
Modeling Paraonsistent Reasoningby Classial LogiOfer Arieli1 and Mar Deneker21 Department of Computer Siene, The Aademi College of Tel-AvivAntokolski 4, Tel-Aviv 61161, Israeloarieli�mta.a.il2 Department of Computer Siene, University of LeuvenCelestijnenlaan 200A, B-3001 Heverlee, Belgiummard�s.kuleuven.a.beAbstrat. We introdue a general method for paraonsistent reason-ing in knowledge systems by lassial seond-order formulae. A standardtehnique for paraonsistent reasoning on inonsistent lassial theories isby shifting to multiple-valued logis. We show how these multiple-valuedtheories an be \shifted bak" to two-valued lassial theories (througha polynomial transformation), and how preferential reasoning based onmultiple-valued logi an be represented by lassial irumsription-likeaxioms. By applying this proess we manage to overome the shortom-ing of lassial logi in properly handling inonsistent data, and providenew ways of implementing multiple-valued paraonsistent reasoning inknowledge systems. Standard multiple-valued reasoning an thus be per-formed through theorem provers for lassial logi, and multiple-valuedpreferential reasoning an be implemented using algorithms for proess-ing irumsriptive theories (suh as DLS and SCAN).1 IntrodutionAny knowledge-based system for ommon-sense reasoning must be able to pro-ess inomplete and inonsistent information in a \proper" way. This implies,in partiular, that (�rst-order) lassial logi is inappropriate for suh systems.Indeed, on one hand lassial logi is too autious in drawing onlusions frominomplete theories. This is so sine lassial logi is monotoni, thus it does notallow to retrat previously drawn onlusions in light of new, more aurate in-formation. On the other hand, lassial logi is too liberal in drawing onlusionsfrom inonsistent theories. This is explained by the fat that lassial logi is notparaonsistent [7℄, therefore everything lassially follows from a ontraditoryset of premises. If follows, therefore, that knowledge-based systems should useother (or more general) formalisms for handling unertainty.Preferential reasoning [23℄ is an elegant way to overome lassial logi'sshortoming for reasoning on unertainty. It is based on the idea that in order todraw onlusions from a given theory one should not onsider all the models of



2 O.Arieli and M.Denekerthat theory, but only a subset of preferred models . This subset is usually deter-mined aording to some preferene riterion, whih is often de�ned in terms ofpartial orders on the spae of valuations. This method of preferring some modelsand disregarding the others yields robust formalisms that allow to draw intuitiveonlusions from partial knowledge.In the ontext of lassial logi, preferential semantis annot help to over-ome the problem of trivial reasoning with ontraditory theories. Indeed, if aertain theory has no (two-valued) models, then it has no preferred models aswell. A useful way of reasoning on ontraditory lassial theories is therefore byembedding them in multiple-valued logis in general, and Belnap's four-valuedlogi [5, 6℄ in partiular (whih is the underlying multiple-valued semantis usedhere). There are several reasons for using this setting. The most important onesfor our purposes are the following:{ In the ontext of four-valued semantis it is possible to de�ne onsequenerelations that are not degenerated w.r.t. any theory (see, e.g., [1, 2, 6, 20, 21℄);the fat that every theory has a nonempty set of four-valued models impliesthat four-valued reasoning may be useful for properly handling inonsistenttheories. As shown e.g. in [1, 2℄, this indeed is the ase.{ Analysis of four-valued models an be instrutive to pinpoint the auses ofthe inonsisteny and/or the inompleteness of the theory under onsidera-tion. (See [1, 2, 5, 6℄ for a detailed disussion on this property, as well as somerelevant results).However, Belnap's four-valued logi has its own shortomings:{ As in lassial logi, many theories have too many models, and as a on-sequene the entailment relation is often too weak. In fat, sine Belnap'slogi is weaker than lassial logi w.r.t. onsistent theories, we are even ina worse situation than in lassial logi!A (partial) solution to this problem is by using preferential reasoning in theontext of multiple-valued logi (see, e.g., [1{3, 11, 12, 20, 21℄).{ At the omputational level, implementing paraonsistent reasoning based onfour-valued semantis poses important hallenges. An e�etive implementa-tion of theorem provers for one of the existing proof systems for Belnap'slogi requires a major e�ort. The problem is even worse in the ontext offour-valued preferential reasoning, for whih urrently no (implementationsof) proof systems are known.Our goal in this paper is to show a way in whih these problems an beavoided (or at least alleviated) altogether. In partiular, we present a polyno-mial transformation bak from four-valued theories to two-valued theories suhthat reasoning in preferential four-valued semantis an be implemented by stan-dard theorem proving in two-valued logi. Moreover, preferene riteria on four-valued theories are translated into `irumsriptive-like" formulae [17, 18℄, and



Modeling paraonsistent reasoning by lassial logi 3thus paraonsistent reasoning may be automatially omputed by some speial-ized methods for ompiling irumsriptive theories (suh as those desribed in[10, 22℄), and inorporated into algorithms suh as SCAN [19℄ and DLS [8, 9℄, forreduing seond-order formulae to their �rst-order equivalents. 12 Preliminaries2.1 Preferential reasoningFirst we briey review the basi notions of preferential reasoning [23℄.De�nition 2.1. A preferential model (w.r.t. a language �) is a triple M =(M; j=;�), where M is a set (of semantial objets, sometimes alled states), j=is a relation on M�� (alled the satisfation relation), and � (the preferenerelation) is a binary relation on the elements of M .Most often, the preferene relation is a partial order or at least a pre-order(i.e., reexive and transitive). In this paper this will always be the ase.De�nition 2.2. LetM=(M; j=;�) be a preferential model, � a set of formulaein a language �, and m2M . Then m satis�es � (notation: m j=� ) if m j= forevery 2� . m preferentially satis�es � (alternatively, m is a �-most preferredmodel of � ) if m satis�es � , and for eah other n2M s.t. n�m and n satis�es� , it holds that m�n. The set of the elements in M that preferentially satisfy� is denoted by !(�;�).Now we an de�ne the preferential entailment relations:De�nition 2.3. LetM=(M; j=;�) be a preferential model, � a set of formulaein �, and  a formula in �. We say that  (preferentially) follows from � ifevery element of !(�;�) satis�es  . We denote this by � j=� .The idea that a non-monotoni dedution should be based on some prefereneriterion that reets some normality relation among the relevant semantialobjets is a very natural one, and may be traed bak to [17℄. Furthermore,this approah is the semantial basis of some well-known general patterns fornon-monotoni reasoning, introdued in [13{16℄, and it is a key onept behindmany formalisms for nonmonotoni and paraonsistent reasoning (see, e.g., [1{3,11, 12, 20, 21℄). Our purpose in this paper is to propose tehniques of expressingpreferential reasoning by formulae in the underlying language. Next we de�nethe framework for doing so.1 For a longer version of this paper see [4℄.



4 O.Arieli and M.Deneker2.2 The underlying semantial strutureThe formalism that we onsider here is based on Belnap's four-valued algebraistruture [5, 6℄, denoted by FOUR (Figure 1). This struture is omposed of fourelements FOUR = ft; f;?;>g, arranged in the following two lattie strutures:{ (FOUR;�t), in whih t is the maximal element, f is the minimal one, and>;? are two intermediate and inomparable elements.{ (FOUR;�k), in whih > is the maximal element, ? is the minimal one, andt; f are two intermediate and inomparable elements.Here, t and f orrespond to the lassial truth values. The two other truth val-ues may intuitively be understood as representing di�erent ases of unertainty:> orresponds to a ontraditory knowledge, and ? orresponds to an inom-plete knowledge. This interpretation of the meaning of the truth values will beuseful in what follows for modeling paraonsistent reasoning.2 Aording to thisinterpretation, the partial order �t reets di�erenes in the amount of truththat eah element represents, and the partial order �k reets di�erenes in theamount of knowledge that eah element exhibits.6�k

-�tu?
uf u tu>������������������

������
Fig. 1. FOURIn what follows we shall denote by ^ and _ the meet and join operations on(FOUR;�t). A negation, :, is a unary operation on FOUR, de�ned by :t=f ,:f = t, :>=>, and :?=?. As usual in suh ases, we take t and > as thedesignated elements in FOUR (i.e., the elements that represent true assertions).2 This was also the original motivation of Belnap when he introdued FOUR.



Modeling paraonsistent reasoning by lassial logi 5In the rest of this paper we denote by � a language with a �nite alphabet,in whih the onnetives are _;^;:. These onnetives orrespond to the oper-ations on FOUR with the same notations. � and � denote arbitrary four-valuedvaluations , i.e., funtions that assign a value in FOUR to every atom in �. Theextension to omplex formulae in � is de�ned in the standard way:�( ^ �) = glb�t(�( ); �(�)); �( _ �) = lub�t(�( ); �(�)); �(: ) = :�( ):The spae of the four-valued valuations is denoted by V4. A valuation �2V4 isa model of a formula  (alternatively, � satis�es  ) if �( )2ft;>g. � is a modelof a set � of formulae if � is a model of every  2� . The set of the models of �is denoted by mod(� ).2.3 Four-valued preferential reasoningA natural de�nition of a onsequene relation on FOUR is the following:De�nition 2.4. Let � be a set of formulae and  a formula in �. Denote � j=4 if every four-valued model of � is a four-valued model of  .In [2℄ it is shown that j=4 is a onsequene relation in the sense of Tarski[24℄, i.e., it is reexive, monotoni, and transitive. It is also shown there thatj=4 is paraonsistent, ompat, and has ut-free, sound and omplete Hilbert-type and Gentzen-type proof systems. However, the fat that j=4 is a Tarskianonsequene relation means, in partiular, that it is monotoni, and as suh it is\over-autious" in drawing onlusions from inomplete theories. In what followswe therefore re�ne the reasoning proess by using the tehniques disussed abovefor preferential reasoning. Below are some useful preferene riteria.De�nition 2.5. [2℄ Let �; �2V4. Denote:{ � �k � if �(p) �k �(p) for every atom p.{ � �f>g � if for every atom p, �(p)=> whenever �(p)=>.{ � �f>;?g � if for every atom p, �(p)2f>;?g whenever �(p)2f>;?g.It is easy to hek that �k is a partial order and �f>g, �f>;?g are pre-orderson V4. In what follows we shall write � <k � to denote that ��k � and � 6�k �;similarly for <f>g and <f>;?g.Eah one of the preferene orders given in De�nition 2.5 has its own rational-ity: aording to �k, for instane, one prefers valuations that reet as minimalinformation as reasonably possible. This riterion may as well be viewed as anargumentation for onsisteny preserving, sine as long as one keeps the amountof information (or belief) as minimal as possible, the tendeny of getting intoonits dereases.The pre-order �f>g states a somewhat more expliit preferene of inon-sisteny minimization: it prefers those valuations that minimize the amount ofinonsistent assignments. Similarly, �f>;?g, prefers those valuations that are as



6 O.Arieli and M.Denekerlassial as possible. I.e., those ones that assign lassial truth values wheneverpossible.Given a set � of formulae in �, the minimal elements in mod(� ) w.r.t. �k(respetively, w.r.t �f>g, w.r.t. �f>;?g) are alled the k-minimal models of �(respetively, the most onsistent models of � , the most lassial models of � ).Example 2.1. Let � = fp; :p _ q; :q; r _ qg. The four-valued models of � aregiven in Table 1. Table 1. The elements in mod(� )Model p q r Model p q rM1 > f t M6 t > >M2 > f > M7 > > ?M3 t > ? M8 > > fM4 t > f M9 > > tM5 t > t M10 > > >The k-minimal models of � are fM1;M3g, the most onsistent ones arefM1;M3;M4;M5g, and the most lassial ones are fM1;M4;M5g.Eah one of the preferene riteria onsidered in De�nition 2.5 indues aorresponding preferential onsequene relation:De�nition 2.6. [2℄ Let � be a set of formulae and  a formula in �. Denote:{ � j=4k if every k-minimal model of � is a model of  .{ � j=4f>g if every most onsistent model of � is a model of  .{ � j=4f>;?g if every most lassial model of � is a model of  .Example 2.2. Consider again the set � of Example 2.1, and let  =r_:r. Then� j=4f>;?g , while � 6j=4k and � 6j=4f>g .Clearly, the onsequene relations of De�nition 2.6 are partiular ases of thepreferential entailment relations j=�, given in De�nition 2.3. It is also easy to seethat all of these onsequene relations are paraonsistent and have the followingproperties (see [2, 3℄ for further details):1. � j=4k i� � j=4 .Thus j=4k is a ompat representation of j=4; it is suÆient to onsider onlythe k-minimal models of a given theory in order to simulate reasoning withj=4.2. Denote by j=2 the two-valued lassial onsequene relation. If � is lassiallyonsistent and  is a formula in CNF, none of its disjuntions is a tautology,then � j=4f>g i� � j=2 .



Modeling paraonsistent reasoning by lassial logi 73. If � is lassially onsistent then � j=4f>;?g i� � j=2 .Thus j=4f>;?g is equivalent to lassial logi on onsistent theories and isnontrivial w.r.t. inonsistent theories in the sense that not all formulas areentailed.3 Paraonsistent lassial reasoningThis setion shows how to simulate paraonsistent reasoning by lassial reason-ing. We propose a transformation suh that four-valued entailment for theoriesan be de�ned in terms of lassial two-valued entailment for the transformedtheories. Moreover, we show that four-valued preferential entailment an be de-�ned in terms of lassial entailment for the transformed theories augmentedwith irumsriptive axioms.3.1 An alternative representation of semantial oneptsThe elements of FOUR an be represented by pairs of omponents from thetwo-valued lattie (f0; 1g; 0 < 1) as follows: t = (1; 0), f = (0; 1), > = (1; 1),?=(0; 0). In this representation the negation operator is de�ned in FOUR by:(x; y)=(y; x), and the orresponding partial orders in FOUR are representedby the following rules: for every x1; x2; y1; y22f0; 1g,(x1; y1) �t (x2; y2) i� x1�x2 and y1�y2;(x1; y1) �k (x2; y2) i� x1�x2 and y1�y2:It follows, in partiular, that in the representation by pairs of two-valuedomponents, the �t-meet (i.e., the greatest lower bound w.r.t. �t) and the �t-join (i.e., the least upper bound w.r.t. �t) in FOUR are de�ned as follows:(x1; y1) ^ (x2; y2) = (x1 ^ x2; y1 _ y2):(x1; y1) _ (x2; y2) = (x1 _ x2; y1 ^ y2);It is obvious that there is a one-to-one orrespondene between four-valuedvaluations and pairs of two-valued valuations. We shall denote these pairs of two-valued omponents by � = (�1; �2). So if, for instane, �( ) = t, then �1( ) = 1and �2( )=0.The preferene riteria onsidered in the previous setion may now be refor-mulated as follows:Lemma 3.1. Let �; �2V4. Then:{ ��k� i� for every atom p, �1(p)��1(p) and �2(p)��2(p).{ � �f>g � i� for every atom p, if �1(p)^�2(p) = 1, then �1(p)^�2(p) = 1 aswell.



8 O.Arieli and M.Deneker{ ��f>;?g� i� for every atom p, if (�1(p)^�2(p))_ (:�1(p)^:�2(p))=1, then(�1(p)^�2(p)) _ (:�1(p)^:�2(p))=1 as well.Proof: Immediately follows from the orresponding de�nitions. 2Given the language �, de�ne the language �� based on the alphabet on-sisting of symbols p+; p� for eah atom p of �. Let  be a formula in �. Denoteby b the formula in ��, obtained from  by �rst translating  to its negationnormal form,  0 (where the negation operator preedes atomi formulae only),3then substituting every ourrene in  0 of an atomi formula p that is not pre-eded by a negation, by the new prediate symbol p+, and replaing every otherourrene of p in  0, together with the negation that preedes it, by the newprediate symbol p�. For instane, if  = :(p _ :q), then  0 = :p ^ q, and sob = p� ^ q+. Given a theory � , we shall write b� for the set f b j  2�g. Notethat b� an be obtained from � in a linear time. Moreover, for every � , b� is apositive theory, and hene it is onsistent.Given a four-valued valuation �=(�1; �2), b� denotes the two-valued valuationon ��, de�ned by b�(p+) = �1(p) and b�(p�) = �2(p). Extensions to omplexformulae in �� are de�ned in the usual way. 4De�nition 3.1. Given a valuation �=(�1; �2), denote �=(:�2;:�1).Proposition 3.1. �( ) = (b�( b ); :b�( b )).Proof: Let  0 be the negation normal form of  . Sine  and  0 are logiallyequivalent in FOUR, �( ) is the same as �( 0). The rest of the proof is by anindution on the struture of  0: 0=p: (b�(bp);:b�(bp)) = (([�1; �2)(p+);:( \:�2;:�1)(p+)) = (�1(p);::�2(p)) =(�1(p); �2(p)) = �(p). 0=:p: (b�(:p);:b�(:p)) = (([�1; �2)(p�);:( \:�2;:�1)(p�)) =(�2(p);::�1(p)) = (�2(p); �1(p)) = :(�1(p); �2(p)) = :�(p) = �(:p). 0=�1_�2: �(�1_�2)=�(�1)_�(�2) = (b�(�1);:b�(�1)) _ (b�(�2);:b�(�2)) =(b�(�1)_b�(�2);:b�(�1)^:b�(�2)) = (b�(�1_�2);:(b�(�1)_b�(�2))) =(b�(�1_�2);:b�(�1_�2)) = (b�(\�1_�2);:b�(\�1_�2)).The ase  0=�1^�2 is similar to that of �1_�2. 23 It is easy to verify that as in the two-valued ase, also in FOUR  and  0 arelogially equivalent.4 Clearly, the onverse onstrution is also possible: every two-valued valuation � on�� orresponds to a unique four-valued valuation �0 on � de�ned, for every atomp, by �0(p)=(�(p+); �(p�)).



Modeling paraonsistent reasoning by lassial logi 93.2 Simulating (preferential) four-valued reasoning by lassial logiIn what follows we use the pairwise representations, onsidered in the previoussetion, for the following goals:1. Showing that four-valued reasoning an be simulated by lassial reasoning,2. Construting irumsriptive formulae for de�ning four-valued preferentialreasoning.For item (1) above we �rst need the following lemma:Lemma 3.2. For every four-valued valuation � and a formula  in �, �( ) isdesignated i� b�( b )=1.Proof: �( ) is designated i� �1( )=1, i� (Proposition 3.1) b�( b )=1. 2The following result is an immediate orollary of Lemma 3.2:Theorem 3.1. � j=4 i� b� j=2 b .It follows, therefore, that four-valued reasoning may be implemented by two-valued theorem provers. Moreover, sine b� is obtained from � in a polynomialtime, the theorem above shows that four-valued entailment in the ontext ofBelnap's logi is polynomially reduible to the lassial entailment.Another immediate onsequene of this theorem is the next well-known re-sult:Corollary 3.1. In the language without negations, � j=4 i� � j=2 .We turn now to the preferential ase. To extend the above tehnique to dealwith preferential four-valued reasoning, we must express that the enoded four-valued interpretation is minimal with respet to a preferene relation �. Thisan be aomplished by introduing a irumsription axiom. The proviso is thatwe are able to express the preferene relation � objetively, by a formula 	�.The �rst point to hek out is therefore how to express a semantial preferenerelation � in an axiom.Let p = fp1; ::; png be the set symbols of our language �, and let p � bethe set of symbols fp+1 ; p�1 ; : : : ; p+n ; p�n g. To be able to express for two valuations� = (�1; �2) and � = (�1; �2) that � � � by one formula, we introdue newsymbols q as renaming of the symbols of p. With (p � :�; q � :�), we denote thetwo-valued interpretation that interprets symbols p+i as �1(p), p�i as �2(p), q+ias �1(p) and q�i as �2(p) for every 1� i�n.De�nition 3.2. A preferential order � is represented by a formula 	�(p �; q �)if for every four-valued valuations � and � we have that ��� i� (p � :�; q � :�)satis�es 	�(p �; q �).



10 O.Arieli and M.DenekerGiven a formula  of �, denote by b (P �) the formula that is obtained bysubstituting symbols P � for symbols p � in b .Proposition 3.2. Let 	�(p �;P �) be a formula that represents a preferentialorder �. Then � is a �-most preferred model of  (that is, �2 !(f g;�)) i� b�satis�es b and the following formula:Cir�(p �) = 8(P �) f b (P �) ! (	�(P �;p �)! 	�(p �;P �) ) g:Proof: By Corollary 3.2, � is a model of  i� b� satis�es b . It remains to show thatthe fat that b� satis�es Cir� is a neessary and suÆient ondition for assuringthat � is a �-minimal element in the set mod( ) of the models of  . Indeed, b�satis�es Cir� i� for every valuation � that satis�es  and for whih ���, it isalso true that ���. Thus, for every �2mod( ), we have that (� � �)! (� � �)(alternatively, there is no � 2 mod( ) s.t. � < �). I.e., �2 !( ;�). 2Note 3.1. Denote the formula Vni=1 ((p+i = P+i ) ^ (p�i = P�i )) by p � = P �,5and let 	<(P �;p �) be the following formula: 	�(P �;p �) ^ :	�(p �;P �).Then:a) The formula Cir�(p �) of Proposition 3.2 may be rewritten as follows:8(P �) f b (P �) ! :	<(P �;p �) gb) In ase that � is a partial order, Cir�(p �) an be rewritten as follows:8(P �) f [ b (P �) ^ 	�(P �;p �) ℄! p � = P � gThe following theorem is an immediate orollary of Proposition 3.2:Theorem 3.2. Let � be a set of formulae and  a formula in �. Let Cir� bethe formula given in Proposition 3.2 for a preferential relation �. Then � j=� i� b� [ Cir� j=2 b .Proposition 3.2 gives a general haraterization in terms of \formula irum-sription" [18℄ of the preferred models of a given theory: given a preferentialrelation �, in order to express �-preferential satisfation of a theory, one should�rst formulate a orresponding formula 	� that represents �, and then integrate	� with Cir� as in Proposition 3.2. Again, this an be done in a polynomialtime.Next we de�ne formulae that represent the preferential relations onsideredabove.De�nition 3.3. In what follows we shall write x� y for x! y, and x� y for(x!y)^:(y!x).5 In the ontext of two-valued logi, p = q denotes 8x:p(x)$ q(x).



Modeling paraonsistent reasoning by lassial logi 11Lemma 3.3. Let n be the number of di�erent atomi formulae in �. Then:a) The preferential relation �k is represented by the following formula:	�k(p �;P �) = n̂i=1 ((p+i � P+i ) ^ (p�i � P�i ))b) The preferential relation �f>g is represented by the following formula:	�f>g(p �;P �) = n̂i=1 ((p+i ^p�i ) � (P+i ^P�i ))) The preferential relation �f>;?g is represented by the following formula:	�f>g(p �;P �) = n̂i=1(((p+i ^p�i )_(:p+i ^:p�i )) � ((P+i ^P�i )_(:P+i ^:P�i )))Proof: We show only part (a); the proof of the other parts is similar.��k�() 81� i�n �(pi) �k �(pi)() 81� i�n �1(pi)��1(pi) and �2(pi)��2(pi)() (p � :�; P � :�) satis�es Vni=1 ((p+i � P+i ) ^ (p�i � P�i ))() (p � :�; P � :�) satis�es 	�k(p �;P �). 2By Proposition 3.2, Lemma 3.3(a), and Note 3.1(b), we have the followingorollary:Corollary 3.2. A valuation �=(�1; �2) is a k-minimal model of  i� b� satis�esb and Cir�k (p �), where Cir�k(p �) is the following formula: 68(P �) f [ b (P �)^ n̂i=1 ((P+i � p+i )^(P�i � p�i ))℄! [ n̂i=1 ((P+i = p+i )^(P�i = p�i ))℄ gAs in Corollary 3.2, the most onsistent models and the most lassial modelsof a given theory an be represented by formulae of the form Cir�f>g(p �) andCir�f>;?g(p �), obtained by respetively integrating the formulae given in parts(b) and () of Lemma 3.3 with Cir�, given in Proposition 3.2.In the remaining of this setion we onsider a uniform way of represent-ing Cir�f>g(p �), Cir�f>;?g(p �), and some other formulae that orrespond topreferential riteria like �f>g and �f>;?g. For this, let �� FOUR. De�ne anorder relation <� on FOUR by x<� y i� x 62� while y 2�. A orresponding6 Note that Cir�k(p �) is a standard irumsriptive axiom in the sense of [17℄.



12 O.Arieli and M.Denekerpre-order on V4 may now be de�ned as follows: for every �; �2V4, ���� i� forevery atom p, the fat that �(p)2� entails that �(p)2� as well. The ��-mostpreferred models of � are the ��-minimal elements in mod(� ), and � j=4�  ifevery ��-most preferred model of � is a model of  .Clearly, �f>g and �f>;?g are partiular ases of ��, where �= f>g and�=f>;?g, respetively. Now, the ��-most preferred models of a given theoryan be represented by a irumsriptive formula in the following way:De�nition 3.4. For ��FOUR, let ��(p+; p�) = Wx2� �x(p+; p�), where�t(p+; p�) = p+ ^ :p�; �f (p+; p�) = :p+ ^ p�;�?(p+; p�) = :p+ ^ :p�; �>(p+; p�) = p+ ^ p�: 7Similar arguments as those in Lemma 3.3 show that the formula	��(p �;P �) = n̂i=1 ( ��(p+i ; p�i ) � ��(P+i ; P�i ) )represents the preferential relation ��. Therefore, by Proposition 3.2,Proposition 3.3. A valuation � is a ��-preferred model of  i� b� satis�es b and the following formula:Cir��(p �) = 8(P �) f b (P �) ! (	��(P �;p �)! 	��(p �;P �) ) g:4 Experimental studyAs we have already noted, all the formulae that are obtained by our method havea irumsriptive form. It is therefore possible to apply, for instane, the formulaCir�k , given in Corollary 3.2, in algorithms for reduing irumsriptive axioms.Below are some simple results obtained by experimenting with suh algorithm(We have used Doherty, Lukaszewiz and Szalas DLS algorithm [8, 9℄, availableat http://www.ida.liu.se/labs/kplab/projets/dls/ir.html). 8{ Consider the theory � = fQ(a); Q(b);:Q(a)g, where Q denotes some pred-iate, and a; b are two onstants. In our ontext, this theory is translatedto b� = fQ+(a); Q+(b); Q�(a)g. Cirumsribing b� where Q+ and Q� aresimultaneously minimized, yields the following result:8x f (Q�(x)! x = a) ^ (Q+(x)! (x = a _ x = b)) g:7 Intuitively, �x(p+; p�) expresses that �(p) = x and ��(p+; p�) means that �(p) 2 �.8 In what follows we deliberately onsider very simple ases. Our experiene is thatfor more omplex theories the output quikly beomes more ompliated, and so notomprehensible by humans (it is manageable in automated omputations, though).



Modeling paraonsistent reasoning by lassial logi 13It follows, then, that a is the only objet for whih both Q+(x) and Q�(x)hold (i.e., a is the only objet that is inonsistent w.r.t. Q), and b is the onlyobjet for whih only Q+(x) holds. For all the other objets neither Q+(x)nor Q�(x) holds. I.e., if  62 fa; bg then Q() orresponds to ?. This indeedis exatly the k-minimal semantis of � .Note that the fat that for every objet x di�erent from a and b neitherQ+(x)norQ�(x) holds means that the truth values of all the domain elements otherthan a or b do not matter in order to satisfy this formula. This informationmay be important from analysis point of view.{ Suppose that in the previous example one wants to impose the law of ex-luded middle. It is possible to do so by adding to � the restrition  =8x(Q(x) _:Q(x)), whih is translated to b = 8x(Q+(x) _Q�(x)). Cirum-sribing b� [ f b g yields8x f [(Q+(x)^ x 6= a^ x 6= b)! :Q�(x)℄ ^ [(Q�(x)^ x 6= a)! :Q+(x)℄ g;whih has almost the same meaning as before, exept that this time, theombination of this and b means that if  62 fa; bg then either Q+() orQ�() holds, but not both. It follows, then, that for suh , Q() must havesome lassial value. Again, this orresponds to what one expets when k-minimizing � [ f g.5 ConlusionIn this paper we have introdued a method for paraonsistent reasoning in knowl-edge systems by lassial seond-order formulae. Our method touhes upon sev-eral important aspets. First, it shows that two-valued reasoning may be usefulfor simulating inferene proedures in the ontext of many-valued semantis. Se-ond, this approah demonstrates the usefulness of irumsription not only as ageneral method for non-monotoni reasoning, but also as an appealing tehniquefor implementing paraonsistent reasoning. Finally, this is another evidene tothe fat that in many ases onepts that are de�ned in a \meta-language"(suh as preferene riteria, et.) an be expressed in the language itself (using,e.g., higher-order formulae). This enables a potentially wide area for pratialimplementations. For instane, we have shown that preferential multiple-valuedreasoning an be inorporated with pratial appliations for automated reason-ing and theorem proving.Referenes1. O.Arieli, A.Avron. The logial role of the four-valued bilattie. Pro. LICS'98,pp.218{226, IEEE Press, 1998.2. O.Arieli, A.Avron. The value of the four values. Arti�ial Intelligene 102(1),pp.97{141, 1998.
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