union). A prioritized assumption-based framework pABF = (ABF, Z?) is

conservative under union, if for every AU{¢, y} C Ab it holds that f(g(A)) #2 f(g(¢)) and f(g(y)) #2 f(g(9))
imply that f(g(AU{y})) 2 f(8(9)).

The equivalence of preferred and stable semantics follows from the following analogue of Lemma 7 for col-
lective attacks:

Lemma 10. Ler pABF = (ABF, %?), where ABF = (£,T,Ab,—) and & = (P, g, f,T), be a selecting prioritized
ABEF that is conservative under union, and let A be a conflict-free set in Ab. Then A is maximally admissible iff it
collectively t-p-attacks any y € Ab\ A.

Proof. The proof is similar to that of Lemma 7. We repeat it here with the necessary adjustments to collective
attacks.

[«<] As already shown in [31] (for regular attacks), if a conflict-free set A f-p-attacks any y € Ab\ A it must be
maximally admissible. Since A t-p-attacks a formula  iff it collectively f-p-attacks { ¢}, we are done.

[=] Let A be a maximally admissible set and suppose towards a contradiction that there is some W € Ab\ A s.t.
A does not collectively f-p-attack y. Let {y,...,y,} =Ab\ A s.t. g(y;) % g(y;) when i < j (that is, the y;’s
are all the assumptions not in A, arranged in a partial order according to theirs strengths). We now construct an
admissible set A* s.t. A C A*, which contradicts the maximal admissibility of A. We define: A* = [J;~(A;, where:
Ap=Aand forevery0<i<n-—1, -

Avr — AiU{yir}  iFT A i,
i+1 — .
A otherwise.
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e We first show that [C1]: fornoi > 0, if y; € A, then I'| A; I/ —y;.

The case where i = 0 is clear, since A is conflict-free. Now, given any i > 0, suppose towards a contradiction that
(%) Wir1 € Aip1, yet (xx) T, A1 B =y 1. By the construction of Az 1, () means that I, A; i/ =y . Thus Ay #
A; (otherwise we get a contradiction to (xx)), i.e., Ajr1 = A;U{ W1}, and so (xx) means that T, A;, Wiy B —yis .
By contraposition, I',A; \ 8, y;1 F =6 for any 0 € A;, and by contraposition again I', A;, =y, a contradiction
to the assumption that ' A; I/ =g 1.

e We now show that [C2]: for every i > 0, A; is conflict-free. We show this by an induction on i.

The inductive base is clear since A is conflict-free. Suppose now that [C2] holds for A; and suppose towards a
contradiction that A, collectively f-p-attacks some ® C A;, . This means, in particular, that ', A; | F = A®. If
Vir1 € Air1, then A; = Ay and by the induction hypothesis A; = A is conflict-free, so we are done. If y; | €
Aj41, then by contraposition, I', Ajy 1 U (@ \ {wir1}) F —yip1. As © C A;U{ Wiy}, this means that T, A; F =y .
This is a contradiction to C1.

e We now show that [C3]: A* is admissible.

Suppose towards a contradiction that some @ C Ab collectively f-p-attacks A* and A* does not collectively f-p-
attack . Since A* does not collectively f-p-attack ®, and A C A*, A does not collectively f-p-attack ® (The proof
of this is similar to that of Lemma 4). Since {1, ..., W, } contains all the assumptions not collectively f-p-attacked
by A, we have that (©\ A*) C {y1,...,y,}. Let ¢ € ®\ A* (Note that since by C2, A* is conflict-free, ® Z A*
and so such ¢ exists). Since ¢ & A* yet ¢ = y; for some 1 < k < n, necessarily I';A;_; F —¢. Since A* does
not collectively f-p-attack ¢, by Lemma 4, also A;_; does not collectively f-p-attack ¢, and thus ¢ <5 Ay_1, i.e.
there is some?” x € f(g(Ar_1)) s.t. f(g(9)) < x. By the selecting property, there is some & € A1 s.t. x = f(g(3)).
Suppose first that d € A, i.e., for some 1 <i <k, f(g(9)) = f(g(wr)) < f(g(;)). This contradicts the construction
of {wi,...,¥,}. Thus, 6 € A. Take 6* € As.t. f(g(8)) < f(g(6*)) and forno &’ € A, f(g(6*)) < f(g(8)).

Claim: 6* £ » A1 U@\ 0*:

Indeed, suppose towards a contradiction that there is some x € f(g(Ar—1 U{9}\ {8%)) s.t. f(g(6%)) < f(g(x)).
Again, by the selecting property, there is some y € A1 U{¢} s.t. x = f(g(y)). Suppose first that y & A. Then since

f(g(8)) < f(g(6%)) and f(g(9)) < f(g(8)), f(g(9)) < f(g(y)), contradiction to the construction of {y1,..., Wy}
(which are arranged according to their strengths). Thus, ¥ € A, but this contradicts the way 6* was selected.

By the last claim, Ay U{¢}\ {6*} collectively f-p-attacks 6* € A, and thus, by the admissibility of A, A col-
lectively -p-attacks some E C A,_;U{¢}\ {6*} (which implies that there is some A’ C As.t. T,A'+ = AE and
f(g(A)) #2 f(g(7y)) for every y € E). Since A is conflict-free, '\ A # 0. Notice that E\ A = {¢,y;,,..., ¥ }
for some {/1,..., i} € {1,...,i+1}. As g(y;) # g(¢) for every j =1Ii,...,I; (in view of how the indices were
chosen), also f(g(y;j)) #2 f(g(9)) for every j =1I1,...,Ix, and so, by conservativeness under union, f(g(A’U

{vi,,--.w,}) #2 f(g(9)). Thus, A U{yy,,..., v, }) € Aiy attacks ¢.
e We finally show that [C4]: A C A*.

Suppose towards a contradiction that A = A;. This means that I'; A+ —y;. By Lemma 6, since A is conflict-free
and it does not f-p-attack Y, thereisa ¢ € As.t. AUy, \ ¢ T-p-attacks ¢ (and ¢ # ;). Since A is admissible, A
collectively t-p-attacks some 6 € (A\ ¢)U y. Since A is conflict-free, o = y;, which contradicts the assumption
that A does not collectively t-p-attack yq, and so A does not f-p-attack y;. We thus conclude that A C A} C A*.

By [C3] and [C4] we get a contradiction to the maximal admissibility of A. O
By the last lemma, we conclude the following result (cf. Proposition 5):

Proposition 14. Let pABF be a prioritized ABF with collective attacks, which is both selecting and conservative
under union. Then the stable extensions and the preferred extensions of pABF coincide.

2TWe show the claim for ¥ = 3. The proof for ¥ =V is similar.
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Proof. By Lemma 10, using (straightforward adjustments to frameworks with collective attacks of) Proposi-
tions 2, 3 and Lemma 2. O

By Proposition 14, Corollaries 3 and 4 can be extended to pABFs with collective attacks.

Corollary 7. Let pABF = (ABF, &) be a prioritized ABF with collative attacks, in which & = (g, max) for some
allocation function g. Then Prf(pABF) = Stb(pABF) = MCS_ (ABF).

Proof. By Corollary 3, Corollary 4, and Proposition 14, since settings with f = max are selecting, max-lower-
bounded, and conservative under union. O

By Proposition 14, also Corollary 5 can be extended to pABFs with collective attacks.

Corollary 8. Ler pABF = (ABF, &) be a linearly prioritized ABF with collative attacks, in which &2 = (g, max)
for some allocation function g. Then Prf(pABF) = Stb(pABF) = MCS, (ABF).

Proof. By Corollary 5 and Proposition 14, since settings with f = max are selecting, max-lower-bounded, and
conservative under union. O

Finally, by Corollary 7, the following extension to collective attacks of Proposition 9 for max-based settings
can be shown:

Proposition 15. Letr pABF = (ABF, &) be a prioritized ABF with collative attacks, in which & = (g, max) for
some allocation function g. Then |~ Qem is preferential for Sem € {Prf,Stb}.

The proof of Proposition 15 is similar to that of Proposition 9, using Corollary 7.

7.3 Grounded and Well-Founded Semantics

Let us turn now to the grounded and the well-founded semantics. As Examples 18 and 19 show, a transition from
pointed attacks to collective attacks may affect the grounded extension. Yet, the following proposition carries on
to frameworks with collectives attacks: (cf. Proposition 4):

Proposition 16. Let pABF be a prioritized ABF with collective attacks. Then WF(pABF) = N Grd(pABF).
Proof. Similar to that of Proposition 4. O

Hence, the grounded and the well-founded semantics of a pABF with collective attacks coincide iff the pABF
has a unique grounded extension. Such a case is assured by the characterization of the grounded extensions in
terms of minimally inconsistent subsets that we provide below (Proposition 17). To the best of our knowledge,
this is the first time that such a characterization has been provided for logic-based argumentation with prioritized
knowledge-bases.

For the characterization of the grounded extensions, we need the following definition.

Definition 20 (Free;, MIC;). Let pABF = (ABF, &) be a linearly prioritized setting. For every i > 1, we define:
* Freeg(pABF) =0,

* MIC;(pABF) = {A C U;<;Ab; | T',Free; 1 (pABF),AF F and there is no subset A’ C A such that
I, Free;_1 (pABF),A’ - F},

* Free;(pABF) = |J;;Free;(pABF) U (Ab; \ UMIC;(pABF)).
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The idea behind this construction is the following: we proceed iteratively, starting from the assumptions with
the best (lowest) priority, and select all the free formulas there (i.e., those that are not involved in any inconsistency).
Then, we use these free formulas as strict premises in the next step, where we construct MIC; ;| as the sets that are
minimally conflicting in view of the strict premises I and the free formulas Free; obtained in the previous step. All
formulas not involved in any such conflict are then designated as free on the (i + 1)th level.

Note 18. An equivalent way of defining the formulas in Free; is by the (union of the intersections of the) maximally
consistent subset of Ab; (j < i), namely:

* Freep(pABF) =0,

* MCS;(pABF) = {A CJ;<;Ab; | T',Free; 1 (pABF),Al/ F and there is no super set A C A’ such that
I, Free;_1 (pABF),A’ I/ F},

Note that the definition above is different than the notion of prioritized MCS w.r.t. preferred subtheories
(MCSc, (ABF)), introduced in Section 5 (see Definition 15). This difference is illustrated in Example 22 bel-
low.

The following result shows that validity of the alternative definition Free;(pABF):

Lemma 11. Free;(pABF) = U;<; NMCS;(pABF) for every i > 0.

Proof. The proof proceeds by induction. The base case is trivial. For the inductive case, suppose that Free;(pABF) =
Uj<i NMCS;(pAB F). We show containments in both directions.

o Free;, (PABF) C Ui+ NMCS;(pABF):

Let ¢ € Free;;(pABF) and suppose there is some A € MCS;(pABF) s.t. ¢ ¢ A. Then I', Free;(pABF),A, ¢ - F
and thus there is some ¢ € A’ C AU{¢} that is minimal in this regard, a contradiction to ¢ € Free; | (pABF).

e Uj<ir1 NMCS;(pABF) C Free; ;1 (pABF):

Suppose that ¢ € {J;<;+1 (TMCS;(pABF) and suppose towards a contradiction that for some A € MIC;;(pABF)
it holds that, ¢ € A. Then I', Free;(pABF),A\ {¢} I/ F, which implies there is some maximally consistent A’ D A
s.t. ¢ ¢ A, This is contradiction to the assumption that ¢ €€ U;<;; (TMCS;(pABF). O

Example 20. Let ABF = (CL,0, {s, —s, p, —=p, r},—) with Ab; = {s}, Ab, = {p, —p, r} and Ab3 = {—s}. Then:
* MIC,(pABF) = {0}, MCS; (pABF) = {{s}}, Free; (pABF) = {s}.
* MICy(pABF) = {{p,—p}}, MCS2(pABF) = {{s,p,r},{s,—p,r}}, Freeo(pABF) = {s,r}.

* 'Emci(pABF) = {{p,—'p},{s,—!S}}, MCS3(pABF) = {{s7p7r}7{s7—|p,r},{ﬂs,p,r},{—'s,—'p, r}}’ Freeg(pABF) =

We further illustrate this definition with another example:

Example 21. Let ABF = (CL,0, {s, —s, s A —r},—) with Ab; = {s}, Aby = {—s,s A—r}. Then:
* MIC,(pABF) = {0} and Free| (pABF) = {s}.
* MICy(pABF) = {{—s}} (as Free; (pABF),{—s} - F), and Free;(pABF) = {s,s A =r}.

We thus see that, since Free; (pABF) is assumed to be a strict set of premises in the computation of MICy, s A —r
does not get “drowned” by —s.

Suppose now that we add an assumption r to the second level (i.e., to Ab;). Then s A—r is no longer considered a
free formula, which is to be expected, as it is involved in a conflict independent of s (namely the conflict {s A—r,r}).
In more detail let now ABF = (CL,0, {s, —s, s A —r,r},—) with Ab; = {s}, Ab, = {—s,s A—r,r}. Then:
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* MIC;(pABF) = {0} and Free| (pABF) = {s}.
* MICy(pABF) = {{—s},{sA—rr}} and Free;(pABF) = {s}.
So in this case the only free formula of the prioritized framework is s, as expected.

Note 19. One might wonder whether the intersection of preferred subtheories coincides with the free formulas,
since in the non-prioritized case it holds that Free(ABF) = \MCS(ABF). As is observed in [28], this is not the
case when taking into account priorities. Here is a counter-example:

Example 22. Let ABF = (CL,0,Ab; UADy,—) with Ab; = {(—=pV —q) Ar,(mpV —q) A—r}, Aby ={p,q,(pNg) —
—s,s}. Then:

* MIC;(pABF) = {Ab; } and MCS; (pABF) = MCS(Ab,), thus Free; (pABF) = 0.
* MIC,(pABF) = MIC(Ab; UAb3), and also MCS, (pABF) = MCS(Ab; UAb,), thus Free, (pABF) = 0.

On the other hand, the preferred subtheories are MCS (ABF) = {{(—=pV —~q) Ar,p,(p A q) — —=s,s},{(=pV
—q) A1.q,(pNg) = =85} {(opV ~g) Ao p, (pAg) = =s,5h {(opV 2g) Aong, (P Ag) = s, 51
Thus, "MCS, (pPABF) = {s} # 0 = Free(pABF).

We can now show the following characterization of the grounded extension. The remaining of this section
refers to linearly-ordered pABFs (Definition 4) with collective attacks. Moreover, we concentrate on the weakest-
link principle (max-based aggregations), so the settings are of the form (g, max) for some allocation function g.

Proposition 17. Let pABF = (ABF, 2?) be a linearly ordered prioritized ABF with collective attacks, in which
& = (g, max) and n is the maximal number in the image of g. Then: Grd(pABF) = Free, (pABF).

Proof. Let Free,(pABF) be the set defined in Definition 20. We show that it constitutes the (unique) grounded
extension of pABF, by proving the following two claims.

Claim 17.1: Free, (pABF) is contained in every complete extension.
We show by induction that for every i > 1, Free;(pABF)) is contained in every complete extension.

e The base case: Suppose that ® C Free; (pABF) and some A collectively p-attacks ©.2% Without loss of generality,
let A be a C-minimal set attacking ®. Then f(g(®)) is not strictly P-stronger than vals 4(A,®). As f = max, and
g(y) =1 forevery ¢ € O (since ® C Free; (pABF)), this means that g(6) = g(¢) =1 for every 6 € Aand ¢ € O.
But then there is A’ C AU® € MIC, (pABF) with A'N® # @ or I', A - F. The first case constitutes a contradiction
against ® C Free (pABF). Suppose thus that I'; A+ F. Then 0 collectively attacks A (since '+ - A\ A) and thus ®
is defended by @, which means that @ is included in any complete extension.

e The inductive step: Suppose that Free;(pABF) is contained in a complete extension @ of pABF and let ® C
Free; 1 (pABF)) \ Free;(pABF)). Suppose that some A collectively p-attacks ®. Again, without loss of generality,
let A be a C-minimal set attacking ®. Then f(g(®)) is not strictly P-stronger than vals (A, ®), which means, in
our case, that vals 4(A,0) < f(g(0®)) = max(g(®)) <i+1 (since ® C Ab; ). Thus, either I', A F (in which case
we have already shown in the base case that ® is defended by 0, and so it is in P as the latter is complete), or there
is A CAU® € MIC;; 1 (pABF) with A'N® # 0, a contradiction to the assumption that ® C Free;; | (pABF). We
have thus shown that @ D Free, (pABF).

Claim 17.2: Free, (pABF) is complete.
First, we observe that:

(1): if O collectively p-attacks A then g(0) < g(5) for every 6 € @ and § € A.

28Since the preferences are linearly ordered (and f = max) we can remove the leading ¥ from the notions of F-p-attacks and f-P-strengths.
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This follows immediately from the fact that f = max. (Indeed, for that attack to take place, for every 6 € A we
require that f(g(8)) should not be preferred over f(g(®)). In our case, and since the preference order is linear, this
means that max(g(®)) should be less than or equal to g(8) for every § € A. Thus Vo € A,V € ©, g(0) < g(5).)

e We now show that Free, (pABF) is conflict-free.

Suppose towards a contradiction that there are some Aj, A, C Free,(pABF) s.t. A collectively p-attacks A;. Then
(A1 UA2) NMIC;(pABF) # 0 for i = maxgsca,ua, &(0), thus Free,(pABF) "MIC;(pABF) # 0, a contradiction to
the definition of Free, (pABF).

e Next, we show that Free,(pABF) defends all of its elements.

We show by induction on i that Free;(pABF) defends all of its elements. For the base case, suppose that A} C Ab
attacks some Ay C Free; (pABF). Then with (1), Aj C Abj and thus ', Aj UA; F F. As Ay C Free; (pABF), A FF
which implies that @ attacks A;. For the inductive case, suppose that Free;(pABF) defends all of its elements,
and suppose that some A} C Ab attacks some Ay C Free;; 1(pABF). Let j = maxgsca, g(6) (we know with ()
that maxsca, g(0) < maxgsea, g(6)). With the inductive hypothesis, j =i+ 1. Then I', Free;(pABF),A;,As - F.
Thus, there is a minimal ® C Aj UA; s.t. I', Free;(pABF),® - F. As Ay C Free;+1(pABF), ®NA; = 0. Thus,
', Free;(pABF) F = A®. Suppose now that Free;(pABF) does not collectively p-attack ®@. This means that there
is some 6 € O s.t. f(g(0)) < i. But this contradicts the definition of Free;(pABF). Thus, we have established that
Free;(pABF) defends A, from the attack of A;.

e We now show that Free,(pABF) contains every set of assumptions that it defends.

For this, suppose that Free,(pABF) collectively p-attacks every A that collectively p-attacks ®. We have to show
that ® C Free,(pABF). Our assumption means that ', Free,(pABF) - = AA. With (), where i = maxgep g(96),
we get I', Free;(pABF) F = AA. Suppose now that ', Free;_; (pABF) I/ = AA. Then T',Free;_; (pABF),A/ F
whereas I', Free;_; (pABF), A, A’ - F for some A’ C Free;(pABF) \ Free;_1 (pABF), a contradiction to the definition
of Free;(pABF) (since A C U;ZI Abj). Thus, we have established that

(%): for every A C |J;Ab; that collectively attacks @, I", Free;_; (pABF),A+ F.

Suppose now towards a contradiction that ® N MIC;(pABF) # 0, i.e. there is some A C U§:1Abi and some 0 #
© C@®s.t.T,Free;_ | (pABF),A,@' - F and AU®' is minimal in this regard. Then Free;_; (pABF) UA collectively
p-attacks ®’ (thus also ®). But then with (), I',Free;_; (pABF),A + F, which is a contradiction to the assumed
minimality of AU®’. We have shown that ® NMIC;(pABF) = 0, thus ® C Free;(pABF), and so ® C Free, (pABF),
as required.

e We finally show that Free, (pABF) is closed.

For this, suppose that ', Free,(pABF) I ¢ and ¢ € Ab. Suppose that some A collectively p-attacks ¢ (if there is
no such A then ¢ € Free,(pABF) and we are done). Then with (1), where ¢ € Ab;, it holds that A C U;:()Abj-
As T)AF —¢, it holds that I',¢ - = AA. Thus, with transitivity, I, Free,(pABF) = = AA. Suppose now that
[, Free;_(pABF) I/ = AA. Then I',Free;_;(pABF),A, ¥ I- F for some ¥ C Free,(pABF), which contradicts the
definition of Free,(pABF). Thus, Free;_; (pABF) collectively p-attacks A, which means that ¢ is defended by
Free,(pABF). As Free,(pABF) contains every set of assumptions that it defends, ¢ € Free, (pABF).

Altogether, we have shown that Free, (pABF) C WF(pABF) and that Free,(pABF) is complete, which means that
Free, (pABF) coincides with the unique minimal complete extension, i.e., the grounded extension of pABF. O

Example 23. In Example 18, we have that the grounded extension of pABF is {p,q}. This is also Free3(pABF),
as Proposition 17 indeed assures.

Note 20. Proposition 17 can be extended to modular orders, namely: partial orders < that can be partitioned to
n strata, where the elements at the same stratum are incomparable, and for each two elements x and y that are
respectively in strata i and j, if i < j the either x < y of x,y are <-incomparable. Then Ab; consists of formulas
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whose g-values are at stratum 7, and the maximum function returns a set of elements (in the stratum with the highest
level) rather than a single number. As before, in this setting we say that A p-attacks y iff A attacks y and f(g(y))
is not strictly <-stronger than the elements in valy ¢ (A, ). The proof then resembles that of Proposition 17 with
some minor revisions, e.g., observation () is rephrased as follows: if ® collectively p-attacks A then there is no
0 € ® and 6 € A such that g(0) > g(9).

We conclude this section with another reason for using collective attacks (in addition, for instance, to the one
discussed in Example 18). This reason is related to the following useful property for handling inconsistency:

Definition 21 (non-interference). Given a logic £ = (L,F), let ABF; = (£,T,Ab;,—) (i = 1,2) be two ABFs
based on £.

* We denote by Atoms(I") the set of all atoms occurring in I".

» We say that I'; and I are syntactically disjoint if Atoms(I";) N Atoms(I'2) = 0.

* We say that ABF| and ABF; are syntactically disjoint if so are I'y UAb; and T, UAb;.
* We denote: ABF; UABF, = (£, UT2,Ab; UADy, ~1 U ~3).

We say that the entailment |~ satisfies non-interference [20], if for every two syntactically disjoint assumption-
based frameworks ABF; = (£,I'1,Ab;,~1) and ABF, = (£,T,Ab,,~7) where I') UT'; is consistent, it holds that
ABF| |~ vy iff ABF; UABF; |~ y for every formula y such that Atoms(y) C Atoms(I'; UAby).

For extending non-interference to the prioritized case, we further suppose that there are priority settings &2; =
(gi, f) over Ab; (i = 1,2). When ABF; and ABF; are syntactically disjoint, we can define a priority setting
P = (g, f) over Ab; UAb,, where g coincides with g; on Ab;. In such a case, non-interference is defined as in
the non-prioritized case, except that now we require that pABF; |~ y iff p(ABF; U ABF;) |~ v, where p(ABF; U
ABF,) = (ABF, UABF,, 7).

In [7, Example 18] it is shown that non-interference is not satisfied by entailment relations that are induced
by the grounded semantics of pABFs with standard attacks. However, as shown in the next proposition, non-
interference for max-based settings can be guaranteed for prioritized ABFs with collective attacks. We show this
under the assumption that the base logic is uniform.?’

Definition 22 (uniformity). A logic £ = (.Z,}) is called uniform [46, 57], if for every two sets of .Z-formulas
A1,A; and a formula ¢ such that A, is both -consistent and syntactically disjoint from A; U {¢}, it holds that
A E @ iff A, A = .

We can now show non-interference for linearly ordered prioritized ABFs with collective attacks that are based
on normal logics and the max aggregation function.

Proposition 18. Ler ABF| = (£,T'1,Ab|,~) and ABF, = (£ T, Aby,~) be two syntactically disjoint lin-
early ordered assumption-based frameworks with collective attacks, in which £ is uniform and where 'y UT,
is consistent. For i = 1,2 and & = (g,max), let pABF; = (ABF;, &?). Then, for every formula W such that
Atoms(y) C Atoms(I'y UAby ), it holds that pABF, |~ ¢4 v iff p(ABF1 UABF2) |~ &y V-

Note 21. By Propositions 4 and 17, |~¢,4 = |~ ¢,y = |~ Wr = I~ e thus in Proposition 18 |~ , may be replaced
by each one of the other three entailment relations.

Proof. By Proposition 17, we have to show that I'j, Free, (pABF) - vy iff I';, >, Free, (pABF; U pABF,) F v,
where n is the maximal number in the image of g (to reduce the notations, n will be omitted in what follows).
Now, since £ is uniform, and since pABF; and pABF, are syntactically disjoint, it is sufficient to show that
I'y, Free,(pABF,) - y iff 'y, Free,(pABF, U pABF,) I y. Furthermore, since Atoms(y) C Atoms(I'; UAby), it
suffices to show that Free(pABF; UpABF,) = Free(pABF;) UFree(pABF,). We show this in the next lemma.

291n [35], the assumption of the uniformity of the base logic was not made explicit for showing non-interference.
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Lemma 12. Let ABF; = (£,T'|,Aby,~1) and ABF, = (£,T5,Aby,~,) be two syntactically disjoint pABFs over
a normal logic £, and let pABF; = (ABF;, &) (i = 1,2) be corresponding prioritized ABF's for some prioritized
setting &. Then Free(pABF; UpABF,) = Free(pABF,) U Free(pABF,).

Proof. By an induction on the construction of Free (that is, induction on i in Definition 20). The crucial observation
is the fact that in this case MIC;(pABF; UpABF,) = MIC;(pABF;) UMIC;(pABF,) for any i > 1. We show this
for the base case (i = 1), leaving to the reader the inductive case (which is shown similarly).

[C]: Let A € MIC, (pABF,) (the proof for A € MIC; (pABF,) is symmetric). By monotonicity, 'y UT UAF F.
Suppose towards a contradiction there is some A’ C As.t. Ty UTL, UA' = F. As 'y UA' I/ F, there is some minimal
FCIyst. TTUTUA FF. As Ty UA’ is consistent, and syntactically disjoint from I', this means, with the
uniformity of -, that I is inconsistent. This contradicts the assumption that I" C I'; and the fact that I'; is consistent.

[D]: Let A € MIC;(pABF; UpABF,). Suppose towards a contradiction that ANAb; # 0 and ANAb, # 0.
This means, by the minimality of A, that 'y UT, U (ANAb;) I/ F for i = 1,2. With contraposition and since
UL U(ANAD))U(ANADy) - F, we have that I'y UT, U (ANAby) F = A(ANAb,). With uniformity, and as
I'y U(ANAby) is consistent and syntactically disjoint from I'» U {—~ A(ANAby)}, we have that I'; - = A(ANAb,).
This implies that I'; U(ANAb;) b F, contradicting the minimality of A. O

This concludes the proof of Proposition 18. O

8 Summary, Related Work and Conclusion

Simple contrapositive assumption-based argumentation frameworks provide a robust representation and reasoning
method for handling arguments and counter-arguments (see [36]). As shown in [7], the enhancement with priorities
of such frameworks strengthens their expressivity and provides additional layer to their inference process. In this
paper we have largely extended the range of priority settings that are integrated with these frameworks for gaining
more flexibility in comparing arguments and expressing the mutual relations among them.

As argued previously in the paper, partially-ordered preference relations are very natural in many scenarios, for
instance when objects are compared with respect to different aspects or considerations (recall Examples 7 and 13).
Such comparisons are ubiquitous in e.g. review systems, on-line marketplaces or content platforms involving
different agents or sources of information. Simple contrapositive assumption-based frameworks with partially-
ordered preferences allow to aggregate different options while respecting constraints, as shown in Examples 7, 8,
12 and 13. The principle-based study allows for the selection of the right preferential setting for a given application
context. For instance, when aggregating different options in view of a set of constraints, the preferred arguments
principle ensures that the maximally preferred options will be included in any selection.

The primary method of handling priorities in ABA, used in ABA™ frameworks [23, 26], is different from our
approach in several ways. Perhaps the most significant difference is in the interpretation of attacks: we adopt
the standard approach, taken also in related argumentation-based formalisms (like ASPIC-based systems [48, 49],
sequent-based argumentation frameworks [6], and dialectical argumentation frameworks [27, 28]), in which for
the attack to take place the attacking argument should be at least as preferred as the attacked argument. In contrast,
ABA™ is based on the idea of reverse defeats: A set of assumptions A reverse defeats a set of assumptions © if
either A attacks ® and A is not less preferred than @, or ® attacks A and @ is (strictly) less preferred than A. The use
of reverse defeats is required for avoiding some violations of rationality postulates such as consistency (see [26]
for more details). However, in [34, Chapter 7] it is shown that such reverse defeats are actually superfluous
when assuming that the deducibility relation is closed under contraposition. Additionally, as noted also in the
introduction, we allow arbitrary aggregation functions in the preference settings and so do not confine ourselves to
max-based attacks (reflecting only the weakest link principle).

In [42], two other variations of reverse defeat are presented in the context of abstract argumentation. The first
one, called Reduction 3, states that an argument a successfully attacks an argument b, if: (1) there is an attack
between a and b, and a is not worse than b, or (2) there is an attack between a and b and no attack between b and a.
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This is clearly a generalization of reverse defeat, and again, since we assume contrapositive logics, any attack from
A to y will give rise to an attack from a set of assumptions including y to an assumption A. The second variation
of reverse defeat presented in [42] is called Reduction 4. It says that an attack from a to b is successful, if: (1) a
attacks b and a is not worse than b, or (2) b attacks a, a does not attack » and b is worse than a, or (3) there is an
attack between a and b and no attack between b and a. Again, since we assume contrapositive logics, there is no
need to consider the asymmetric cases considered in (2) and (3).

Partially ordered preferences have been studied in other contexts of formal argumentation, e.g., in abstract
argumentation [1, 3, 41] and other structured formalisms, such as instances of the ASPIC-family [29, 39, 48]. Even
though flat ABA has been related to both abstract argumentation [21] and different variations of ASPIC [37], these
relations do not carry over to the more expressive generic or non-flat ABA [25, 55], used in simple contrapositive
ABFs, thus warranting the investigation of simple contrapositive ABFs with partial orders.

At the last part of the paper we have further extended prioritized ABFs with collective attacks. The usefulness
of incorporating such attacks in (prioritized) assumption-based frameworks is demonstrated, and some of the prop-
erties of the resulting argumentation frameworks are investigated. As noted previously, some preliminary results
concerning collective attacks in ABFs have already been introduced in [35]. These results are carried on in this
paper to the prioritized case. The use of uniform allocation functions (namely, functions that assign the same pref-
erence value to all the defeasible assumptions) brings us back to the results in [35], thus the results in this paper are
conservative extensions of those in [35]. Some other results in Section 7 are new, including the characterization
of grounded extensions in prioritized ABFs, which, to the best of our knowledge, is the first such characterization
(excluding the short version of this paper, in [9]). Indeed, it has been observed before that in prioritized logic-based
argumentation the grounded extension does not always coincide with the intersection of preferred subtheories [28].
We now give a precise characterization of what is included in the grounded extension. This also allows us to derive
further properties of the grounded extension, such as non-interference, which is not guaranteed for the grounded
extension in logic-based argumentation [5] and prioritized ABFs with standard attacks [7, Example 18].

Attacks of sets of arguments on other sets of arguments have recently been considered also for other frameworks
for argumentative reasoning. For such a work in the context of abstract argumentation frameworks, we refer to [30].
In sequent-based argumentation [10] collective attacks are enabled by attack rules on subsets of the arguments’
supports.

Another interesting line of related work is that of dialectical argumentation [27, 29]. In these frameworks
arguments are conceived as support-conclusion pairs, where the supports of the arguments are split to two disjoint
sets, intuitively understood as premises assumed true on the one hand, and assumptions supposed true merely for
the ‘sake of argument’. In the structures that are obtained in this way, Brewka’s order on preferred subtheories [16]
(recall Definition 14) can be represented by the preferred and stable semantics. Dialectical argument avoids the
problem of having to deal with a possibly infinite set of support-conclusion pairs even when considering a finite
set of defeasible assumptions by the use of a so-called depth-bounded logics, proof-theoretically defined as sub-
systems of classical logic, which restrict the depth of a proof. It turns out that dialectical argumentation using
these depth-bounded logics can capture preferred sub-theories in dialectical argumentation, and give rise to finite
argumentation frameworks given a finite set of defeasible assumptions. Furthermore, given that these dialectical
arguments assume sets of defeasible assumptions “for the sake of arguments”, an argument can be made for seeing
such dialectical argument as a form of collective attacks. We leave a more technical investigation of this connection
for future work. However, we remark that in [27, 28, 29], D’ Agostino and Modgil only study preferred sub-theories
based on classical logic whereas we show that preferred-subtheories based on any contrapositive Tarskian logic can
be represented by simple contrapositive prioritized ABFs. On the other hand, it is shown in [28] that dialectical
argumentation satisfies the closure and consistency postulates for any lifting (i.e., preference relation) principle
and any proof theory for classical logic or depth-bounded logic approximating classical logic, whereas for pABFs
these postulates only hold when the priority setting is assumed to be reversible. We refer to our work in [7] on
ABFs with linear ordered, for some further comparison of these frameworks and dialectical argumentation.

Future work includes reformulation of pABFs under non-explosive logics, and extensions to first-order lan-
guages, including description logics. Further generalizations of the frameworks presented in this paper include the
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allowing of conditional preferences, namely, defeasible assumptions that are stronger than other assumptions only
when certain conditions are satisfied (see, e.g., [33]) and extension of the representation results from Section 5
to other approaches for reasoning with partially ordered defeasible information, such as those in [13, 14, 40, 56].
Also, it would be interesting to extend the notion of collective attacks to other structured argumentation settings,

such as rule-based assumption-based argumentation [15] and systems allowing for structured argumentation with
defeasible rules [38, 49].
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