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.beAbstra
t. We introdu
e a general method for para
onsistent reason-ing in knowledge systems by 
lassi
al se
ond-order formulae. A standardte
hnique for para
onsistent reasoning on in
onsistent 
lassi
al theories isby shifting to multiple-valued logi
s. We show how these multiple-valuedtheories 
an be \shifted ba
k" to two-valued 
lassi
al theories (througha polynomial transformation), and how preferential reasoning based onmultiple-valued logi
 
an be represented by 
lassi
al 
ir
ums
ription-likeaxioms. By applying this pro
ess we manage to over
ome the short
om-ing of 
lassi
al logi
 in properly handling in
onsistent data, and providenew ways of implementing multiple-valued para
onsistent reasoning inknowledge systems. Standard multiple-valued reasoning 
an thus be per-formed through theorem provers for 
lassi
al logi
, and multiple-valuedpreferential reasoning 
an be implemented using algorithms for pro
ess-ing 
ir
ums
riptive theories (su
h as DLS and SCAN).1 Introdu
tionAny knowledge-based system for 
ommon-sense reasoning must be able to pro-
ess in
omplete and in
onsistent information in a \proper" way. This implies,in parti
ular, that (�rst-order) 
lassi
al logi
 is inappropriate for su
h systems.Indeed, on one hand 
lassi
al logi
 is too 
autious in drawing 
on
lusions fromin
omplete theories. This is so sin
e 
lassi
al logi
 is monotoni
, thus it does notallow to retra
t previously drawn 
on
lusions in light of new, more a

urate in-formation. On the other hand, 
lassi
al logi
 is too liberal in drawing 
on
lusionsfrom in
onsistent theories. This is explained by the fa
t that 
lassi
al logi
 is notpara
onsistent [7℄, therefore everything 
lassi
ally follows from a 
ontradi
toryset of premises. If follows, therefore, that knowledge-based systems should useother (or more general) formalisms for handling un
ertainty.Preferential reasoning [23℄ is an elegant way to over
ome 
lassi
al logi
'sshort
oming for reasoning on un
ertainty. It is based on the idea that in order todraw 
on
lusions from a given theory one should not 
onsider all the models of
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kerthat theory, but only a subset of preferred models . This subset is usually deter-mined a

ording to some preferen
e 
riterion, whi
h is often de�ned in terms ofpartial orders on the spa
e of valuations. This method of preferring some modelsand disregarding the others yields robust formalisms that allow to draw intuitive
on
lusions from partial knowledge.In the 
ontext of 
lassi
al logi
, preferential semanti
s 
annot help to over-
ome the problem of trivial reasoning with 
ontradi
tory theories. Indeed, if a
ertain theory has no (two-valued) models, then it has no preferred models aswell. A useful way of reasoning on 
ontradi
tory 
lassi
al theories is therefore byembedding them in multiple-valued logi
s in general, and Belnap's four-valuedlogi
 [5, 6℄ in parti
ular (whi
h is the underlying multiple-valued semanti
s usedhere). There are several reasons for using this setting. The most important onesfor our purposes are the following:{ In the 
ontext of four-valued semanti
s it is possible to de�ne 
onsequen
erelations that are not degenerated w.r.t. any theory (see, e.g., [1, 2, 6, 20, 21℄);the fa
t that every theory has a nonempty set of four-valued models impliesthat four-valued reasoning may be useful for properly handling in
onsistenttheories. As shown e.g. in [1, 2℄, this indeed is the 
ase.{ Analysis of four-valued models 
an be instru
tive to pinpoint the 
auses ofthe in
onsisten
y and/or the in
ompleteness of the theory under 
onsidera-tion. (See [1, 2, 5, 6℄ for a detailed dis
ussion on this property, as well as somerelevant results).However, Belnap's four-valued logi
 has its own short
omings:{ As in 
lassi
al logi
, many theories have too many models, and as a 
on-sequen
e the entailment relation is often too weak. In fa
t, sin
e Belnap'slogi
 is weaker than 
lassi
al logi
 w.r.t. 
onsistent theories, we are even ina worse situation than in 
lassi
al logi
!A (partial) solution to this problem is by using preferential reasoning in the
ontext of multiple-valued logi
 (see, e.g., [1{3, 11, 12, 20, 21℄).{ At the 
omputational level, implementing para
onsistent reasoning based onfour-valued semanti
s poses important 
hallenges. An e�e
tive implementa-tion of theorem provers for one of the existing proof systems for Belnap'slogi
 requires a major e�ort. The problem is even worse in the 
ontext offour-valued preferential reasoning, for whi
h 
urrently no (implementationsof) proof systems are known.Our goal in this paper is to show a way in whi
h these problems 
an beavoided (or at least alleviated) altogether. In parti
ular, we present a polyno-mial transformation ba
k from four-valued theories to two-valued theories su
hthat reasoning in preferential four-valued semanti
s 
an be implemented by stan-dard theorem proving in two-valued logi
. Moreover, preferen
e 
riteria on four-valued theories are translated into `
ir
ums
riptive-like" formulae [17, 18℄, and
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 3thus para
onsistent reasoning may be automati
ally 
omputed by some spe
ial-ized methods for 
ompiling 
ir
ums
riptive theories (su
h as those des
ribed in[10, 22℄), and in
orporated into algorithms su
h as SCAN [19℄ and DLS [8, 9℄, forredu
ing se
ond-order formulae to their �rst-order equivalents. 12 Preliminaries2.1 Preferential reasoningFirst we brie
y review the basi
 notions of preferential reasoning [23℄.De�nition 2.1. A preferential model (w.r.t. a language �) is a triple M =(M; j=;�), where M is a set (of semanti
al obje
ts, sometimes 
alled states), j=is a relation on M�� (
alled the satisfa
tion relation), and � (the preferen
erelation) is a binary relation on the elements of M .Most often, the preferen
e relation is a partial order or at least a pre-order(i.e., re
exive and transitive). In this paper this will always be the 
ase.De�nition 2.2. LetM=(M; j=;�) be a preferential model, � a set of formulaein a language �, and m2M . Then m satis�es � (notation: m j=� ) if m j=
 forevery 
2� . m preferentially satis�es � (alternatively, m is a �-most preferredmodel of � ) if m satis�es � , and for ea
h other n2M s.t. n�m and n satis�es� , it holds that m�n. The set of the elements in M that preferentially satisfy� is denoted by !(�;�).Now we 
an de�ne the preferential entailment relations:De�nition 2.3. LetM=(M; j=;�) be a preferential model, � a set of formulaein �, and  a formula in �. We say that  (preferentially) follows from � ifevery element of !(�;�) satis�es  . We denote this by � j=� .The idea that a non-monotoni
 dedu
tion should be based on some preferen
e
riterion that re
e
ts some normality relation among the relevant semanti
alobje
ts is a very natural one, and may be tra
ed ba
k to [17℄. Furthermore,this approa
h is the semanti
al basis of some well-known general patterns fornon-monotoni
 reasoning, introdu
ed in [13{16℄, and it is a key 
on
ept behindmany formalisms for nonmonotoni
 and para
onsistent reasoning (see, e.g., [1{3,11, 12, 20, 21℄). Our purpose in this paper is to propose te
hniques of expressingpreferential reasoning by formulae in the underlying language. Next we de�nethe framework for doing so.1 For a longer version of this paper see [4℄.
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ker2.2 The underlying semanti
al stru
tureThe formalism that we 
onsider here is based on Belnap's four-valued algebrai
stru
ture [5, 6℄, denoted by FOUR (Figure 1). This stru
ture is 
omposed of fourelements FOUR = ft; f;?;>g, arranged in the following two latti
e stru
tures:{ (FOUR;�t), in whi
h t is the maximal element, f is the minimal one, and>;? are two intermediate and in
omparable elements.{ (FOUR;�k), in whi
h > is the maximal element, ? is the minimal one, andt; f are two intermediate and in
omparable elements.Here, t and f 
orrespond to the 
lassi
al truth values. The two other truth val-ues may intuitively be understood as representing di�erent 
ases of un
ertainty:> 
orresponds to a 
ontradi
tory knowledge, and ? 
orresponds to an in
om-plete knowledge. This interpretation of the meaning of the truth values will beuseful in what follows for modeling para
onsistent reasoning.2 A

ording to thisinterpretation, the partial order �t re
e
ts di�eren
es in the amount of truththat ea
h element represents, and the partial order �k re
e
ts di�eren
es in theamount of knowledge that ea
h element exhibits.6�k

-�tu?
uf u tu>������������������

������
Fig. 1. FOURIn what follows we shall denote by ^ and _ the meet and join operations on(FOUR;�t). A negation, :, is a unary operation on FOUR, de�ned by :t=f ,:f = t, :>=>, and :?=?. As usual in su
h 
ases, we take t and > as thedesignated elements in FOUR (i.e., the elements that represent true assertions).2 This was also the original motivation of Belnap when he introdu
ed FOUR.
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 5In the rest of this paper we denote by � a language with a �nite alphabet,in whi
h the 
onne
tives are _;^;:. These 
onne
tives 
orrespond to the oper-ations on FOUR with the same notations. � and � denote arbitrary four-valuedvaluations , i.e., fun
tions that assign a value in FOUR to every atom in �. Theextension to 
omplex formulae in � is de�ned in the standard way:�( ^ �) = glb�t(�( ); �(�)); �( _ �) = lub�t(�( ); �(�)); �(: ) = :�( ):The spa
e of the four-valued valuations is denoted by V4. A valuation �2V4 isa model of a formula  (alternatively, � satis�es  ) if �( )2ft;>g. � is a modelof a set � of formulae if � is a model of every  2� . The set of the models of �is denoted by mod(� ).2.3 Four-valued preferential reasoningA natural de�nition of a 
onsequen
e relation on FOUR is the following:De�nition 2.4. Let � be a set of formulae and  a formula in �. Denote � j=4 if every four-valued model of � is a four-valued model of  .In [2℄ it is shown that j=4 is a 
onsequen
e relation in the sense of Tarski[24℄, i.e., it is re
exive, monotoni
, and transitive. It is also shown there thatj=4 is para
onsistent, 
ompa
t, and has 
ut-free, sound and 
omplete Hilbert-type and Gentzen-type proof systems. However, the fa
t that j=4 is a Tarskian
onsequen
e relation means, in parti
ular, that it is monotoni
, and as su
h it is\over-
autious" in drawing 
on
lusions from in
omplete theories. In what followswe therefore re�ne the reasoning pro
ess by using the te
hniques dis
ussed abovefor preferential reasoning. Below are some useful preferen
e 
riteria.De�nition 2.5. [2℄ Let �; �2V4. Denote:{ � �k � if �(p) �k �(p) for every atom p.{ � �f>g � if for every atom p, �(p)=> whenever �(p)=>.{ � �f>;?g � if for every atom p, �(p)2f>;?g whenever �(p)2f>;?g.It is easy to 
he
k that �k is a partial order and �f>g, �f>;?g are pre-orderson V4. In what follows we shall write � <k � to denote that ��k � and � 6�k �;similarly for <f>g and <f>;?g.Ea
h one of the preferen
e orders given in De�nition 2.5 has its own rational-ity: a

ording to �k, for instan
e, one prefers valuations that re
e
t as minimalinformation as reasonably possible. This 
riterion may as well be viewed as anargumentation for 
onsisten
y preserving, sin
e as long as one keeps the amountof information (or belief) as minimal as possible, the tenden
y of getting into
on
i
ts de
reases.The pre-order �f>g states a somewhat more expli
it preferen
e of in
on-sisten
y minimization: it prefers those valuations that minimize the amount ofin
onsistent assignments. Similarly, �f>;?g, prefers those valuations that are as



6 O.Arieli and M.Dene
ker
lassi
al as possible. I.e., those ones that assign 
lassi
al truth values wheneverpossible.Given a set � of formulae in �, the minimal elements in mod(� ) w.r.t. �k(respe
tively, w.r.t �f>g, w.r.t. �f>;?g) are 
alled the k-minimal models of �(respe
tively, the most 
onsistent models of � , the most 
lassi
al models of � ).Example 2.1. Let � = fp; :p _ q; :q; r _ qg. The four-valued models of � aregiven in Table 1. Table 1. The elements in mod(� )Model p q r Model p q rM1 > f t M6 t > >M2 > f > M7 > > ?M3 t > ? M8 > > fM4 t > f M9 > > tM5 t > t M10 > > >The k-minimal models of � are fM1;M3g, the most 
onsistent ones arefM1;M3;M4;M5g, and the most 
lassi
al ones are fM1;M4;M5g.Ea
h one of the preferen
e 
riteria 
onsidered in De�nition 2.5 indu
es a
orresponding preferential 
onsequen
e relation:De�nition 2.6. [2℄ Let � be a set of formulae and  a formula in �. Denote:{ � j=4k if every k-minimal model of � is a model of  .{ � j=4f>g if every most 
onsistent model of � is a model of  .{ � j=4f>;?g if every most 
lassi
al model of � is a model of  .Example 2.2. Consider again the set � of Example 2.1, and let  =r_:r. Then� j=4f>;?g , while � 6j=4k and � 6j=4f>g .Clearly, the 
onsequen
e relations of De�nition 2.6 are parti
ular 
ases of thepreferential entailment relations j=�, given in De�nition 2.3. It is also easy to seethat all of these 
onsequen
e relations are para
onsistent and have the followingproperties (see [2, 3℄ for further details):1. � j=4k i� � j=4 .Thus j=4k is a 
ompa
t representation of j=4; it is suÆ
ient to 
onsider onlythe k-minimal models of a given theory in order to simulate reasoning withj=4.2. Denote by j=2 the two-valued 
lassi
al 
onsequen
e relation. If � is 
lassi
ally
onsistent and  is a formula in CNF, none of its disjun
tions is a tautology,then � j=4f>g i� � j=2 .
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 73. If � is 
lassi
ally 
onsistent then � j=4f>;?g i� � j=2 .Thus j=4f>;?g is equivalent to 
lassi
al logi
 on 
onsistent theories and isnontrivial w.r.t. in
onsistent theories in the sense that not all formulas areentailed.3 Para
onsistent 
lassi
al reasoningThis se
tion shows how to simulate para
onsistent reasoning by 
lassi
al reason-ing. We propose a transformation su
h that four-valued entailment for theories
an be de�ned in terms of 
lassi
al two-valued entailment for the transformedtheories. Moreover, we show that four-valued preferential entailment 
an be de-�ned in terms of 
lassi
al entailment for the transformed theories augmentedwith 
ir
ums
riptive axioms.3.1 An alternative representation of semanti
al 
on
eptsThe elements of FOUR 
an be represented by pairs of 
omponents from thetwo-valued latti
e (f0; 1g; 0 < 1) as follows: t = (1; 0), f = (0; 1), > = (1; 1),?=(0; 0). In this representation the negation operator is de�ned in FOUR by:(x; y)=(y; x), and the 
orresponding partial orders in FOUR are representedby the following rules: for every x1; x2; y1; y22f0; 1g,(x1; y1) �t (x2; y2) i� x1�x2 and y1�y2;(x1; y1) �k (x2; y2) i� x1�x2 and y1�y2:It follows, in parti
ular, that in the representation by pairs of two-valued
omponents, the �t-meet (i.e., the greatest lower bound w.r.t. �t) and the �t-join (i.e., the least upper bound w.r.t. �t) in FOUR are de�ned as follows:(x1; y1) ^ (x2; y2) = (x1 ^ x2; y1 _ y2):(x1; y1) _ (x2; y2) = (x1 _ x2; y1 ^ y2);It is obvious that there is a one-to-one 
orresponden
e between four-valuedvaluations and pairs of two-valued valuations. We shall denote these pairs of two-valued 
omponents by � = (�1; �2). So if, for instan
e, �( ) = t, then �1( ) = 1and �2( )=0.The preferen
e 
riteria 
onsidered in the previous se
tion may now be refor-mulated as follows:Lemma 3.1. Let �; �2V4. Then:{ ��k� i� for every atom p, �1(p)��1(p) and �2(p)��2(p).{ � �f>g � i� for every atom p, if �1(p)^�2(p) = 1, then �1(p)^�2(p) = 1 aswell.
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ker{ ��f>;?g� i� for every atom p, if (�1(p)^�2(p))_ (:�1(p)^:�2(p))=1, then(�1(p)^�2(p)) _ (:�1(p)^:�2(p))=1 as well.Proof: Immediately follows from the 
orresponding de�nitions. 2Given the language �, de�ne the language �� based on the alphabet 
on-sisting of symbols p+; p� for ea
h atom p of �. Let  be a formula in �. Denoteby b the formula in ��, obtained from  by �rst translating  to its negationnormal form,  0 (where the negation operator pre
edes atomi
 formulae only),3then substituting every o

urren
e in  0 of an atomi
 formula p that is not pre-
eded by a negation, by the new predi
ate symbol p+, and repla
ing every othero

urren
e of p in  0, together with the negation that pre
edes it, by the newpredi
ate symbol p�. For instan
e, if  = :(p _ :q), then  0 = :p ^ q, and sob = p� ^ q+. Given a theory � , we shall write b� for the set f b j  2�g. Notethat b� 
an be obtained from � in a linear time. Moreover, for every � , b� is apositive theory, and hen
e it is 
onsistent.Given a four-valued valuation �=(�1; �2), b� denotes the two-valued valuationon ��, de�ned by b�(p+) = �1(p) and b�(p�) = �2(p). Extensions to 
omplexformulae in �� are de�ned in the usual way. 4De�nition 3.1. Given a valuation �=(�1; �2), denote �=(:�2;:�1).Proposition 3.1. �( ) = (b�( b ); :b�( b )).Proof: Let  0 be the negation normal form of  . Sin
e  and  0 are logi
allyequivalent in FOUR, �( ) is the same as �( 0). The rest of the proof is by anindu
tion on the stru
ture of  0: 0=p: (b�(bp);:b�(bp)) = (([�1; �2)(p+);:( \:�2;:�1)(p+)) = (�1(p);::�2(p)) =(�1(p); �2(p)) = �(p). 0=:p: (b�(
:p);:b�(
:p)) = (([�1; �2)(p�);:( \:�2;:�1)(p�)) =(�2(p);::�1(p)) = (�2(p); �1(p)) = :(�1(p); �2(p)) = :�(p) = �(:p). 0=�1_�2: �(�1_�2)=�(�1)_�(�2) = (b�(
�1);:b�(
�1)) _ (b�(
�2);:b�(
�2)) =(b�(
�1)_b�(
�2);:b�(
�1)^:b�(
�2)) = (b�(
�1_
�2);:(b�(
�1)_b�(
�2))) =(b�(
�1_
�2);:b�(
�1_
�2)) = (b�(\�1_�2);:b�(\�1_�2)).The 
ase  0=�1^�2 is similar to that of �1_�2. 23 It is easy to verify that as in the two-valued 
ase, also in FOUR  and  0 arelogi
ally equivalent.4 Clearly, the 
onverse 
onstru
tion is also possible: every two-valued valuation � on�� 
orresponds to a unique four-valued valuation �0 on � de�ned, for every atomp, by �0(p)=(�(p+); �(p�)).
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lassi
al logi
In what follows we use the pairwise representations, 
onsidered in the previousse
tion, for the following goals:1. Showing that four-valued reasoning 
an be simulated by 
lassi
al reasoning,2. Constru
ting 
ir
ums
riptive formulae for de�ning four-valued preferentialreasoning.For item (1) above we �rst need the following lemma:Lemma 3.2. For every four-valued valuation � and a formula  in �, �( ) isdesignated i� b�( b )=1.Proof: �( ) is designated i� �1( )=1, i� (Proposition 3.1) b�( b )=1. 2The following result is an immediate 
orollary of Lemma 3.2:Theorem 3.1. � j=4 i� b� j=2 b .It follows, therefore, that four-valued reasoning may be implemented by two-valued theorem provers. Moreover, sin
e b� is obtained from � in a polynomialtime, the theorem above shows that four-valued entailment in the 
ontext ofBelnap's logi
 is polynomially redu
ible to the 
lassi
al entailment.Another immediate 
onsequen
e of this theorem is the next well-known re-sult:Corollary 3.1. In the language without negations, � j=4 i� � j=2 .We turn now to the preferential 
ase. To extend the above te
hnique to dealwith preferential four-valued reasoning, we must express that the en
oded four-valued interpretation is minimal with respe
t to a preferen
e relation �. This
an be a

omplished by introdu
ing a 
ir
ums
ription axiom. The proviso is thatwe are able to express the preferen
e relation � obje
tively, by a formula 	�.The �rst point to 
he
k out is therefore how to express a semanti
al preferen
erelation � in an axiom.Let p = fp1; ::; png be the set symbols of our language �, and let p � bethe set of symbols fp+1 ; p�1 ; : : : ; p+n ; p�n g. To be able to express for two valuations� = (�1; �2) and � = (�1; �2) that � � � by one formula, we introdu
e newsymbols q as renaming of the symbols of p. With (p � :�; q � :�), we denote thetwo-valued interpretation that interprets symbols p+i as �1(p), p�i as �2(p), q+ias �1(p) and q�i as �2(p) for every 1� i�n.De�nition 3.2. A preferential order � is represented by a formula 	�(p �; q �)if for every four-valued valuations � and � we have that ��� i� (p � :�; q � :�)satis�es 	�(p �; q �).



10 O.Arieli and M.Dene
kerGiven a formula  of �, denote by b (P �) the formula that is obtained bysubstituting symbols P � for symbols p � in b .Proposition 3.2. Let 	�(p �;P �) be a formula that represents a preferentialorder �. Then � is a �-most preferred model of  (that is, �2 !(f g;�)) i� b�satis�es b and the following formula:Cir
�(p �) = 8(P �) f b (P �) ! (	�(P �;p �)! 	�(p �;P �) ) g:Proof: By Corollary 3.2, � is a model of  i� b� satis�es b . It remains to show thatthe fa
t that b� satis�es Cir
� is a ne
essary and suÆ
ient 
ondition for assuringthat � is a �-minimal element in the set mod( ) of the models of  . Indeed, b�satis�es Cir
� i� for every valuation � that satis�es  and for whi
h ���, it isalso true that ���. Thus, for every �2mod( ), we have that (� � �)! (� � �)(alternatively, there is no � 2 mod( ) s.t. � < �). I.e., �2 !( ;�). 2Note 3.1. Denote the formula Vni=1 ((p+i = P+i ) ^ (p�i = P�i )) by p � = P �,5and let 	<(P �;p �) be the following formula: 	�(P �;p �) ^ :	�(p �;P �).Then:a) The formula Cir
�(p �) of Proposition 3.2 may be rewritten as follows:8(P �) f b (P �) ! :	<(P �;p �) gb) In 
ase that � is a partial order, Cir
�(p �) 
an be rewritten as follows:8(P �) f [ b (P �) ^ 	�(P �;p �) ℄! p � = P � gThe following theorem is an immediate 
orollary of Proposition 3.2:Theorem 3.2. Let � be a set of formulae and  a formula in �. Let Cir
� bethe formula given in Proposition 3.2 for a preferential relation �. Then � j=� i� b� [ Cir
� j=2 b .Proposition 3.2 gives a general 
hara
terization in terms of \formula 
ir
um-s
ription" [18℄ of the preferred models of a given theory: given a preferentialrelation �, in order to express �-preferential satisfa
tion of a theory, one should�rst formulate a 
orresponding formula 	� that represents �, and then integrate	� with Cir
� as in Proposition 3.2. Again, this 
an be done in a polynomialtime.Next we de�ne formulae that represent the preferential relations 
onsideredabove.De�nition 3.3. In what follows we shall write x� y for x! y, and x� y for(x!y)^:(y!x).5 In the 
ontext of two-valued logi
, p = q denotes 8x:p(x)$ q(x).
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 formulae in �. Then:a) The preferential relation �k is represented by the following formula:	�k(p �;P �) = n̂i=1 ((p+i � P+i ) ^ (p�i � P�i ))b) The preferential relation �f>g is represented by the following formula:	�f>g(p �;P �) = n̂i=1 ((p+i ^p�i ) � (P+i ^P�i ))
) The preferential relation �f>;?g is represented by the following formula:	�f>g(p �;P �) = n̂i=1(((p+i ^p�i )_(:p+i ^:p�i )) � ((P+i ^P�i )_(:P+i ^:P�i )))Proof: We show only part (a); the proof of the other parts is similar.��k�() 81� i�n �(pi) �k �(pi)() 81� i�n �1(pi)��1(pi) and �2(pi)��2(pi)() (p � :�; P � :�) satis�es Vni=1 ((p+i � P+i ) ^ (p�i � P�i ))() (p � :�; P � :�) satis�es 	�k(p �;P �). 2By Proposition 3.2, Lemma 3.3(a), and Note 3.1(b), we have the following
orollary:Corollary 3.2. A valuation �=(�1; �2) is a k-minimal model of  i� b� satis�esb and Cir
�k (p �), where Cir
�k(p �) is the following formula: 68(P �) f [ b (P �)^ n̂i=1 ((P+i � p+i )^(P�i � p�i ))℄! [ n̂i=1 ((P+i = p+i )^(P�i = p�i ))℄ gAs in Corollary 3.2, the most 
onsistent models and the most 
lassi
al modelsof a given theory 
an be represented by formulae of the form Cir
�f>g(p �) andCir
�f>;?g(p �), obtained by respe
tively integrating the formulae given in parts(b) and (
) of Lemma 3.3 with Cir
�, given in Proposition 3.2.In the remaining of this se
tion we 
onsider a uniform way of represent-ing Cir
�f>g(p �), Cir
�f>;?g(p �), and some other formulae that 
orrespond topreferential 
riteria like �f>g and �f>;?g. For this, let �� FOUR. De�ne anorder relation <� on FOUR by x<� y i� x 62� while y 2�. A 
orresponding6 Note that Cir
�k(p �) is a standard 
ir
ums
riptive axiom in the sense of [17℄.



12 O.Arieli and M.Dene
kerpre-order on V4 may now be de�ned as follows: for every �; �2V4, ���� i� forevery atom p, the fa
t that �(p)2� entails that �(p)2� as well. The ��-mostpreferred models of � are the ��-minimal elements in mod(� ), and � j=4�  ifevery ��-most preferred model of � is a model of  .Clearly, �f>g and �f>;?g are parti
ular 
ases of ��, where �= f>g and�=f>;?g, respe
tively. Now, the ��-most preferred models of a given theory
an be represented by a 
ir
ums
riptive formula in the following way:De�nition 3.4. For ��FOUR, let ��(p+; p�) = Wx2� �x(p+; p�), where�t(p+; p�) = p+ ^ :p�; �f (p+; p�) = :p+ ^ p�;�?(p+; p�) = :p+ ^ :p�; �>(p+; p�) = p+ ^ p�: 7Similar arguments as those in Lemma 3.3 show that the formula	��(p �;P �) = n̂i=1 ( ��(p+i ; p�i ) � ��(P+i ; P�i ) )represents the preferential relation ��. Therefore, by Proposition 3.2,Proposition 3.3. A valuation � is a ��-preferred model of  i� b� satis�es b and the following formula:Cir
��(p �) = 8(P �) f b (P �) ! (	��(P �;p �)! 	��(p �;P �) ) g:4 Experimental studyAs we have already noted, all the formulae that are obtained by our method havea 
ir
ums
riptive form. It is therefore possible to apply, for instan
e, the formulaCir
�k , given in Corollary 3.2, in algorithms for redu
ing 
ir
ums
riptive axioms.Below are some simple results obtained by experimenting with su
h algorithm(We have used Doherty, Lukaszewi
z and Szalas DLS algorithm [8, 9℄, availableat http://www.ida.liu.se/labs/kplab/proje
ts/dls/
ir
.html). 8{ Consider the theory � = fQ(a); Q(b);:Q(a)g, where Q denotes some pred-i
ate, and a; b are two 
onstants. In our 
ontext, this theory is translatedto b� = fQ+(a); Q+(b); Q�(a)g. Cir
ums
ribing b� where Q+ and Q� aresimultaneously minimized, yields the following result:8x f (Q�(x)! x = a) ^ (Q+(x)! (x = a _ x = b)) g:7 Intuitively, �x(p+; p�) expresses that �(p) = x and ��(p+; p�) means that �(p) 2 �.8 In what follows we deliberately 
onsider very simple 
ases. Our experien
e is thatfor more 
omplex theories the output qui
kly be
omes more 
ompli
ated, and so not
omprehensible by humans (it is manageable in automated 
omputations, though).
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t for whi
h both Q+(x) and Q�(x)hold (i.e., a is the only obje
t that is in
onsistent w.r.t. Q), and b is the onlyobje
t for whi
h only Q+(x) holds. For all the other obje
ts neither Q+(x)nor Q�(x) holds. I.e., if 
 62 fa; bg then Q(
) 
orresponds to ?. This indeedis exa
tly the k-minimal semanti
s of � .Note that the fa
t that for every obje
t x di�erent from a and b neitherQ+(x)norQ�(x) holds means that the truth values of all the domain elements otherthan a or b do not matter in order to satisfy this formula. This informationmay be important from analysis point of view.{ Suppose that in the previous example one wants to impose the law of ex-
luded middle. It is possible to do so by adding to � the restri
tion  =8x(Q(x) _:Q(x)), whi
h is translated to b = 8x(Q+(x) _Q�(x)). Cir
um-s
ribing b� [ f b g yields8x f [(Q+(x)^ x 6= a^ x 6= b)! :Q�(x)℄ ^ [(Q�(x)^ x 6= a)! :Q+(x)℄ g;whi
h has almost the same meaning as before, ex
ept that this time, the
ombination of this and b means that if 
 62 fa; bg then either Q+(
) orQ�(
) holds, but not both. It follows, then, that for su
h 
, Q(
) must havesome 
lassi
al value. Again, this 
orresponds to what one expe
ts when k-minimizing � [ f g.5 Con
lusionIn this paper we have introdu
ed a method for para
onsistent reasoning in knowl-edge systems by 
lassi
al se
ond-order formulae. Our method tou
hes upon sev-eral important aspe
ts. First, it shows that two-valued reasoning may be usefulfor simulating inferen
e pro
edures in the 
ontext of many-valued semanti
s. Se
-ond, this approa
h demonstrates the usefulness of 
ir
ums
ription not only as ageneral method for non-monotoni
 reasoning, but also as an appealing te
hniquefor implementing para
onsistent reasoning. Finally, this is another eviden
e tothe fa
t that in many 
ases 
on
epts that are de�ned in a \meta-language"(su
h as preferen
e 
riteria, et
.) 
an be expressed in the language itself (using,e.g., higher-order formulae). This enables a potentially wide area for pra
ti
alimplementations. For instan
e, we have shown that preferential multiple-valuedreasoning 
an be in
orporated with pra
ti
al appli
ations for automated reason-ing and theorem proving.Referen
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