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2 Background2.1 The algebraic structureThe approach that we consider here is based on Belnap's well-known algebraicstructure, FOUR, presented in [6, 7]. This structure contains four elements: thetwo classical values, t and f , and two other values, ? and >, that respectivelydenote lack of information and \too much" information, i.e.: contradictions.The main idea is to arrange the elements of FOUR in two partial orders:One, �t, is usually understood as reecting di�erences in the \measure oftruth" that each value represents. According to this order f is the minimalelement, t is the maximal one, and ?;> are two intermediate values that areincomparable. (ft; f;>;?g;�t) is a distributive lattice with an order reversinginvolution :, for which :>= > and :?= ?. The meet and the join of thislattice are denoted by ^ and _, respectively. The other partial order, �k, isintuitively understood as reecting di�erences in the amount of knowledge thateach truth value exhibits. In this partial order ? is the minimal element, > isthe maximal element, and t, f are incomparable.12.2 Syntax and semanticsThe language we treat here is the standard propositional one. Atomic formulaeare denoted by p; q, and complex formulae are denoted by  ; �. Given a set Sof formulae, we shall write A(S) to denote the set of the atomic formulae thatoccur in S. L(S) denotes the set of the literals that occur in S.The various semantic notions are de�ned on FOUR as natural generaliza-tions of similar classical notions: A valuation � is a function that assigns atruth value from FOUR to each atomic formula. Any valuation is extended tocomplex formulae in the obvious way. The set of the four-valued valuations isdenoted by V. We will sometimes write  :b2� instead of �( )=b. A valuation� satis�es  i� �( ) 2 ft;>g. t and > are called the designated elements ofFOUR. A valuation that satis�es every formula in a given set S of formulae isa model of S. A model of S will usually be denoted by M or N . The set of allthe models of S is denoted by mod(S).The formulae that will be considered here are clauses, i.e.: disjunctions ofliterals. A useful property of clauses is given in the following lemma:Lemma 2.1 Let  be a clause and � a valuation. Then �( ) 2 ft;>g i�9l2L( ) s.t. �(l)2ft;>g.Proof: By an induction on the structure of  . 2A set of clauses is called a knowledge-base, and is denoted by KB. As thefollowing lemma shows, representing formulae in a clause form does not reducethe generality.Lemma 2.2 [3] For every formula  there is a �nite set S of clauses such thatfor every valuation �, �( )2f>; tg i� �(�)2f>; tg for every �2S.1(ft; f;>;?g;�k) is also a lattice, and so a �k -meet and a �k-join operations might bede�ned on FOUR as well (see, e.g., [2, 4, 6, 7, 13, 14, 16]).2



2.3 Measurement of consistencyNotation 2.3 Inc(�) = fp j �(p)=>g.De�nition 2.4 Let �1; �22V.a) �1 is more consistent than �2 i� Inc(�1)�Inc(�2).b)M 2mod(KB) is a most consistent model of KB (mcm, for short) if there isno other model of KB which is more consistent than M . The set of the mostconsistent models of KB is denoted by mcm(KB).De�nition 2.5 A valuation � is consistent if Inc(�) = ;. A knowledge-baseKB is consistent if it has a consistent model.Proposition 2.6 [3, 5] KB is consistent i� it is classically consistent.2.4 The basic consequence relationDe�nition 2.7 [2] KB j=4 if every four-valued mcm of KB satis�es  .2Example 2.8 :p; p_q j=4q (the only mcm here is M (p)=f , M (q)= t), whilep;:p; p_q 6j=4 q (a counter-mcm: N (p)=>, N (q)=?). This example shows, inparticular, that j=4 is nonmonotonic and paraconsistent. It also demonstratesthe usefulness of considering only the mcms of a given knowledge-base ratherthan all it's models; In the latter case f:p; p_qg does not entail q, and so theDisjunctive Syllogism is always violated (even in cases in which the relevantformulae are not involved in any conict).Denote by j=2 the classical consequence relation. Unlike j=2, in the standardpropositional language there are no tautologies w.r.t. j=4. This follows fromthe fact that if 8p 2 A( ) �(p) = ? then �( ) = ? as well. However, it issometimes possible to draw the same conclusions when using either j=2 or j=4:Lemma 2.9 [4] Let KB be a consistent knowledge-base, and let  be a clausethat does not contain any atomic formula and its negation.3 Then KB j=2 i�KB j=4  .Corollary 2.10 If KB is a consistent knowledge-base and  is a formula ina conjunctive normal form that none of its conjuncts is a classical tautology,then KB j=2 i� KB j=4  .Corollary 2.11 Suppose that KB [f�g is a consistent knowledge-base and  is a clause that does not contain any atomic formula and its negation. ThenKB j=4 implies that KB;� j=4  .Proof: By Lemma 2.9, and since j=2 is monotonic. 22This relation is denoted by j=con in [2, 5] and j=4I in [4].3I.e.,  is not a classical tautology. 3



3 Reasoning with inconsistent data3.1 World settings and the inference relationDe�nition 3.1 A subset S �KB is consistent in the context of KB if S hasa consistent model N , and there is a (not necessarily consistent) model M ofKB s.t. 8p2A(S) M (p)=N (p).De�nition 3.2 [1, 3, 5] A possible world setting of a knowledge-base KB is anonempty maximal subset of KB that is consistent in the context of KB.4 Theset of all the possible world settings of KB is denoted by W(KB).Note that the elements of W(KB) are not necessarily maximal consistentsubsets of KB. This is so since they should preserve the semantics of theknowledge-base, while the maximal consistent subsets might not do so. Forexample, the simplest inconsistent knowledge-base KB= fp;:pg contains twomaximal consistent subsets fpg and f:pg, but neither of them truly reectsthe intended meaning of KB. Moreover, each one of them even contradicts anexplicit assertion of KB (see also Section 3.3).De�nition 3.3 [3, 5] The set that is associated with a valuation � is de�nedas follows: S�(KB)=f 2KB j �( )= t; A( ) \ Inc(�)=;g.Example 3.4 Consider the knowledge-base KB = fp; q; h; :p_:qg. ThenW(KB)=fS1; S2g, where S1=fp; hg and S2=fq; hg. These sets are associatedwith the (most consistent) models fp : t; q :>; h : tg and fp :>; q : t; h : tg,respectively. Note that S1 is no longer a possible world setting of KB0 =KB [ f:pg, since there is no consistent modelM of S1 and some modelM 0 ofKB0 s.t. M (s)=M 0(s) for every s2A(KB0).As the following proposition shows, there is a strong connection between thepossible world settings of a knowledge-base KB and its mcms. In particular,every possible world setting of KB is associated with some mcm of KB:Proposition 3.5 [3, 5]a) For every S2W(KB) there is an mcmM of KB s.t. S=SM (KB).b) For every mcmM of KB there is an S2W(KB) s.t. SM (KB)�S.Corollary 3.6 Let W (KB) = fSM (KB) j M 2mcm(KB)g. Then W(KB) =fS2W (KB) j :9T 2W (KB) s.t. S�Tg.De�nition 3.7 KB j=W  if 8S2W(KB) S j=4 .Example 3.8 Consider the knowledge-base of Example 3.4. Then KB 6j=W p,KB 6j=W q, and KB j=W h. This might be explained by the fact that unlike p; q,the assertion h is not involved in any conict in KB, and so it is a \reliable"conclusion of KB (see also Proposition 3.12 below).4In [1, 3, 5] these sets are called recovered knowledge-bases.4



3.2 Basic properties of j=WProposition 3.9 If KB is consistent then KB j=W  i� KB j=4 .Proof: Follows from the fact that in this case W(KB)=fKBg. 2Proposition 3.10 j=W is nonmonotonic and paraconsistent.Proof: For instance, p; q j=W q, but p; q;:q 6j=W q. 2The proof of the last proposition also shows that j=W is not reexive.5However, in many reasoning systems (especially those for drawing nontrivialconclusions from inconsistent data) reexivity is not valid in general (see, e.g.,[15, 19]). Still, as it clearly follows from Proposition 3.12 below, j=W is reexivew.r.t. premises that are true in every possible world setting:De�nition 3.11 Con(KB) = TfS j S2W(KB)g.Proposition 3.12 Let  be a clause that does not contain any atomic formulaand its negation. If Con(KB) j=4 then KB j=W  .Proof: Note, �rst, that since there are no tautologies w.r.t. j=4 in the proposi-tional language, the condition of the proposition assures that Con(KB) 6= ;.Now, since Con(KB) � S for every S 2 W(KB), then by Corollary 2.118S2W(KB) S j=4 . Thus KB j=W  . 2The converse of the last proposition is not true: In Examples 3.4 and 3.8, forinstance, Con(KB)=fhg and so although Con(KB) 6j=4 p_q, still KB j=W p_q.Proposition 3.13 If W(KB) 6=; and KB j=W  , then KB 6j=W : .Proof: Every element in W(KB) is consistent, and so if S is a possible woldsetting s.t. S j=4 , then S 6j=4: . Hence KB 6j=W : . 23.3 Inference with maximal consistent setsA famous approach for reasoning with uncertainty accepts formulae providedthat they classically follow from all the maximal consistent subsets of a givenknowledge-base. Denote by j=MC the corresponding consequence relation.Then j=W is usually at least as cautious as j=MC:Proposition 3.14 If Con(KB) 6=; and  is a clause that does not contain anatomic formula and its negation, then KB j=W  implies that KB j=MC .Proof: Denote by MC(KB) the set of the maximal consistent subsets of KB.If KB 6j=MC  then 9T 2MC(KB) s.t. T 6j=2  . By Lemma 2.9, then, T 6j=4  as well. Since T is a maximal consistent subset of KB, and Con(KB) is anintersection of consistent subsets ofKB, then Con(KB)�T . But Con(KB) 6=;,thus there is a nonempty subset of T that is consistent in the context ofKB, andso there is a set which is maximal among the subsets of T that are consistentin the context of KB. Denote this set by S. Since T 6j=4  then by Corollary2.11, S 6j=4 either. To conclude it is left to show, therefore, that S2W(KB).Indeed, otherwise there is a set S0 2W(KB) s.t. S �S0. Thus 9�2S0nS s.t.5Hence, in particular, j=W is not the same as j=4.5



S [ f�g is consistent in the context of KB (since S [ f�g�S0), and so � 62T(otherwise S [ f�g would have been a subset of T that is consistent in thecontext of KB and properly contains S { a contradiction to the choice of S).Since T is a maximal subset of KB that is classically consistent, necessarilyT [f�g is classically inconsistent. Hence T j=2:�. By Corollary 2.10 and sinceDe-Morgan's rules are valid in FOUR, T j=4 :�. Now, by Proposition 2.6 S0is in particular classically consistent. So let M be a classical model of S0, andlet N 2mod(KB) s.t. 8p2A(S0) N (p)=M (p). Since �2S0, M (�)= t. ThusN (�) = t as well. On the other hand, N is also a model of T , and T j=4 :�,therefore N (�)2ff;>g { a contradiction. 2The following proposition shows that our reasoning process is analogousin spirit to that of j=MC : Instead of making classical conclusions from (all)the maximal consistent subsets, we draw classical conclusions from (all) thepossible world settings.Proposition 3.15 Let  be a clause which is not a classical tautology. ThenKB j=W  i�  classically follows from every possible world setting of KB.Proof: KB j=W  i� 8S 2W(KB) S j=4  , i� 8S 2W(KB) S j=2  (Lemma2.9). 24 Prioritized knowledge-bases4.1 Motivation and basic de�nitionsIn many cases a knowledge-base contains formulae with di�erent importanceor certainty. For instance, rules that state default assumptions are usually con-sidered as less reliable than rules without exceptions. Also, inference rules areusually given a lower priority than atomic facts. These kinds of considerationsare particularly common when reasoning with inconsistent knowledge-bases; Ifsome formulae are more certain than others, one would probably like to rejectthe least certain �rst.A common approach for making precedences among formulae is to assignthem ranks. Di�erent ranks reect di�erences in the certainty or reliabilityattached to the assertions (see, e.g., [8, 9, 12, 17, 18]). In what follows we shallwe use this additional data for re�ning the inference mechanism discussed inthe previous section.De�nition 4.1 A ranking of a knowledge-base KB is a function r from theclauses in KB to f1; 2; : : : ; ng.The ranking function determines a preference relation on the clauses of aknowledge-base. Intuitively, a clause with a lower rank has a higher priority.Notation 4.2 KBi=f 2KB j r( )� ig.6



De�nition 4.3 [1]a) Wi(KB) = fS�(KB) j �2mcm(KBi)g.b)Wi(KB) = fS2Wi(KB) j :9T 2Wi(KB) s.t. S�Tg. 6EachWi(KB) is a set of possible worlds that correspond to the situation de-scribed inKB. Following [8] we provide some criteria for choosing the preferredset of worlds:� set cardinality: Wi�scWj i� 8S2Wi 9T 2Wj s.t. jT j�jSj.� set inclusion: Wi�siWj i� 8S2Wi 9T 2Wj s.t. T �S.� cardinality of consistent consequences: Wi �ccWj i� 8S 2Wi 9T 2Wjs.t. jfl2L(KB) j T j= l; T 6j= lgj � jfl2L(KB) j S j= l; S 6j= lgj.7� inclusion of consistent consequences: Wi�ciWj i� 8S2Wi 9T 2Wj s.t.fl2L(KB) j T j= l; T 6j= lg � fl2L(KB) j S j= l; S 6j= lg.De�nition 4.4 Let � be a preference criterion among Wi(KB), i = 1;: : :; n.The optimal recovery level ofKB w.r.t. � is i0=maxfi j :9j 6= i s.t. Wj�Wig.The induced consequence relation is a natural generalization of j=W (cf.De�nition 3.7):De�nition 4.5 Let i0 be the optimal recovery level of KB w.r.t. �. ThenKB j=�W  if 8S2Wi0(KB) S j=4 .4.2 An example { Tweety dilemmaFor the following example we �rst extend the discussion to languages with pred-icates and variables. It is possible to do so in a straightforward way, providedthat each clause that contains variables is considered as universally quanti�ed.Consequently, a knowledge-base containing a non-grounded formula,  , willbe viewed as representing the corresponding set of ground formulae formed bysubstituting each variable in  with every possible element of the Herbranduniverse, U . Formally: KBU =f�( ) j  2KB; � :var( )!Ug.Example 4.6 Consider the following well-known puzzle:bird(Tweety), bird(Fred), penguin(Tweety),bird(x)!fly(x), penguin(x)!:fly(x), penguin(x)!bird(x).Denote this set by KB, and let T , F , b, p, f abbreviate, respectively, theindividuals Tweety, Fred, and the predicates bird, penguin, and fly.8The three mcms of KB are the following:6By Corollary 3.6 the only di�erence from the non-prioritizedcase is that here the relevantvaluations are mcms of KBi rather than mcms of KB.7As usual, l denotes the complement of l, and KB j= denotes that 8M2mod(KB)M( )is designated.8Note that the symbol f has double meanings here: abbreviating the predicate fly, andrepresenting the truth value false. Each occurrence of f will be understood by the context.7



M1 = fb(T ) : t; p(T ) : t; f(T ) :>; b(F ) : t; p(F ) :f; f(F ) : tg,M2 = fb(T ) : t; p(T ) :>; f(T ) : t; b(F ) : t; p(F ) :f; f(F ) : tg,M3 = fb(T ) :>; p(T ) : t; f(T ) :f; b(F ) : t; p(F ) :f; f(F ) : tg.Each mcm has a set that is associated with it:SM1(KB) = KBU n f 2KBU j f(T )2A( )g,SM2(KB) = KBU n f 2KBU j p(T )2A( )g,SM3(KB) = KBU n f 2KBU j b(T )2A( )g.KB is obviously inconsistent, so it is useless as far as classical logic is con-cerned. Nevertheless, the ambiguous data is related only to the informationabout Tweety. j=W \salvages" the consistent part of KB, and allows us todraw nontrivial conclusions about Fred, despite the inconsistency:KB j=W b(F ), KB j=W f(F ), KB j=W :p(F ),KB 6j=W :b(F ), KB 6j=W :f(F ), KB 6j=W p(F ).Since the information about Tweety is inconsistent, j=W does not allow usto infer nontrivial conclusions about Tweety. We claim, however, that this stateof a�airs is due to the representation of the problem that does not properlyreect our intuitive understanding of this particular puzzle: The two inferencerules that concern with penguins are more speci�c than the assertion bird(x)!fly(x). Also, unlike this latter assertion, the former assertions do not haveexceptions. We claim, therefore, that a more accurate representation of thisproblem should reect precedences among the rules of KB. In our case wecan do so by using a ranking function r. A reasonable ranking of KB is thefollowing: r(b(T )) = r(b(F )) = r(p(T )) = 1, r(p(x) ! :f(x)) = r(p(x) !b(x)) = 2, and r(b(x)!f(x)) = 3.By Proposition 4.11 below, when the preference criterion is either �ci or�cc, the optimal recovery level is i0=2. In this case,KB2 = fb(T ); b(F ); p(T ); p(x)!:f(x); p(x)!b(x)g:The most consistent models of KB2 are the following:N1 = fb(T ) : t; p(T ) : t; f(T ) :f; b(F ) : t; p(F ) :f; f(F ) :fg,N2 = fb(T ) : t; p(T ) : t; f(T ) :f; b(F ) : t; p(F ) :f; f(F ) : tg,N3 = fb(T ) : t; p(T ) : t; f(T ) :f; b(F ) : t; p(F ) :f; f(F ) :?g,N4 = fb(T ) : t; p(T ) : t; f(T ) :f; b(F ) : t; p(F ) : t; f(F ) :fg,N5 = fb(T ) : t; p(T ) : t; f(T ) :f; b(F ) : t; p(F ) :?; f(F ) :fg.Since SN2 =KBU n fb(T )! f(T )g, while SN1 = SN3 = SN4 = SN5 =KBU nfb(T )! f(T ); b(F )! f(F )g, it follows that W2(KB) = fSN2(KB)g. Thus,according to j=�ccW and j=�ciW one can deduce that Tweety is a bird, apenguin, and cannot y, while Fred is a bird that can y and it is not apenguin. The converse assertions are not deducible, as expected. It also can beshown that these conclusions are obtained by j=�scW and by j=�siW .8



4.3 Basic properties of j=�WFirst we show that j=�W is an extension of j=W :Proposition 4.7 When all the clauses in KB have the same priority, thenKB j=�W  i� KB j=W  .Proof: By Corollary 3.6 and De�nition 4.3, since in this case KB=KB1. 2Some basic properties of j=W remain valid also in the case of j=�W :Proposition 4.8 If KB is consistent then KB j=�W  i� KB j=4 .Proof: Let n be the maximal rank in KB. IfKB is consistent then the optimalrecovery level w.r.t. either �sc, �si, �cc, or �ci is n, and KBn=fKBg. Theclaim now immediately follows from De�nition 4.5. 2By the last proposition and Lemma 2.9 it follows that if KB is consistentand  is a clause that is not a classical tautology, then KB j=�W  i�  classically follows from KB.Proposition 4.9 j=�W is nonmonotonic and paraconsistent.Proof: The same as that of Proposition 3.10, with r s.t. either r(p)<r(q) orr(:q)<r(q). 2Proposition 4.10 Let i0 be the optimal recovery level of KB w.r.t. �. IfWi0 6= ; and KB j=�W  then KB 6j=�W : .Proof: The same as that of 3.13, replacing W(KB) with Wi0(KB). 2In the rest of this paper, unless otherwise stated, we will use either �cc or�ci as the preference criterion, and so j=�W will abbreviate either j=�ccW orj=�ciW . Also, i0 will henceforth denote the optimal recovery level w.r.t. eitherone of these criteria. Finally, in what follows we assume that the set of theassertions with the highest priority (i.e. KB1) is consistent.Proposition 4.11 [1] i0=maxfi j KBi is consistentg.Proposition 4.12 Let S2Wi0(KB). Then there is a (most) consistent modelM of KBi0 s.t. S=KBi0 [ SM (KBnKBi0 ).Proof: By De�nition 4.3, S = SM (KB) for some M 2 mcm(KBi0 ). Thus,S=SM (KBi0 ) [ SM (KBnKBi0 ). But by Proposition 4.11 KBi0 is consistent,and so SM (KBi0)=KBi0 . It follows that S=KBi0 [ SM (KBnKBi0 ). 2De�nition 4.13 Coni0(KB)=TfS j S2Wi0(KB)g.Proposition 4.14 Let  be a clause that is not a classical tautology. Then:a) If KBi0 j=4 then KB j=�W  .b) If Coni0(KB) j=4 then KB j=�W  .Proof: First note that since there are no tautologies w.r.t. j=4, the conditionsof parts (a) and (b) assure (respectively) that KBi0 6= ; and Coni0(KB) 6= ;.Now, part (a) follows from the fact that 8S2Wi0(KB) KBi0 �S (Proposition4.12). Thus, since KBi0 j=4  , by Corollary 2.11 8S 2 Wi0(KB) S j=4  .The proof of (b) is similar, and follows from the fact that 8S 2 Wi0(KB)Coni0(KB)�S. 29



By Proposition 4.14 it follows that j=�ccW and j=�ciW preserve the seman-tics of the clauses with the i0-highest priorities (see also Corollary 4.16 below).In addition, it is possible to deduce conclusions that are based on assertionswith lower priorities than the optimal recovery level, provided that they are notinvolved in any conict. In Example 4.6, for instance, b(x)! f(x) cannot beinferred in general, since it is causes conicts when x=Tweety. However, theinstance b(F )! f(F ) is deducible, since it does not harm the consistency ofany possible world setting. In particular this shows that j=�W does not su�erfrom the so called \drowning e�ect" (see Section 5.2 below).Corollary 4.15 Suppose that  2Coni0(KB). Then KB 6j=�W : .Proof: Follows from Propositions 4.14(b) and 4.10. 2Corollary 4.16 If  2KBi0 then KB 6j=�W : .Proof: By Corollary 4.15 and the fact that KBi0�Coni0(KB) (see 4.12). 25 Related systems5.1 Coherent approaches for restoring consistencyThe formalism introduced here takes into account every possible world thatplausibly represents the intended meaning ofKB. In [1, 3, 5], on the other hand,only one such world is chosen. This world is considered as the \recovered"version of the \polluted" knowledge-base, and the rest of the data is discarded.Since the recovered knowledge-base is (classically) consistent, it is possible todraw nontrivial classical conclusions from it.9The main di�erence between the approach of [1, 3, 5] and the present oneconcerns with the way of treating contradictory data: Here we accept incon-sistency and try to cope with it. This approach allows us to make nontrivialconclusions from an inconsistent theory without throwing pieces of informationaway. The approach of [1, 3, 5] revises inconsistent information and restoresconsistency. Thus, contradictory data is considered useless, and only a con-sistent part of the original information is used for making inferences. Suchmethods are sometimes called coherent . See [9] for a survey on coherent tech-niques for reasoning with prioritized knowledge-bases.5.2 The possibilistic approachIn [10, 12] Benferhat et al. present a well-known approach for reasoning withinconsistency in prioritized knowledge-bases, called possibilistic logic. Briey,the idea is to consider a consistent subset �(KB) of KB, so that in termsof Notation 4.2 �(KB) = KBi, where i is the maximal index for which KBiis classically consistent. A formula  is a possibilistic consequence of KB(KB j=� ) if it classically follows from �(KB).9In particular, every conclusion that is deducible by j=W is also valid according the ap-proach taken in [3, 5], and every conclusion that is drawn by j=�W is valid according to theapproach of [1]; The opposite directions are obviously not true.10



Proposition 5.1 Suppose that KB1 is consistent and  is a clause which isnot a classical tautology. If KB j=�  then KB j=�W  .10Proof: If KB j=�  then �(KB) j=2  . But by Propositions 2.6 and 4.11�(KB) =KBi0 , so KBi0 j=2  . Since  is not a classical tautology and KBi0is consistent (Proposition 4.11), then by Lemma 2.9 KBi0 j=4  . Hence, byProposition 4.14(a), KB j=�W  . 2The converse of the last proposition is not true. This follows from the factthat unlike the case of j=�W , the possibilistic consequence relation has the socalled \drowning problem" [9, 10]: Formulae with ranks that are greater thanthe inconsistency level are inhibited even if they are not involved in any conict.We demonstrate this phenomenon in the following example:Example 5.2 Consider again the knowledge-base of Example 3.4, and supposethat r(:p_:q)=1, r(p)=2, r(q)=3, r(h)=4. Then �(KB)=f:p_:q; pg, andso KB 6j=� h, even though h is not involved in the inconsistency. As Proposition4.14(b) shows, this is not the case with j=�W : Since h 2 Con2(KB), thenCon2(KB) j=4h, and so KB j=�W h.6 Conclusion and further workWe have considered a logic for reasoning with incomplete and inconsistentknowledge-bases. The corresponding consequence relation is nonmonotonic,paraconsistent, and allows to draw conclusions that are not involved in anyconict in the knowledge-base. In practice, this means that in case that asmall part of a large knowledge-base is contradictory, one would still be able todraw nontrivial conclusions based on the \robust" part of the knowledge-base,and so the inference process will not be totally damaged by the \spoiled" data.In the second part of the paper we considered cases in which the formulae ofthe knowledge-bases are ranked. This additional information allowed us to re-�ne the inference procedure so that we also draw conclusions with contradictorydata, provided that this data has a su�ciently high priority.The formalisms presented here are based on a four-valued semantics, whichhas been shown to be very useful in reasoning with uncertainty [4, 6, 7]. Thenext natural step is to use more than just four values. This will allow us, e.g.,to view truth values as representing probabilities, con�dence factors, etc. Onepossible way of doing so is to use bilattices [16], which are algebraic structures,with arbitrary number of truth values, that naturally generalize FOUR [2, 13,14]. Such extensions will be considered in a future work.AcknowledgmentI would like to thank Arnon Avron for helpful discussions on the topics of thispaper.10Recall that here j=�W is either j=�ccW or j=�ciW .11



References[1] O.Arieli. A four-valued approach for handling inconsistency in prioritizedknowledge-bases. Proc. FLAIRS'97, pages 92{96, 1997.[2] O.Arieli, A.Avron. Reasoning with logical bilattices. Journal of Logic, Language,and Information 5(1), pages 25{63, 1996.[3] O.Arieli, A.Avron. Four-valued diagnoses for strati�ed knowledge-bases. Proc.CSL'96. LNCS 1258, pages 1{17, Springer, 1997.[4] O.Arieli, A.Avron. The value of the four values. Arti�cial Intelligence 102(1),pages 97{141, 1998.[5] O.Arieli, A.Avron. A model-theoretic approach to recover consistent data frominconsistent knowledge-bases.To appear in the Journal of Automated Reasoning.[6] N.D.Belnap. A useful four-valued logic. Modern Uses of Multiple-Valued Logic(G.Epstein and J.M.Dunn { eds.), pages 7{37. Reidel Publishing Company, 1977.[7] N.D.Belnap. How computer should think. Contemporary Aspects of Philosophy(G.Ryle { ed.), pages 30{56. Oriel Press, 1977.[8] S.Benferhat, C.Cayrol, D.Dubois, J.Lang, H.Prade. Inconsistency managementand prioritized syntax-based entailment. Proc. IJCAI'93, pages 640{645, 1993.[9] S.Benferhat, D.Dubois, H.Prade. How to infer from inconsistent beliefs withoutrevising? Proc. IJCAI'95, pages 1449{1455, 1995.[10] S.Benferhat, D.Dubois, H.Prade. Nonmonotonic reasoning, conditional objectsand possibility theory. Arti�cial Intelligence 92, pages 259{276, 1997.[11] N.C.A.da-Costa. On the theory of inconsistent formal systems. Notre DammJournal of Formal Logic 15, pages 497{510, 1974.[12] D.Dubios, J.Lang, H.Prade. Possibilistic logic. Handbook of Logic in Arti�cialIntelligence and Logic Programming (D.Gabbay, C.Hogger, J.Robinson { eds.),Oxford Science Publications, pages 439{513, 1994.[13] M.Fitting. Bilattices and the semantics of logic programming. Journal of LogicProgramming 11(2), pages 91{116, 1991.[14] M.Fitting. Kleene's three-valued logics and their children.Fundamenta Informat-icae 20, pages 113{131, 1994.[15] D.M.Gabbay. Theoretical foundation for non-monotonic reasoning in expert sys-tems. Proc. of the NATO Advanced Study Inst. on Logic and Models of Con-curent Systems (K.P.Apt { ed.) Springer-Verlag, pages 439{457, 1985.[16] M.L.Ginsberg. Multivalued logics: A uniform approach to reasoning in AI. Com-puter Intelligence 4, pages 256{316, 1988.[17] M.Goldszmidt, J.Pearl. Qualitative probabilities for default reasoning, belief re-vision, and causal modeling. Arti�cial Intelligence 84, pages 57{112, 1996.[18] D.Lehmann, M.Magidor. What does a conditional knowledge base entail? Arti-�cial Intelligence 55(1), pages 1{60, 1992.[19] G.Wagner. Vivid logic. LNAI 764. Springer-Verlag, 1994.12


