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Abstract. We introduce a general method for paraconsistent reason-
ing in knowledge systems by classical second-order formulae. A standard
technique for paraconsistent reasoning on inconsistent classical theories is
by shifting to multiple-valued logics. We show how these multiple-valued
theories can be “shifted back” to two-valued classical theories (through
a polynomial transformation), and how preferential reasoning based on
multiple-valued logic can be represented by classical circumscription-like
axioms. By applying this process we manage to overcome the shortcom-
ing of classical logic in properly handling inconsistent data, and provide
new ways of implementing multiple-valued paraconsistent reasoning in
knowledge systems. Standard multiple-valued reasoning can thus be per-
formed through theorem provers for classical logic, and multiple-valued
preferential reasoning can be implemented using algorithms for process-
ing circumscriptive theories (such as DLS and SCAN).

1 Introduction

Any knowledge-based system for common-sense reasoning must, be able to pro-
cess incomplete and inconsistent information in a “proper” way. This implies,
in particular, that (first-order) classical logic is inappropriate for such systems.
Indeed, on one hand classical logic is too cautious in drawing conclusions from
incomplete theories. This is so since classical logic is monotonic, thus it does not
allow to retract previously drawn conclusions in light of new, more accurate in-
formation. On the other hand, classical logic is too liberal in drawing conclusions
from inconsistent theories. This is explained by the fact that classical logic is not
paraconsistent [7], therefore everything classically follows from a contradictory
set of premises. If follows, therefore, that knowledge-based systems should use
other (or more general) formalisms for handling uncertainty.

Preferential reasoning [23] is an elegant way to overcome classical logic’s
shortcoming for reasoning on uncertainty. It is based on the idea that in order to
draw conclusions from a given theory one should not consider all the models of
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that theory, but only a subset of preferred models. This subset is usually deter-
mined according to some preference criterion, which is often defined in terms of
partial orders on the space of valuations. This method of preferring some models
and disregarding the others yields robust formalisms that allow to draw intuitive
conclusions from partial knowledge.

In the context of classical logic, preferential semantics cannot help to over-
come the problem of trivial reasoning with contradictory theories. Indeed, if a
certain theory has no (two-valued) models, then it has no preferred models as
well. A useful way of reasoning on contradictory classical theories is therefore by
embedding them in multiple-valued logics in general, and Belnap’s four-valued
logic [5, 6] in particular (which is the underlying multiple-valued semantics used
here). There are several reasons for using this setting. The most important ones
for our purposes are the following;:

— In the context of four-valued semantics it is possible to define consequence
relations that are not degenerated w.r.t. any theory (see, e.g., [1,2,6, 20, 21]);
the fact that every theory has a nonempty set of four-valued models implies
that four-valued reasoning may be useful for properly handling inconsistent
theories. As shown e.g. in [1,2], this indeed is the case.

— Analysis of four-valued models can be instructive to pinpoint the causes of
the inconsistency and/or the incompleteness of the theory under considera-
tion. (See [1, 2,5, 6] for a detailed discussion on this property, as well as some
relevant results).

However, Belnap’s four-valued logic has its own shortcomings:

— As in classical logic, many theories have too many models, and as a con-
sequence the entailment relation is often too weak. In fact, since Belnap’s
logic is weaker than classical logic w.r.t. consistent theories, we are even in
a worse situation than in classical logic!

A (partial) solution to this problem is by using preferential reasoning in the
context of multiple-valued logic (see, e.g., [1-3,11, 12,20, 21]).

— At the computational level, implementing paraconsistent reasoning based on
four-valued semantics poses important challenges. An effective implementa-
tion of theorem provers for one of the existing proof systems for Belnap’s
logic requires a major effort. The problem is even worse in the context of
four-valued preferential reasoning, for which currently no (implementations
of) proof systems are known.

Our goal in this paper is to show a way in which these problems can be
avoided (or at least alleviated) altogether. In particular, we present a polyno-
mial transformation back from four-valued theories to two-valued theories such
that reasoning in preferential four-valued semantics can be implemented by stan-
dard theorem proving in two-valued logic. Moreover, preference criteria on four-
valued theories are translated into ‘circumscriptive-like” formulae [17,18], and
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thus paraconsistent reasoning may be automatically computed by some special-
ized methods for compiling circumscriptive theories (such as those described in
[10,22]), and incorporated into algorithms such as SCAN [19] and DLS 8, 9], for
reducing second-order formulae to their first-order equivalents. !

2 Preliminaries

2.1 Preferential reasoning
First we briefly review the basic notions of preferential reasoning [23].

Definition 2.1. A preferential model (w.r.t. a language X) is a triple M =
(M,]=, <), where M is a set (of semantical objects, sometimes called states), |=
is a relation on M x X (called the satisfaction relation), and < (the preference
relation) is a binary relation on the elements of M.

Most often, the preference relation is a partial order or at least a pre-order
(i.e., reflexive and transitive). In this paper this will always be the case.

Definition 2.2. Let M= (M, =, <) be a preferential model, I" a set of formulae
in a language ¥, and me€ M. Then m satisfies I' (notation: m=1I") if m|=+ for
every v € I'. m preferentially satisfies I' (alternatively, m is a <-most preferred
model of T') if m satisfies I', and for each other n€ M s.t. n<m and n satisfies
I, it holds that m <n. The set of the elements in M that preferentially satisfy
I' is denoted by (I, <).

Now we can define the preferential entailment relations:

Definition 2.3. Let M= (M, =, <) be a preferential model, I" a set of formulae
in ¥, and ¢ a formula in ¥. We say that ¢ (preferentially) follows from I if
every element of !(I, <) satisfies ¢». We denote this by I' =< .

The idea that a non-monotonic deduction should be based on some preference
criterion that reflects some normality relation among the relevant semantical
objects is a very natural one, and may be traced back to [17]. Furthermore,
this approach is the semantical basis of some well-known general patterns for
non-monotonic reasoning, introduced in [13-16], and it is a key concept behind
many formalisms for nonmonotonic and paraconsistent reasoning (see, e.g., [1-3,
11,12,20, 21]). Our purpose in this paper is to propose techniques of expressing
preferential reasoning by formulae in the underlying language. Next we define
the framework for doing so.

! For a longer version of this paper see [4].
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2.2 The underlying semantical structure

The formalism that we consider here is based on Belnap’s four-valued algebraic
structure [5, 6], denoted by FOUR (Figure 1). This structure is composed of four
elements FOUR = {t, f, L, T}, arranged in the following two lattice structures:

— (FOUR, <;), in which ¢t is the maximal element, f is the minimal one, and
T, L are two intermediate and incomparable elements.

— (FOUR, <), in which T is the maximal element, L is the minimal one, and
t, f are two intermediate and incomparable elements.

Here, ¢t and f correspond to the classical truth values. The two other truth val-
ues may intuitively be understood as representing different cases of uncertainty:
T corresponds to a contradictory knowledge, and L corresponds to an incom-
plete knowledge. This interpretation of the meaning of the truth values will be
useful in what follows for modeling paraconsistent reasoning.? According to this
interpretation, the partial order <; reflects differences in the amount of truth
that each element represents, and the partial order <j, reflects differences in the
amount of knowledge that each element exhibits.

Fig. 1. FOUR

In what follows we shall denote by A and V the meet and join operations on
(FOUR, <¢). A negation, —, is a unary operation on FOUR, defined by —t=f,
—-f=t,-T =T, and =L = L. As usual in such cases, we take ¢t and T as the
designated elements in FOUR (i.e., the elements that represent true assertions).

% This was also the original motivation of Belnap when he introduced FOUR.
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In the rest of this paper we denote by X a language with a finite alphabet,

in which the connectives are V, A, —. These connectives correspond to the oper-
ations on FOUR with the same notations. v and p denote arbitrary four-valued
valuations, i.e., functions that assign a value in FOUR to every atom in Y. The
extension to complex formulae in X' is defined in the standard way:
v( A G) = glbe, (v (), v(8)), V(U ¢) = lube, (W), v(9)), V(=) = ~w(¥).
The space of the four-valued valuations is denoted by V*. A valuation v € V* is
a model of a formula ¢ (alternatively, v satisfies 1) if v(1)) € {t, T}. v is a model
of a set I' of formulae if v is a model of every 1) € I'. The set of the models of I
is denoted by mod(I").

2.3 Four-valued preferential reasoning
A natural definition of a consequence relation on FOUR is the following:

Definition 2.4. Let I" be a set of formulae and ¢ a formula in X. Denote I'" =%4)
if every four-valued model of I" is a four-valued model of .

In [2] it is shown that [=* is a consequence relation in the sense of Tarski
[24], i.e., it is reflexive, monotonic, and transitive. It is also shown there that
=1 is paraconsistent, compact, and has cut-free, sound and complete Hilbert-
type and Gentzen-type proof systems. However, the fact that =% is a Tarskian
consequence relation means, in particular, that it is monotonic, and as such it is
“over-cautious” in drawing conclusions from incomplete theories. In what follows
we therefore refine the reasoning process by using the techniques discussed above
for preferential reasoning. Below are some useful preference criteria.

Definition 2.5. [2] Let v, p€ V*. Denote:

— v < pif v(p) <k u(p) for every atom p.
— v <y1y pif for every atom p, p(p) =T whenever v(p)=T.
— v <y7,1y pif for every atom p, p(p) €{T, L} whenever v(p)€{T, L}.

It is easy to check that <y is a partial order and <;ty, <(T 1} are pre-orders
on V. In what follows we shall write v < u to denote that v <y pu and p £}, v;
similarly for <;ry and <yt 13.

Each one of the preference orders given in Definition 2.5 has its own rational-
ity: according to <y, for instance, one prefers valuations that reflect as minimal
information as reasonably possible. This criterion may as well be viewed as an
argumentation for consistency preserving, since as long as one keeps the amount
of information (or belief) as minimal as possible, the tendency of getting into
conflicts decreases.

The pre-order <;ty states a somewhat more explicit preference of incon-
sistency minimization: it prefers those valuations that minimize the amount of
inconsistent assignments. Similarly, <+ |y, prefers those valuations that are as



6 O.Arieli and M.Denecker

classical as possible. I.e., those ones that assign classical truth values whenever
possible.

Given a set I' of formulae in X, the minimal elements in mod(I") w.r.t. <g
(respectively, w.r.t <y, w.r.t. <gr 1)) are called the k-minimal models of I
(respectively, the most consistent models of I', the most classical models of I').

Ezample 2.1. Let I'={p, -p V q, =q, r V q}. The four-valued models of I" are
given in Table 1.

Table 1. The elements in mod(I")

Model | p q r Model | p q r
M, T f t Mg t T T
M, T f T M~ T | T | L
Ms t T L Mg T T f
M, t T f Mo T T t
Ms t T t Mo T | T 1| T

The k-minimal models of I' are {M;, M3}, the most consistent ones are
{My, M5, My, M5}, and the most classical ones are {M;, My, M5}.

Each one of the preference criteria considered in Definition 2.5 induces a
corresponding preferential consequence relation:

Definition 2.6. [2] Let I" be a set of formulae and ¢ a formula in X'. Denote:

— I''=} 1 if every k-minimal model of I is a model of .
- r \:?T} 1 if every most consistent model of " is a model of ).

- r \:?T7l} 1 if every most classical model of I" is a model of .

Ezample 2.2. Consider again the set I' of Example 2.1, and let ©»=rV-r. Then
r |:‘{*T7L} v, while '} ¢ and I’ L-A?T} 1.

Clearly, the consequence relations of Definition 2.6 are particular cases of the
preferential entailment relations =<, given in Definition 2.3. It is also easy to see
that all of these consequence relations are paraconsistent and have the following
properties (see [2, 3] for further details):

L I'=jd iff TE.
Thus |:% is a compact representation of =*; it is sufficient to consider only
the k-minimal models of a given theory in order to simulate reasoning with
=

2. Denote by =2 the two-valued classical consequence relation. If I is classically
consistent and ¢ is a formula in CNF, none of its disjunctions is a tautology,

then F|=%T}¢ iff [ =24.
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3. If I is classically consistent then F\:?TJ_}@ZJ iff [E2.

Thus |:‘{1T 1} is equivalent to classical logic on consistent theories and is
nontrivial w.r.t. inconsistent theories in the sense that not all formulas are
entailed.

3 Paraconsistent classical reasoning

This section shows how to simulate paraconsistent reasoning by classical reason-
ing. We propose a transformation such that four-valued entailment for theories
can be defined in terms of classical two-valued entailment for the transformed
theories. Moreover, we show that four-valued preferential entailment can be de-
fined in terms of classical entailment for the transformed theories augmented
with circumscriptive axioms.

3.1 An alternative representation of semantical concepts

The elements of FOUR can be represented by pairs of components from the
two-valued lattice ({0,1},0 < 1) as follows: ¢t = (1,0), f = (0,1), T = (1,1),
1 =(0,0). In this representation the negation operator is defined in FOUR by
—(z,y)=(y,z), and the corresponding partial orders in FOUR are represented
by the following rules: for every x1,x2,y1,y2 €{0,1},

(@1,y1) <t (z2,y2) iff 21 <zy and y1 >yo,

(z1,91) <k (72,y2) iff 21 <z5 and y; <yo.

It follows, in particular, that in the representation by pairs of two-valued
components, the <;-meet (i.e., the greatest lower bound w.r.t. <;) and the <;-
join (i.e., the least upper bound w.r.t. <;) in FOUR are defined as follows:

(z1,91) A (22,92) = (21 A2, Y1V Yy2).

(z1,91) V (22,92) = (21 V 22, Y1 Ay2),

It is obvious that there is a one-to-one correspondence between four-valued
valuations and pairs of two-valued valuations. We shall denote these pairs of two-
valued components by v = (v1,12). So if, for instance, v(¢) =, then vy (¢) =1
and v, () =0.

The preference criteria considered in the previous section may now be refor-
mulated as follows:

Lemma 3.1. Let v, uc€V*. Then:

— < iff for every atom p, vi(p) < (p) and v>(p) < ix(p).
— v <y iff for every atom p, if v1(p) Ava(p) =1, then i (p) Ap>(p) = 1 as
well.
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= v <7, 1y 1 iff for every atom p, if (v1(p)Ava(p)) V (—vi(p)A-va(p)) =1, then
(1 (p) Ap2(p)) V (mp1(p) A—pa(p) =1 as well.

Proof: Immediately follows from the corresponding definitions. a

Given the language X, define the language X+ based on the alphabet con-
sisting of symbols pt,p~ for each atom p of X. Let ¢ be a formula in X'. Denote
by 1 the formula in X*, obtained from 1 by first translating 1 to its negation
normal form, ' (where the negation operator precedes atomic formulae only),?
then substituting every occurrence in 1)’ of an atomic formula p that is not pre-
ceded by a negation, by the new predicate symbol p*t, and replacing every other
occurrence of p in ', together with the negation that precedes it, by the new
predlcate symbol p~. For instance, if ¢ = =(p Vv —|q) then ¢’ = =p A ¢, and so
)= pTA ¢*. Given a theory I, we shall write I" for the set {1 | ¢ € I'}. Note
that I can be obtained from I in a linear time. Moreover, for every I, Tisa
positive theory, and hence it is consistent.

Given a four-valued valuation v = (v1,v2), U denotes the two-valued valuation
on Y*, defined by ¥(pT) = v (p) and D(p~) = vs(p). Extensions to complex
formulae in X* are defined in the usual way. *

Definition 3.1. Given a valuation v=(vy,12), denote 7= (-, —wy).

~

Proposition 3.1. v(¢)) = (9(1h), ~D(1)).

Proof: Let ' be the negation normal form of . Since ¢ and ' are logically

equivalent in FOUR, v(1)) is the same as v(¢p'). The rest of the proof is by an

induction on the structure of v':

P'=p: (D), 7)) = (71, 13) (p*), =(~5,=01) (1)) = (1(p), =2 (D)) =
(v1(p), v2(p)) = v(p).

P'=-p: (0(7p), ~7(7p)) = (71, 1) (p™), ~(~2, 1) (p™)
(v2(p), =11 (p)) = (12(p), v1(p)) = ~(v1(p), v2(p)

=61V v(61V ) =v(d1) Vi) = (0(1), (1)) V (A(q»),ﬂ%@) =
(P(60)VD(9), V(1) AP(62)) = (D(61V ), ~(# (61
(P(61V2), (1Y 32)) = (P(61V62), "D(61V ).

The case 1)/ =¢1 A¢ps is similar to that of ¢1V¢s. O

® It is easy to verify that as in the two-valued case, also in FOUR v and ¢’ are
logically equivalent.

4 Clearly, the converse construction is also possible: every two-valued valuation v on
ot corresponds to a unique four-valued valuation v’ on X defined, for every atom

p, by v'(p)=(v(p*),v(p7)).
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3.2 Simulating (preferential) four-valued reasoning by classical logic

In what follows we use the pairwise representations, considered in the previous
section, for the following goals:

1. Showing that four-valued reasoning can be simulated by classical reasoning,
2. Constructing circumscriptive formulae for defining four-valued preferential
reasoning.

For item (1) above we first need the following lemma:

Lemma 3.2. For every four-valued valuation v and a formula ¢ in X, v(v) is

-~

designated iff v(¢)=1.

-~

Proof: v(v) is designated iff v; (1) =1, iff (Proposition 3.1) v(¢)) =1. i
The following result is an immediate corollary of Lemma 3.2:
Theorem 3.1. I'=%¢) iﬁf|:2 {Z;

It follows, therefore, that four-valued reasoning may be implemented by two-
valued theorem provers. Moreover, since I" is obtained from I" in a polynomial
time, the theorem above shows that four-valued entailment in the context of
Belnap’s logic is polynomially reducible to the classical entailment.

Another immediate consequence of this theorem is the next well-known re-
sult:

Corollary 3.1. In the language without negations, I'|="1 iff I =24).

We turn now to the preferential case. To extend the above technique to deal
with preferential four-valued reasoning, we must express that the encoded four-
valued interpretation is minimal with respect to a preference relation <. This
can be accomplished by introducing a circumscription axiom. The proviso is that
we are able to express the preference relation < objectively, by a formula ¥<.
The first point to check out is therefore how to express a semantical preference
relation < in an axiom.

Let p = {p1,..,pn} be the set symbols of our language X, and let p* be
the set of symbols {p;, py,...,p},p}. To be able to express for two valuations
v = (v1,v) and u = (u1,p2) that v < p by one formula, we introduce new
symbols g as renaming of the symbols of p. With (p *:v;q *: ), we denote the
two-valued interpretation that interprets symbols p; as v1(p), p; as va(p), ¢
as p1(p) and g; as pa(p) for every 1<i<n.

Definition 3.2. A preferential order < is represented by a formula ¥<(p =, g +)
if for every four-valued valuations v and p we have that v <p iff (p*:v, ¢ *:p)
satisfies U< (p *,q *).
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Given a formula 1 of X, denote by 1/p\(P +) the formula that is obtained by

~

substituting symbols P * for symbols p * in 1.

Proposition 3.2. Let ¥<(p + P *) be a formula that represents a preferential
order <. Then v is a <-most preferred model of ¢ (that is, ve ({v}, <)) iff v
satisfies ¢ and the following formula:

Circ<(p®) = V(P *){O(P*) = (F<(P*,p*) 5 0<(p*, P¥))}.

Proof: By Corollary 3.2, v is a model of ¢ iff U satisfies @Z It remains to show that
the fact that v satisfies Circ< is a necessary and sufficient condition for assuring
that v is a <-minimal element in the set mod(¢) of the models of ¢. Indeed, v
satisfies Circ< iff for every valuation p that satisfies ¢ and for which p<wv, it is
also true that v < u. Thus, for every u€mod(v)), we have that (u < v) — (v < p)
(alternatively, there is no p € mod(v)) s.t. u < v). Le., v€ (3, <). O

Note 3.1. Denote the formula A, ((pf = P;") A (py =P)) by p* = P*
and let ¥ (P *,p*) be the following formula: ¥< (P *,p*) A -0 (p*, P *).
Then:

*)

a) The formula Circ<(p *) of Proposition 3.2 may be rewritten as follows:

V(PE) {Q(P*) » 0 (P*pF)}

b) In case that < is a partial order, Circ<(p *) can be rewritten as follows:

VP {[(PH)AI(PFp*) ] wp*=P*)
The following theorem is an immediate corollary of Proposition 3.2:

Theorem 3.2. Let I' be a set of formulae and v a formula in X. Let Circ< be
the formula given in Proposition 3.2 for a preferential relation <. Then I'|=< 1

iff T'U Circ< 2 V.

Proposition 3.2 gives a general characterization in terms of “formula circum-
scription” [18] of the preferred models of a given theory: given a preferential
relation <, in order to express <-preferential satisfaction of a theory, one should
first formulate a corresponding formula W< that represents <, and then integrate
W< with Circ< as in Proposition 3.2. Again, this can be done in a polynomial
time.

Next we define formulae that represent the preferential relations considered
above.

Definition 3.3. In what follows we shall write x <y for £ — y, and = <y for
(x—=y)A=(y—x).

® In the context of two-valued logic, p = q denotes VZ.p(T) < q(ZT).
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Lemma 3.3. Let n be the number of different atomic formulae in X. Then:

a) The preferential relation <j is represented by the following formula:

e, p*,PE) = N\ (wf 2B Ay 2 P))

~.

i=1

b) The preferential relation <t} is represented by the following formula:
Ve, (@, P*) = N\ (0F Apy) < (BTAP))
i=1

¢) The preferential relation <;T 1} is represented by the following formula:

Ueiry (0*, PF) = N A0 V(=0 A7) < (B AP V(=P A-P))

i=1
Proof: We show only part (a); the proof of the other parts is similar.

v<pp= VI<i<n v(p;i) <g u(p:)
= V1<i<n vi(pi) <pa(pi) and va(pi) < pa(pi)
&= (pFiv, P*:p) satisfies \Iy (07 = ;") A (p; < P))
< (p*:v, P*:p) satisfies U<, (p*, P *).
O

By Proposition 3.2, Lemma 3.3(a), and Note 3.1(b), we have the following
corollary:

Corollary 3.2. A valuation v=(vy,vs) is a k-minimal model of ¢ iff U satisfies

¥ and Circ<, (p %), where Circ<, (p *) is the following formula:

n

V(P E) {[G(PHAN (PF2p)AET = p7)] = [\ (B =pD)NPT =)}

i=1 i=1

As in Corollary 3.2, the most consistent models and the most classical models
of a given theory can be represented by formulae of the form Circ<, ., (p +) and
Circ<,+ 14 (p *), obtained by respectively integrating the formulae given in parts
(b) and (c) of Lemma 3.3 with Circ<, given in Proposition 3.2.

In the remaining of this section we consider a uniform way of represent-
ing Circ< 1, (p ), Circ< 7 1, (P *), and some other formulae that correspond to
preferential criteria like <;t) and <yt 1;. For this, let A C FOUR. Define an
order relation <4 on FOUR by x <ay iff z € A while y € A. A corresponding

% Note that Circ<, (p*) is a standard circumscriptive axiom in the sense of [17].
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pre-order on V* may now be defined as follows: for every v, u€V*, v < pu iff for
every atom p, the fact that v(p) € A entails that u(p) € A as well. The <a-most
preferred models of I" are the <-minimal elements in mod(I"), and I" =% 1 if
every <a-most preferred model of I is a model of .

Clearly, <;7} and <7, 13 are particular cases of <a, where A= {T} and

A={T, L}, respectively. Now, the <a-most preferred models of a given theory
can be represented by a circumscriptive formula in the following way:

Definition 3.4. For ACFOUR, let Ax(p*,p~) =V, cn Az (p*,p™), where
ApTp)=pTA-p,  AspT,p ) =-pTAp,
ALt p)=-ptA-p~, Ar(T.pT)=pTAp . T

Similar arguments as those in Lemma 3.3 show that the formula

(Aa(pf.p7) 2 Aa(P P7))

=

WSA(piaPi) =
1

.
Il

represents the preferential relation <. Therefore, by Proposition 3.2,

Proposition 3.3. A valuation v is a <a-preferred model of | iff U satisfies ’(ZJ\
and the following formula:

Circc,(p®) = V(PH) {(P*) = (V< ,(PEpF) =¥, (p*, PF))}.

4 Experimental study

As we have already noted, all the formulae that are obtained by our method have
a circumscriptive form. It is therefore possible to apply, for instance, the formula
Circ<, , given in Corollary 3.2, in algorithms for reducing circumscriptive axioms.
Below are some simple results obtained by experimenting with such algorithm
(We have used Doherty, Lukaszewicz and Szalas DLS algorithm [8,9], available
at http://www.ida.liu.se/labs/kplab/projects/dls/circ.html). 8

— Consider the theory I' = {Q(a), Q(b), ~Q(a)}, where () denotes some pred-
icate, and a,b are two constants. In our context, this theory is translated
to I' = {Q*(a), Q" (b),Q (a)}. Circumscribing I' where QT and @ are
simultaneously minimized, yields the following result:

Vz {(Q (z) wx=a) A (QT(z) = (x=aVz=0)}.

" Intuitively, A, (p*,p~ ) expresses that v(p) = z and A (p™,p~) means that v(p) € A.
& In what follows we deliberately consider very simple cases. Our experience is that
for more complex theories the output quickly becomes more complicated, and so not
comprehensible by humans (it 4s manageable in automated computations, though).
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It follows, then, that a is the only object for which both Q*(z) and Q~(x)
hold (i.e., a is the only object that is inconsistent w.r.t. @), and b is the only
object for which only Q% (z) holds. For all the other objects neither Q™ (x)
nor @~ (z) holds. Le., if ¢¢& {a, b} then @(c) corresponds to L. This indeed
is exactly the k-minimal semantics of I.

Note that the fact that for every object x different from a and b neither Q* (=)
nor ~ (x) holds means that the truth values of all the domain elements other
than a or b do not matter in order to satisfy this formula. This information
may be important from analysis point of view.

— Suppose that in the previous example one wants to impose the law of ex-
cluded middle. It is possible to do so by adding to I' the restriction ¢ =
Vo (Q(z) V-Q(z)), which is translated to ¢ = Va(QT(z) V Q™ (z)). Circum-

-~

scribing I' U {¢} yields

Ve {[(@T (@) Az #anz #£b) > -Q ()] A(Q (2) Az #a) > =Q"(2)] },

which has almost the same meaning as before, except that this time, the
combination of this and 1) means that if ¢ ¢ {a,b} then either Q% (c) or
@~ (c¢) holds, but not both. It follows, then, that for such ¢, @(¢) must have
some classical value. Again, this corresponds to what one expects when k-
minimizing I' U {¢}.

5 Conclusion

In this paper we have introduced a method for paraconsistent reasoning in knowl-
edge systems by classical second-order formulae. Our method touches upon sev-
eral important aspects. First, it shows that two-valued reasoning may be useful
for simulating inference procedures in the context of many-valued semantics. Sec-
ond, this approach demonstrates the usefulness of circumscription not only as a
general method for non-monotonic reasoning, but also as an appealing technique
for implementing paraconsistent reasoning. Finally, this is another evidence to
the fact that in many cases concepts that are defined in a “meta-language”
(such as preference criteria, etc.) can be expressed in the language itself (using,
e.g., higher-order formulae). This enables a potentially wide area for practical
implementations. For instance, we have shown that preferential multiple-valued
reasoning can be incorporated with practical applications for automated reason-
ing and theorem proving.
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