Database Repair by Signed Formulae

Ofer Arieli', Marc Denecker?, Bert Van Nuffelen?, and Maurice Bruynooghe?

! Department of Computer Science, The Academic College of Tel-Aviv,
Antokolski 4, Tel-Aviv 61161, Israel
oarieli@mta.ac.il
2 Department of Computer Science, Katholieke Universiteit Leuven,
Celestijnenlaan 200A, B-3001 Heverlee, Belgium
{marcd,bertv,maurice}@cs.kuleuven.ac.be

Abstract. We introduce a simple and practically efficient method for
repairing inconsistent databases. The idea is to properly represent the
underlying problem, and then use off-the-shelf applications for efficiently
computing the corresponding solutions.

Given a possibly inconsistent database, we represent the possible ways
to restore its consistency in terms of signed formulae. Then we show
how the ‘signed theory’ that is obtained can be used by a variety of
computational models for processing quantified Boolean formulae, or by
constraint logic program solvers, in order to rapidly and efficiently com-
pute desired solutions, i.e., consistent repairs of the database.

1 Introduction

In this paper we consider a uniform representation of repairs of inconsistent rela-
tional databases, that is, a general description of how to restore the consistency
of databases instances that do not satisfy a given set of integrity constraints.
We then show how this description can be used by a variety of computational
methodologies for efficiently computing database repairs, i.e., new consistent
database instances that differ from the original database instance by a minimal
set of changes (with respect to set inclusion or set cardinality).

Reasoning with inconsistent databases has been extensively studied in the
last few years, especially in the context of integrating (possibly contradicting)
independent data-sources.? In this paper we introduce a novel representation of
the repair problem as a theory that consists of what we call signed formulae.
Then we illustrate how off-the-shelf computational systems can use the theory
to solve the problem, i.e., to compute repairs of the database. Here we apply two
types of tools for repairing a database:

— We show that the problem of finding repairs with minimal cardinality for
a given database can be converted to the problem of finding minimal Her-
brand models for the corresponding ‘signed theory’. Thus, once the process

% See., e.g., [1,4,9,10,13, 14,19, 20, 23] for more details on reasoning with inconsistent
databases and further references to related works.

2 O.Arieli, M.Denecker, B.Van Nuffelen, and M.Bruynooghe

for consistency restoration of the database has been represented by a signed
theory (using a polynomial transformation), tools for minimal model com-
putations (such as the Sicstus Prolog constraint solver [12], or the answer
set programming solver dlv [15]) can be used to efficiently find the required
repairs.

— For finding repairs that are minimal with respect to set inclusion, satisfi-
ability solvers on appropriate quantified Boolean formulae (QBF) can be
utilized. Again, we provide a polynomial-time transformation to (signed)
QBF theories, and show how QBF solvers [5,11,16-18,21,26] can be used
to restore the database consistency.

The rest of the paper is organized as follows: In the next section we formally
define the underlying problem and in Section 3 we show how to represent it
by signed formulae. In Sections 4 and 5 we show how constraint solvers for
logic programs and quantified Boolean formulae can be utilized for computing
database repairs based on the signed theories. In Section 6 we present some
experimental results, and in Section 7 we conclude with some further remarks
and observations.

2 Database Repairs

Let L be a first-order language, based on a fixed database schema S and a
fixed domain D. Every element of D has a unique name. A database instance D
consists of atoms in the language L that are instances of the schema S. As such,
every database instance D has a finite active domain, A(D), which is a subset
of D.

A database is a pair (D, ZC), where D is a database instance, and ZC, the set
of integrity constraints, is a finite and classically consistent set of formulae in
L. Given a database DB = (D,ZC), we apply to it the closed word assumption,
so only the facts that are explicitly mentioned in D are considered true. The
underlying semantics of a database (D,ZC) corresponds, therefore, to the least
Herbrand model of D (notation: HP), i.e., the model of D that assigns true to all
the ground instances of atomic formulae in D, and assigns false to all the other
atoms.

Given a database DB = (D, ZC), let
DBA=D U IC* =D U {p() | ¥ € IC, p: var(yy) — A(D)},

where p is a ground substitution of variables to the individuals of A(D), the
active domain of D.* DB* is called the Herbrand ezpansion of DB. As D, IC,
and A(D) are all finite sets, DB* is also finite, and so XP8 = {p1,p2,--,Pn},
the set of the (ground) atomic formulae that appear in DB, is finite as well. In

! Thus, e.g., p(Vz () = ¢(p1) A ... A(pn) and p(3z ¢(x)) = $(p1) V ... V $(pn),
where pi,...,pn are the elements of A(D); the transformation for other formulae is
standard.

Database Repair by Signed Formulae 3

what follows we shall assume that the databases are grounded w.r.t. their active
domains, therefore we shall omit the superscripts of ¢4 and DBA.

We say that a formula ¢ follows from a database instance D (notation:
D = ¢) if the minimal Herbrand model of D is also a model of 1. A database
DB = (D,1C) is consistent if every formula in ZC follows from D (notation:
D E=10)5

Given a possibly inconsistent database, our goal is to restore its consistency,
i.e., to ‘repair’ the database:

Definition 2.1. An update of a database DB=(D,ZC) is a pair (Insert, Retract),
s.t. Insert N D =0 and Retract C D.5 A repair of DB is an update of DB, for
which (D U Insert \ Retract, ZC) is a consistent database.

Intuitively, a database is updated by inserting the elements of Insert and
removing the elements of Retract. An update is a repair when the resulting
database is consistent. Note that if DB is consistent, then (§,0) is a repair of
DB.

Ezample 2.1. Let DB = ({P(a)}, {Vz(P(z) = Q(z))}). Clearly, this database
is not consistent. The Herbrand expansion of DB is ({P(a)}, {P(a) = Q(a)}),
and it has three repairs, namely Ry = ({},{P(a)}), R2 = ({Q(a)},{}), and
Rs = ({Q(a)},{P(a)}) that correspond, respectively, to removing P(a) from
the database, inserting @)(a) to the database, and performing both actions si-
multaneously.

Note that as the underlying semantics is determined by Herbrand interpreta-
tions, the Domain Closure Assumption” is implicit here, and should be regarded
as another constraint that should be satisfied by every repair. Therefore, e.g.,
({Q(b)},{P(a)}) is not a repair of DB in this case, for any b # a. Another
implicit assumption, induced by the use of Herbrand semantics, is that Clark’s
equality axioms are satisfied, and so the elements of X8 are all different.

As the example above shows, there are many ways to repair a given database,
some of them may not be very natural or sensible. It is usual, therefore, to specify
some preference criterion on the possible repairs, and to apply only those that
are (most) preferred with respect to the underlying criterion. The most common
criteria for preferring a repair (Insert, Retract) over a repair (Insert’, Retract’) are
set inclusion [1,4,9,10,14,19,20], i.e.,

(Insert, Retract) <; (Insert’, Retract'), if Insert U Retract C Insert’ U Retract’,
or minimal cardinality [4,13,23], i.e.,
(Insert, Retract) <. (Insert’, Retract’), if |Insert| + |Retract| < |Insert’| + |Retract’|.

® That is, there is no integrity constraint that is violated in D.

 Note that by conditions (1) and (2) it follows that Insert N Retract=0.

" Namely, that the domain of every variable is in the set P of the ground atoms
that appear in DB.

4 O.Arieli, M.Denecker, B.Van Nuffelen, and M.Bruynooghe

Both criteria above reflect the intuitive feeling that a ‘natural’ way to repair an
inconsistent database should require some minimal amount of changes, therefore
the recovered data is kept ‘as close as possible’ to the original one. According
to this view, for instance, each one of the repairs Ry and Rs of Example 2.1
is strictly better than R3. Note also, that ((,0) is the only <;-preferred and
<.-preferred repair of consistent databases, as expected.

3 Representation of Repairs by Signed Formulae

In what follows we represent (preferred) repairs in terms of what we call ‘signed
formulae’. Then we incorporate corresponding solvers in order to compute the
repairs.

For every (ground) atom p € ¥PF we introduce a new atom, s,, intuitively
understood as ‘switch p’, or ‘change the status of p’, that is, s, holds iff p €
Insert U Retract. For every integrity constraint ¢) € ZC we define a new formulae,
1, obtained from 1/ by simultaneously substituting every appearance of an atom
p by a corresponding expression 7, that is defined as follows:

-sp, ifpeD,
Ty —
b sp otherwise.

The formula v = 9 [T, /D1, - - - ;, Tp,, /Pm] (i-e., the simultaneous substitution
in ¢ of all the atomic formulae p;, 1<i<m, by their ‘signed expressions’ 7,,) is
called the signed formula that is obtained from).

Given a repair R = (Insert, Retract) of a database DB, define a valuation v*

on {s, | p € ZPB} as follows:

vR(sp) =t iff p € Insert U Retract.

v® is called the valuation that is associated with R. Conversely, a valuation v
on {s, | p € EPB} induces a database update R” = (Insert, Retract), where
Insert = {p & D | v(s,) = t} and Retract = {p € D | v(sp) = t}.¥ Obviously,

these mappings are the inverse of each other.

Ezample 3.1. Let DB = ({p},{p — q}) be a ground representation of the
database considered in Example 2.1. In this case, the sign formula of p = p — ¢ is
)= -Sp — 84, Or, equivalently, s,V s,. Intuitively, this formula indicates that in
order to restore the consistency of DB, at least one of p or g should be ‘switched’,
i.e., either p should be removed from the database or ¢ should be inserted to
it. Indeed, the three classical models of ¢ are exactly the three valuations on
{sp, ¢4} that are associated with the three repairs of DB (see Example 2.1). The
next theorem shows that this is not a coincidence.

8 Clearly, R” is an update of DB3, but it is not necessarily a repair of DB (see Defini-
tion 2.1).

Database Repair by Signed Formulae 5

Theorem 3.1. Let DB = (D,ZC) be a database. Denote: IC = {¢ | ¢ € IC}.

a) if R is a repair of DB then v™ is a model of IC,
b) if v is a model of ZIC then RY is a repair of DB.

Proof. For (a), suppose that R is a repair of DB = (D,ZC). Then, in particu-
lar, DR = IC, where DR = D U Insert \ Retract. Let #P" be the least Herbrand
model of D%, and let ¢ € ZC. Then HD" (¢) = t, and so it remains to show

that v (¢) = HP" (¢). The proof of this is by induction on the structure of
¢, and we show only the base step (the rest is trivial), i.e., for every p € £PB,

vR() = HP™ (p). Indeed,

—peD\Retract = p € DR = vR(p)=vR(—s,)=—wR(s,)=-f =t=HT" (p).
—p € Retract = p € D\ DR = vR(p)=vR(=s,) =R (s,)=~t=f=HP" (p).
—pelnsert = pe DR\ D = vR(p)=vR(s,)=t=HP" (p).

~pgDUlnsert = p & DR = vR(P)=vR(s,)=f=H"" (p).

For part (b), suppose that v is a model of ZC. Let
R” = (Insert,Retract) = ({p € D | v(sp) =t},{p € D | v(sp) =t}).

We shall show that R” is a repair of DB. According to Definition 2.1, it is ob-
viously an update. It remains to show that every ¢) € ZC follows from DR =
D U Insert \ Retract, i.e., that HP" (1) = t, where HP" is the least Herbrand
model of D, Since v is a model of ZC, v(¢) = t, and so it remains to show that
HP" (v)) = v(¢). Again, the proof is by induction on the structure of ¢, and we
show only the base step, that is: for every p € XPB, HP" (p) = v(p):

—peD\Retract = p e DR, v(s,) = f = HP" (p)=t=-w(s,) =v(~s,) =v (D).
—peRetract = pe D\ DR, u(sy) =t, = HP" (p)=f=-w(sp) =v(-s,) =v(D).
—pelnsert = pe DR\ D, v(sy) =t, = HP" (p)=t=v(s,)=v(p).

~p@DUlnsert = p & DR, v(s,) = f, = HP" (p)=f=v(sp) =v(p). O

The last theorem implies, in particular, that in order to compute repairs for
a given database DB, it is sufficient to find the models of the signed formulae
that are induced by the integrity constraints of DB; the pairs that are induced
by these models are the repairs of DS.

Ezample 3.2. Consider again the (grounded) database of Examples 2.1 and 3.1.
The corresponding signed formula 1) = s, V s, has three models {s,:t,s,: f},
{sp:f,sq:t}, and {s,:t,s,:t}.” These models induce, respectively, three pairs,
({}.{r}), (a}, {}), and ({q}, {p}), which are the repairs of DB (cf. Example 2.1).

® We are denoting here by p:z the fact that the atom p is assigned the value z by the
corresponding valuation.

6 O.Arieli, M.Denecker, B.Van Nuffelen, and M.Bruynooghe

4 Computing Preferred Repairs by Model Generation

In this section we show how solvers for constraint logic programs (CLPs), answer-
set programming (ASP) and SAT solvers can be used for computing <.-preferred
repairs and <;-preferred repairs. The experimental results are presented in Sec-
tion 6.

4.1 Computing <.-Preferred Repairs

By Theorem 3.1, the repairs of a database correspond exactly to the models of
the signed theory. It is straightforward to see that <.-preferred repairs of DB
(i.e., those with minimal cardinality) correspond to models of ZC that minimize
the number of t-assignments of the atoms s,. Hence, the problem is to find
Herbrand models for ZC with minimal cardinality (called <.-minimal Herbrand
models).

Theorem 4.1. Let DB = (D,IC) be a database and ZC = {3 | 1 € IC}. Then:

a) if R is a_<c-preferred repair of DB, then v® is a <.-minimal Herbrand
model of IC.

b) if v is a <.-minimal Herbrand model of IC, then R" is a <.-preferred repair
of DB.

We discuss two techniques to compute <.-minimal Herbrand models. The
first approach is to use a finite domain CLP solver. Encoding the computation
of <.-preferred repair using a finite domain constraint solver is a straightfor-
ward process. The ‘switch atoms’ s, are encoded as finite domain variables with
domain {0, 1}. A typical encoding specifies the relevant constraints (i.e., the en-
coding of ZC), assigns a special variable, Sum, for summing-up all the signed
variables that are assigned the value ‘1’, and asks for a solution with a minimal
value for Sum.

Example 4.1. Below is a code for repairing the database of Example 3.2 with

Sicstus Prolog finite domain constraint solver CLP(FD) [12]'°.
domain([Sp,Sql,0,1), % domain of the signed atoms
Sp #\/ Sq, % the signed theory
sum([Sp,Sql, #=,Sum), % Sum = num of vars with val 1

minimize(labeling([], [Sp,Sql),Sum). % find a solution with min sum

The solutions computed here are [1,0] and [0, 1], and the value of Sum is 1.
This means that the cardinality of the <.-preferred repairs of DB should be 1,
and that these repairs are induced by the valuations vy = {sp:t,s,: f} and
va = {sp: f,s4:t}. Thus, the two <.-minimal repairs here are ({},{p}) and
({¢},{}), which indeed insert or retract exactly one atomic formula.

10°A Boolean constraint solver would also be appropriate here. As Sicstus Prolog

Boolean constraint solver has no minimization capabilities, we prefer to use here
the finite domain constraint solver.

Database Repair by Signed Formulae 7

A second approach is to use the disjunctive logic programming system DLV
[15]. To compute <.-minimal repairs using DLV, the signed theory ZC is trans-
formed into a propositional clausal form. A clausal theory is a special case of
a disjunctive logic program without negation in the body of the clauses. The
stable models of a disjunctive logic program without negation as failure in the
body of rules coincide exactly with the <;-minimal models of such a program.
Hence, by transforming the signed theory ZC to clausal form, DLV can be used to
compute <;-minimal Herbrand models. To eliminate models with non-minimal
cardinality, weak constraints are used. A weak constraint is a formula for which
a cost value is defined. With each model computed by DLV, a cost is defined as
the sum of the cost values of all weak constraints satisfied in the model. The
DLV system can be asked to generate models with minimal total cost. The set
of weak constraints used to compute <.-minimal repairs is exactly the set of all
atoms sp; each atom has cost 1. Clearly, <;-minimal models of a theory with
minimal total cost are exactly the models with least cardinality.

Ezample 4.2. Below is a code for repairing the database of Example 3.2 with
DLV.

Sp v Sq. % the clause
:” Sp. % the weak constraints (their cost is 1 by default)
~ Sq.

Clearly, the solutions here are {s,:t,s,: f} and {s;,: f,s,:t}. These valuations
induce the two <.-minimal repairs of DB, R1 = ({},{p}) and R2 = ({¢},{}).

4.2 Computing <;-Preferred Repairs

The <;-preferred repairs of a database correspond to minimal Herbrand models
with respect to set inclusion of the signed theory ZC. We focus on the compu-
tation of one minimal model. The reason is simply that in most sizable applica-
tions, the computation of all minimal models is not feasible (there are too many
of them). We consider here three simple techniques to compute a <;-preferred
repair. In the next section we consider another more complex method.

L. One technique, mentioned already in the previous section, is to transform
7ZC to clausal form and use the DLV system. In this case the weak constraints
are not needed.

IT. Another possibility is to adapt CLP-techniques to compute <;-minimal mod-
els of Boolean constraints. The idea is simply to make sure that whenever a
Boolean variable (or a finite domain variable with domain {0, 1}) is selected
for being assigned a value, one first assigns the value 0 before trying to assign
the value 1.

Proposition 4.1. If the above strategy for value selection is used, then the
first computed model is provably a <;-minimal model.

8 O.Arieli, M.Denecker, B.Van Nuffelen, and M.Bruynooghe

Proof. Consider the search tree of the CLP-problem. Each path in this tree
represents a value assignment to a subset of the constraint variables. Internal
nodes, correspond to partial solutions, are labeled with the variable selected
by the labeling function of the solver and have two children: the left child
assigns value 0 to the selected variable and the right child assigns value 1.
We say that node ns is on the right of a node n; in this tree if no appears
in the right subtree, and n; appears in the left subtree of the deepest com-
mon ancestor node of n; and ns. It is then easy to see that in such a tree,
each node ny to the right of a node n; assigns the value 1 to the variable
selected in this ancestor node, whereas n; assigns value 0 to this variable.
Consequently, the left-most node in the search tree which is a model of the
Boolean constraints, is <;-minimal. |

In CLP-systems such as Sicstus Prolog, one can control the order in which
values are assigned to variables. We have implemented the above strategy
and discuss the results in Section 6.

ITI. A third technique considered here uses SAT-solvers. SAT-solvers, such as
zChaff [25], do not compute directly minimal models, but can be easily ex-
tended to do so. The algorithm uses the SAT-solver to generate models of
the theory 7, until it finds a minimal model. Minimality of a model M of T
can be verified by checking the unsatisfiability of 7, augmented with the ax-
ioms \/ ¢, —p and A 45, —p. The model M is minimal exactly when these
axioms are inconsistent with 7. This approach has been tested using the
SAT solver zChaff [25]; the results are discussed in Section 6.

5 Computing <;-Preferred Repairs by QBF Solvers

In this section we show how solvers for quantified Boolean formulae (QBFs) can
be used for computing the <;-preferred repairs of a given database. In this case
it is necessary to add to the signed formulae of ZC an axiom (represented by
a quantified Boolean formula) that expresses <;-minimality, i.e., that an <;-
preferred repair is not included in any other database repair. Then, QBF solvers
such as QUBOS [5], EVALUATE [11], QUIP [16], QSOLVE [17], QuBE [18], QKN
[21], SEMPROP [22], and DECIDE [26], can be applied to the signed quantified
Boolean theory that is obtained, in order to compute the <;-preferred repairs of
the database. Below we give a formal description of this process.

5.1 Quantified Boolean Formulae

Quantified Boolean formulae (QBFs) are propositional formulae extended with
quantifiers V,3 over propositional variables. In what follows we shall denote
propositional formulae by Greek lower-case letters (usually ¥, ¢) and QBFs by
Greek upper-case letters (e.g., ¥, ®). Intuitively, the meaning of a QBF of the
form dp Vq 1) is that there exists a truth assignment of p such that 1 is true for
every truth assignment of q. Next we formalize this intuition.

Database Repair by Signed Formulae 9

As usual, we say that an occurrence of an atomic formula p is free if it is not in
the scope of a quantifier Qp, for Q € {V, 3}, and we denote by ¥[¢1/p1, . .., dm/Dm)
the uniform substitution of each free occurrence of a variable p; in ¥ by a for-
mula ¢;, for i = 1,...,m. The notion of a valuation is extended to QBFs as
follows: Given a function vy : PB U {t,f} — {t, f} s.t. v(t) = t and v(f) = f,
a valuation v on QBFs is recursively defined as follows:

v(p) = vai(p) for every p € XPB U {t,f},

()

(=) (%),

(¥ 0 ¢) = v(h) ov(9), where o € {A,V, =, &},
(Vp) = w(¢[t/p]) A v(¥[f/p)),

Gp) = v(@lt/p]) v v(¢[f/p])-

A valuation v satisfies a QBF W if v(¥) = t; v is a model of a set I" of QBFs if it
satisfies every element of I'. A QBF ¥ is entailed by a set I' of QBF's (notation:
I' + @) if every model of I' is also a model of ¥. In what follows we shall use
the following notations: for two valuations v; and v we denote by v; < vy that
for every atomic formula p, v1 (p) — v2(p) is true. We shall also write v; < vy to
denote that vy < vy and vo £ vy.

<

-V

<

<

=v

v =V

5.2 Representing <;-Preferred Repairs by Signed QBFs

It is well-known that quantified Boolean formulae can be used for representing
circumscription [24], thus they properly express logical minimization [7,8]. In

our case we use this property for expressing minimization of repairs w.r.t. set
inclusion.

Given a database DB = (D,1C), denote by ZC A the conjunction of all the
elements in ZC (i.e., the conjunction of all the signed formulae that are obtained
from the integrity constraints of DB). Consider the following QBF, denoted ¥pp:

(Sé)l - Spi) — /\(sz - 5;01)))

1 i=1

=.

Vsyi, o8y, (I_C/\[s;n/spl,...,s;n/spn] = (

(3

Consider a model v of ZCy, i.e., a valuation for s,,,...,s,, that makes ZC, true.
The QBF ¥pp expresses that every interpretation p (valuation for s}, ,...,s;)
that is a model of ZCx, has the property that u < v implies v < pu, ie.,
there is no model p of ZC, s.t. the set {s, | v(s,) = t} properly contains
the set {s, | p(sp) = t}. In terms of database repairs, this means that if
RY = (Insert, Retract) and R* = (Insert’, Retract’) are the database repairs that
are associated, respectively, with v and p, then Insert'URetract’ ¢ InsertURetract.
It follows, therefore, that in this case R” is a <;-preferred repair of DB, and in
general Upp represents <;-minimality.

10 O.Arieli, M.Denecker, B.Van Nuffelen, and M.Bruynooghe

Example 5.1. With the database DB of Examples 2.1, 3.1, and 3.2, ZC U ¥pp is
the following theory, I":

{sp\/sq , Vs;Vs'q((s;\/s'q) — ((s; — sp)A(sy = 54) = (sp = 5,)\(s54 = s'q)))}

The models of I" are those that assign ¢ either to s, or to s,, but not to both of
them, i.e., v; = (sp:t,s4:f) and va = (sp: f,84:t). The database updates that
are induced by these valuations are, respectively, R** = ({},{p}) and R*2 =
({¢},{}). By Theorem 5.1 below, these are the only <;-preferred repairs of DB.

Theorem 5.1. Let DB = (D, IC) be a database and ZC = {3 | 1 € IC}. Then:

a) if R is an <;-preferred repair of DB then v™ is a model of IC U W¥pg,
b) if v is a model of IC U Wpp then R is an <;-preferred repair of DB.

Proof. Suppose that R = (Insert, Retract) is an <;-preferred repair of DB.
In particular, it is a repair of DB and so, by Theorem 3.1, v® is a model of
ZC. Since Theorem 3.1 also assures that a database update that is induced by
a model of ZC is a repair of DB, in order to prove both parts of the theorem, it
remains to show that the fact that v™ satisfies ¥pg is a necessary and sufficient
condition for assuring that R is <;-minimal among the repairs of DB. Indeed, v
satisfies Wpp iff for every valuation p that satisfies ZC» and for which p < v, it
is also true that ¥ < . Thus, v satisfies ¥pg iff there is no model p of ZC s.t.
p < v™_iff (by Theorem 3.1 again) there is no repair R’ of DB s.t. v < URiff
there is no repair R' = (Insert’, Retract’) s.t. Insert’ U Retract’ C Insert U Retract,
iff R is an <;-minimal repairs of DB. O

Note 5.1. (Complexity results) A skeptical (conservative) approach to query an-
swering is considered, e.g., in [1, 19], where an answer to a query Q and a database
DB is evaluated with respect to (the databases that are obtained from) all the
<;-preferred repairs of DB. A credulous approach to the same problem evaluates
queries with respect to some <;-preferred repair of DB. Theorem 5.1 implies the
following upper complexity bounds for these approaches:

Corollary 5.1. Credulous query answering lies in X%, and skeptical query an-
swering is in 111 .

Proof. By Theorem 5.1, credulous query answering is equivalent to satisfia-
bility checking for ZC U ¥pp, and conservative query answering is equivalent to
entailment checking for the same theory (see also Corollary 5.2 below). Thus,
these decision problems can be encoded by QBFs in prenex normal form with ex-
actly one quantifier alternation. The corollary is obtained, now, by the following
well-known result:

Proposition 5.1. [27] Given a propositional formula 1, whose atoms are par-
titioned into i > 1 sets {p1,..., Dy, },--- AP}, .- Dl }, deciding whether

Elp%,...,Elpinl,‘v’p%,...,‘v’pfnz,...,Qp’i,...,Qpﬁnizp

Database Repair by Signed Formulae 11

is true, is X -complete (where Q = 3 if i is odd and Q =V if i is even). Also,
deciding if

Vp%,...,Vp}nl,Elpf,...,EIpfnZ,...,Qpi,...,Qpﬁniz/)
is true, is I} -complete (where Q =V if i is odd and Q = 3 if i is even). O

As shown, e.g., in [19], the complexity bounds specified in the last corollary are
strict, i.e., these decision problems are hard for the respective complexity classes.

Note 5.2. (Consistent query answering) Another consequence of Theorem 5.1 is
that the conservative approach to query answering [1, 19] may be represented in
our context in terms of a consequence relation as follows:

Corollary 5.2. Q is a consistent query answer of a database DB = (D,IC) in
the sense of [1,19] iff ZC U¥pp + Q.

The last corollary and Section 4.2 provide, therefore, some additional methods
for consistent query answering, all of them are based on signed theories.

6 Experiments and Comparative Study

The idea of using formulae that introduce new (‘signed’) variables aimed at des-
ignating the truth assignments of other related variables is used, for different
purposes, e.g. in [2,3,6,7]. In the area of database integration, signed variables
are used in [19], and have a similar intended meaning as in our case. In [19],
however, only <;-preferred repairs are considered, and a rewriting process for
converting relational queries over a database with constraints to extended dis-
junctive queries (with two kinds of negations) over database without constraints,
must be employed. As a result, only solvers that are able to process disjunctive
Datalog programs and compute their stable models (e.g., DLV), can be applied.
In contrast, as we have already noted above, motivated by the need to find prac-
tical and effective methods for repairing inconsistent databases, signed formulae
serve here as a representative platform that can be directly used by a variety
of off-the-shelf applications for computing (either <;-preferred or <.-preferred)
repairs. In what follows we examine some of these applications and compare
their appropriateness to the kind of problems that we are dealing with.

We have randomly generated instances of a database, consisting of three rela-
tions: teacher of the schema (teacher name), course of the schema (course name),
and teaches of the schema (teacher name, course name). Also, the following two
integrity constraints were specified:

icl A course is given by one teacher:

VX VY VZ ((teacher(X) A teacher(Y) A course(Z) A teaches(X,Z) A
teaches(Y,Z)) — X = Y)

12 O.Arieli, M.Denecker, B.Van Nuffelen, and M.Bruynooghe

ic2 Each teacher gives at least one course:
VX (teacher(X) — 3Y (course(Y) /\teaches(X,Y)))

The next four test cases (identified by the enumeration below) were considered:

1. Small database instances with ic1 as the only constraint.
2. Larger database instances with icl as the only constraint.

3. Databases with ZC = {icl,ic2}, where the number of courses equals the
number of teachers.

4. Databases with ZC = {ic1,ic2} and with fewer courses than teachers.

Note that in the first two test cases, only retractions of database facts are
needed in order to restore consistency, in the third test case both insertion and
retractions may be needed, and the last test case is unsolvable, as the theory is
not satisfiable.

For each benchmark we generated a sequence of instances with an increasing
number of database facts, and tested them w.r.t. the following applications:

— ASP/CLP-solvers:
DLV [15] (release 2003-05-16), CLP(FD) [12] (version 3.10.1).

— QBF-solvers:
SEMPROP [22] (release 24.02.02), QuBE-BJ [18] (release 1.3), DECIDE [26].

— SAT-solvers:
A minimal-model generator based on zChaff [25].

The goal was to construct <;-preferred repairs within a time limit of five
minutes. The systems DLV and CLP(FD) were tested also for constructing <.-
preferred repairs. All the experiments were done on a Linux machine, 800MHz,
with 512MB memory. Tables 1-4 show the results for providing the first answer.!!

The results of the first benchmark (Table 1) already indicate that DLV, CLP,
and zChaff perform much better than the QBF-solvers. In fact, among the QBF-
solvers that were tested, only SEMPROP could repair within the time limit most
of the database instances of benchmark 1, and none of them could success-
fully repair (within the time restriction) the larger database instances, tested in
benchmark 2. Also, we encountered some space limitation problems and a bug!?
in DECIDE, and this discouraged us from using it in our experiments.

Another observation from Tables 14 is that DLV, CLP, and the zChaff-based
system, perform very good for minimal inclusion greedy algorithms. However,

1 Times are in given in seconds, empty cells mean that timeout is reached without
an answer, vars is the number of variables, IC is the number of grounded integrity
constraints, and size is the size of the repairs.

12 For the unsatisfiable QBF 3xyVuv((z V y) A (uV v)), the answer z = 1 and y = 0 is
returned. The system developers were notified about this and the bug is being fixed.

Database Repair by Signed Formulae 13
Table 1. Results for test case 1
Test info. <;-repairs <c-repairs
No.| vars | IC || size|| DLV CLP | zChaff | SEMPROP | QuBE DLV CLP
1l 20| 12 8 0.005 | 0.010 | 0.024 0.088 | 14.857 0.011 0.020
2] 25| 16 7 0.013 | 0.010 | 0.018 0.015 0.038 0.020
3| 30| 28 12 0.009 | 0.020 | 0.039 0.100 0.611 0.300
4| 35| 40 15 0.023 | 0.020 | 0.008 0.510 2.490 1.270
5| 40 | 48 16 0.016 | 0.020 | 0.012 0.208 3.588 3.220
6| 45| 42 17 0.021 | 0.030 | 0.008 0.673 12.460 10.350
71 50| 38 15 0.013 | 0.020 | 0.009 0.216 23.146 20.760
8| 55| 50 20 0.008 | 0.030 | 0.018 1.521 29.573 65.530
9| 60| 58 21 0.014 | 0.030 | 0.036 3.412 92.187 | 136.590
10| 65 | 64 22 0.023 | 0.030 | 0.009 10.460 122.399 | 171.390
11| 70| 50 22 0.014 | 0.030 | 0.019 69.925
12| 75| 76 27 0.021 | 0.030 | 0.010 75.671
13| 80 | 86 29 0.021 | 0.030 | 0.009 270.180
14| 85| 76 30 0.022 | 0.030 | 0.010
15| 90 | 78 32 0.024 | 0.040 | 0.020
16| 95| 98 35 0.027 | 0.040 | 0.047
17| 100 |102 40 0.017 | 0.040 | 0.016
18| 105 |102 37 0.018 | 0.040 | 0.033
19(110 (124 || 43 0.030 | 0.040 | 0.022
20| 115 (116 || 44 0.027 | 0.040 | 0.041
Table 2. Results for test case 2
Test info. <;-repairs
No. vars 1C size DLV CLP zChaff
1 480 171 470 0.232 0.330 0.155
2 580 214 544 0.366 0.440 0.051
3 690 265 750 0.422 0.610 0.062
4 810 300 796 0.639 0.860 0.079
5 940 349 946 0.815 1.190 0.094
6 1080 410 1108 1.107 1.560 0.123
7 1230 428 1112 1.334 2.220 0.107
8 1390 509 1362 1.742 2.580 0.135
9 1560 575 1562 2.254 3.400 0.194
10 1740 675 1782 2.901 4.140 0.182
11 1930 719 2042 3.592 5.260 0.253

14

O.Arieli, M.Denecker, B.Van Nuffelen, and M.Bruynooghe

Table 3. Results for test case 3

Test info. <;-repairs <c-repairs
No. | vars size DLV CLP zChaff DLV CLP
1 25 4 0.008 0.030 0.066 0.010 0.05
2 36 9 0.008 0.030 0.087 0.070 0.42
3 49 15 0.027 0.250 0.050 0.347 9.48
4 64 23 0.019 0.770 0.013 2.942 58.09
5 81 30 0.012 4.660 0.102 26.884
6 100 34 0.021 0.058 244.910
7 121 38 0.626 1.561
8 144 47 0.907 2.192
9 169 51 0.161 0.349
10 196 68 1.877 4.204
11 225 70 8.496 16.941
Table 4. Results for test case 4
Test info. <;-repairs <.-repairs
No. | teachers | courses DLV CLP | zChaff DLV CLP
1 5 4 0.001 0.01 0.001 0.001 0.001
2 7 5 0.005 0.13 0.010 0.005 0.120
3 9 6 0.040 1.41 0.020 0.042 1.400
4 11 7 0.396 | 17.18 0.120 3.785 | 17.170
5 13 8 3.789 1.050 44.605
6 15 9 44.573 13.370
7 17 10

Database Repair by Signed Formulae 15

when using DLV and CLP for cardinality minimization, their performance is much
worse. This is due to an exhaustive search for a <.-minimal solution.

While in benchmark 1 the time differences among DLV, CLP, and zChaff,
for computing <;-repairs are marginal, in the other benchmarks the differences
become more evident. Thus, for instance, zChaff performs better than the other
solvers w.r.t. bigger database instances with many simple constraints (see bench-
mark 2), while DLV performs better when the problem has bigger and more com-
plicated sets of constraints (see benchmark 3). The SAT approach with zChaff
was the fastest in detecting unsatisfiable situations (see benchmark 4). As shown
in Table 4, detecting unsatisfiability requires a considerable amount of time, even
for small instances.

Some of the conclusions from the experiments may be summarized as follows:

1. In principle, QBF-solvers, CLP-solvers, ASP-solvers, and SAT-solvers are all
adequate tools for computing database repairs.

2. All the QBF-solvers, as well as DLV and zChaff, are ‘black-boxes’ that ac-
cept the problem specification in a certain format. In contrast, CLP(FD)
provides a more ‘open’ environment, in which it is possible to incorporate
problem-specific search algorithms, such as the greedy algorithm for finding
<;-minimal repairs (see Section 4.2).

3. Currently, the performance of the QBF-solvers is considerably below that

of the other solvers. Moreover, most of the QBF-solvers require that the
formulae are represented in prenex CNF, and specified in Dimacs or Rintanen
format. These requirements are usually space-demanding. In our context,
the fact that many QBF-solvers (e.g., SEMPROP and QuBE-BJ) return only
yes/no answers (according to the satisfiability of the input theory), is another
problem, since it is impossible to construct repairs only by these answers.
One needs to be able to extract the assignments to the outmost existentially
quantified variables (as done, e.g., by DECIDE).
Despite these drawbacks of QBF-solvers, reasoning with QBF's seems to be
particularly suitable for our needs, since this framework provides a natural
way to express minimization (in our case, representations of optimal repairs).
It is most likely, therefore, that future versions of QBF-solvers will be the
basis of powerful mechanisms for handling consistency in databases.

7 Concluding Remarks

This work provides further evidence for the well-known fact that in many cases
a proper representation of a given problem is a major step in finding robust
solutions to it. In our case, a uniform method for encoding the restoration of
database consistency by signed formulae allows us to use off-the-shelf solvers for
efficiently computing the desired repairs.

16

O.Arieli, M.Denecker, B.Van Nuffelen, and M.Bruynooghe

As shown in Corollary 5.1, the task of repairing a database is on the second

level of the polynomial hierarchy, hence it is not tractable. However, despite
the high computational complexity of the problem, the experimental results
of Section 6 show that our method of repairing databases by signed theories is
practically appealing, as it allows a rapid construction of repairs for large problem
instances.

References

1.

10.

11.

12.

M.Arenas, L.Bertossi, and J.Chomicki. Consistent query answers in inconsistent
databases. Proc. 18th ACM Symp. on Principles of Database Systems (PODS’99),
pp.68-79, 1999.

O.Arieli and M.Denecker. Modeling paraconsistent reasoning by classical logic.
Proc. 2nd Symp. on Foundations of Information and Knowledge Systems
(FoIKS’02), T.Eiter and K.D.Schewe, editors, LNCS 2284, Springer, pp.1-14, 2002.
O.Arieli and M.Denecker. Reducing preferential paraconsistent reasoning to clas-
sical entailment. Journal of Logic and Computation 13(4), pp.557-580, 2003.

. O.Arieli, B.Van Nuffelen, M.Denecker, and M.Bruynooghe. Coherent composition

of distributed knowledge-bases through abduction. Proc. 8th Int. Conf. on Logic
Programming, Artificial Intelligence and Reasoning (LPAR’01), A .Nieuwenhuis
and A.Voronkov, editors, LNCS 2250, Springer, pp.620-635, 2001.

A Ayari and D.Basin. QUBOS: Deciding quantified Boolean logic using proposi-
tional satisfiability solvers. Proc. 4th Int. Conf. on Formal Methods in Computer-
Aided Design (FMCAD’02), M.D.Aagaard and J.W.O Leary, editors, LNCS 2517,
Springer, pp.187-201, 2002.

P.Besnard, T.Schaub. Signed systems for paraconsistent reasoning. Journal of Au-
tomated Reasoning 20(1), pp.191-213, 1998.

P.Besnard, T.Schaub, H.Tompits, and S.Woltran. Paraconsistent reasoning via
quantified Boolean formulas, part I: Axiomatizing signed systems. Proc. 8th Euro-
pean Conf. on Logics in Artificial Intelligence (JELIA’02), S.Flesca et al., editors,
LNAIT 2424, Springer, pp.320-331, 2002.

P.Besnard, T.Schaub, H.Tompits, and S.Woltran. Paraconsistent reasoning via
quantified Boolean formulas, part II: Circumscribing inconsistent theories. Proc.
7th European Conf. on Symbolic and Quantitative Approaches to Reasoning with
Uncertainty (ECSQARU’03), T.D.Nielsen and N.L.Zhang, editors, LNAI 2711,
Springer, pp.528-539, 2003.

L.Bertossi, J.Chomicki, A.Cortes, and C.Gutierrez. Consistent answers from in-
tegrated data sources. Proc. Flexible Query Answering Systems (FQAS’2002),
A.Andreasen et al., editors, LNCS 2522, Springer, pp.71-85, 2002.

L.Bertossi and C.Schwind. Analytic tableau and database repairs: Foundations.
Proc. 2nd Int. Symp. on Foundations of Information and Knowledge Systems
(FoIKS’02), T.Eiter and K.D.Schewe, editors, LNCS 2284, Springer, pp.32—48,
2002.

M.Cadoli, M.Schaerf, A.Giovanardi, and M.Giovanardi. An Algorithm to evaluate
quantified Boolean formulae and its experimental evaluation. Automated Reasoning
28(2), pp.101-142, 2002.

M.Carlsson, G.Ottosson and B.Carlson. An open-ended finite domain constraint
solver, Proc. 9th Int. Symp. on Programming Languages, Implementations, Logics,
and Programs (PLILP’97), LNCS 1292, Springer, 1997.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Database Repair by Signed Formulae 17

M.Dalal. Investigations into a theory of knowledge base revision. Proc. National
Conference on Artificial Intelligence (AAAT'98), AAAI Press, pp.475-479, 1988.
S.de Amo, W.Carnielli, and J.Marcos. A logical framework for integrating incon-
sistent information in multiple databases. Proc. 2nd Int. Symp. on Foundations of
Information and Knowledge Systems (FolKS’02), T.Eiter and K.D.Schewe, editors,
LNCS 2284, Springer, pp.67-84, 2002.

T.Eiter, N.Leone, C.Mateis, G.Pfeifer, and F.Scarcello. The KR system dlv:
Progress report, comparisons and benchmarks. Proc. 6th Int. Conf. on Principles
of Knowledge Representation and Reasoning (KR’98), Morgan Kaufmann Publish-
ers, pp.406—417, 1998.

U.Egly, T.Eiter, H.Tompits, and S.Woltran. Solving advanced reasoning tasks us-
ing quantified Boolean formulas. Proc. National Conf. on Artificial Intteligence
(AAAT00), AAAT Press, pp.417-422, 2000.

R.Feldmann, B.Monien, and S.Schamberger. A distributed algorithm to evalu-
ate quantified Boolean formulae. Proc. National Conf. on Artificial Intteligence
(AAAT00), AAAT Press, pp. 285-290, 2000.

E.Giunchiglia, M.Narizzano, and A.Tacchella. QuBE: A system for deciding quan-
tified Boolean formulas satisfiability. Proc. 1st Int. Conf. on Automated Reason-
ing (IJCAR’01), R.Gor, A.Leitsch, and T.Nipkow, editors, LNCS 2083, Springer,
pp.364-369, 2001.

S.Greco and E.Zumpano. Querying inconsistent databases. Proc. Int. Conf.
on Logic Programming and Automated Reasoning (LPAR’2000), M.Parigot and
A Voronkov, editors, LNAI 1955, Springer, pp.308-325, 2000.

G.Greco, S.Greco, and E.Zumpano. A logic programming approach to the integra-
tion, repairing and querying of inconsistent databases. Proc. 17th Int. Conf. on
Logic Programming (ICLP’01), LNCS 2237, Springer, pp.348-363, 2001.
H.Kleine-Biining, M.Karpinski, and A.Fégel. Resolution for quantified Boolean
formulas. Journal of Information and Computation 177(1), pp.12-18, 1995.

R. Letz. Lemma and model caching in decision procedures for quantified Boolean
formulas. Proc. TABLEAUX 2002, U.Egly and G.C.Fermiiler, editors, LNATI 2381,
pp.160-175, 2002.

P.Liberatore and M.Schaerf. BReLS: A system for the integration of knowledge
bases. Proc Int. Conf. on Principles of Knowledge Representation and Reasoning
(KR’2000), Morgan Kaufmann Publishers, pp.145-152, 2000.

J.McCarthy. Applications of circumscription to formalizing common-Sense knowl-
edge. Artificial Intelligence 28, pp.89-116, 1986.

M.Moskewicz, C.Madigan, Y.Zhao, L.Zhang, and S.Malik. Chaff: Engineering an
efficient SAT solver. Proc. 39th Design Automation Conference, 2001.
J.T.Rintanen. Improvements of the evaluation of quantified Boolean formulae.
Proc. 16th Int. Joint Conf. on Artificial Intelligence (IJCAT'99), Morgan Kauf-
mann Publishers, pp.1192-1197. 1999.

C.Wrathall. Complete sets and the polynomial-time hierarchy. Theoretical Com-
puter Science 3(1), pp.23-33, 1976.

