
April 13, 2004 10:15 WSPC/Trim Size: 9in x 6in for Proceedings flins04final

RELATING INTUITIONISTIC FUZZY SETS AND

INTERVAL-VALUED FUZZY SETS THROUGH BILATTICES

OFER ARIELI CHRIS CORNELIS∗, GLAD DESCHRIJVER,

ETIENNE KERRE

Department of Computer Science Department of Applied Mathematics and
The Academic College of Tel-Aviv Computer Science, Ghent University

Antokolski 4, Tel-Aviv 61161 Krijgslaan 281 (S9), B-9000 Gent
Israel Belgium

oarieli@mta.ac.il {chris.cornelis, glad.deschrijver,
etienne.kerre}@ugent.be

In this paper, we show that bilattices are robust mathematical structures that pro-
vide a natural accommodation to, and bridge between, intuitionistic fuzzy sets and
interval-valued fuzzy sets. In this way, we resolve the controversy surrounding the
formal equivalence of these two models, and open up the path for a new tradition
for representing positive and negative information in fuzzy set theory.

1. Motivation

Bilattices are algebraic structures that were introduced by Ginsberg15, and

further examined by Fitting11,12,13 and others1,2,14, as a general frame-

work for many applications in computer science. In this paper, we show

that these structures can also elegantly and naturally accommodate intu-

itionistic fuzzy sets (IFSs) and interval-valued fuzzy sets (IVFSs), which

are two frequently encountered and syntactically equivalent generalizations

of Zadeh’s fuzzy sets. In particular, and more generally than in previous

works, we demonstrate that Atanassov’s decision to restrict the evaluation

set for L-intuitionistic fuzzy sets to consistent couples of the “square” L2

forces the resulting structure to coincide with the “triangle” I(L). This

insight provides a convenient stepping stone towards more general and ex-

pressive models for the representation and processing of positive and neg-

ative imprecise information.
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2. Preliminaries: IFSs, IVFSs, and Bilattices

2.1. Intuitionistic fuzzy sets (IFSs)

A fuzzy set19 is a nebular collection of elements from a universe U , described

by a membership function µ : U → [0, 1]. An intuitionistic fuzzy set3 (IFS,

for short) is a nebular collection of elements from a universe U , described

by a pair of functions (µ, ν), each one maps elements from U to the unit

interval [0, 1], such that for every u in U , µ(u) + ν(u) ≤ 1. Intuitively, µ

is a membership function and ν is a non-membership function. These two

functions are not necessarily each other’s complement (an assumption which

is implicit in Zadeh’s fuzzy set theory), i.e., the amount of the ‘missing

information’, 1 − µ(u) − ν(u), may be strictly positive.

Given a complete lattice L = (L,≤), Goguen16 introduced the concept

of L–fuzzy sets as a mapping µ : U → L. Intuitionistic fuzzy sets can be

interpreted as a particular kind of L–fuzzy sets, where the corresponding

complete lattice is the following10:

Definition 2.1. Define: L∗ = (L∗,≤L∗), where L∗ = {(x1, x2) | (x1, x2) ∈
[0, 1]×[0, 1] and x1+x2≤1}, and (x1, x2)≤L∗ (y1, y2) iff x1≤y1 and x2≥y2.

Atanassov and Stoeva4 introduced the following generalization of the

IFS construct, called an intuitionistic L–fuzzy set (ILFS).

Definition 2.2. Let (L,≤L) be a complete lattice with an involution oper-

ationa N and a non–empty set U called universe. An intuitionistic L–fuzzy

set in U is a mapping g : U → L×L, such that if g(u) = (x1, x2) then

x1 ≤L N (x2), for all u in U .

2.2. Interval-valued fuzzy sets (IVFSs)

Interval-valued fuzzy set theory (IVFS theory, for short) is another exten-

sion of fuzzy set theory, motivated by the need to replace crisp, [0, 1]-valued

membership degrees by intervals in [0, 1] that approximate the correct (but

unknown) membership degree. Another justification for this approach is

that, in reality, intervals of values better represent experts’ opinions than

exact numbers.

An IVFS can be seen as an LI–fuzzy set, where the corresponding lattice

is given by the following definition.

aI.e., for every x, y in L, N (N (x)) = x, and if x ≤L y then N (x) ≥L N (y).
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Definition 2.3. Define: LI = (LI ,≤LI ), where LI = {[x1, x2] | (x1, x2) ∈
[0, 1]× [0, 1] and x1 ≤ x2}, and [x1, x2]≤LI [y1, y2] iff x1≤y1 and x2≤y2.

Atanassov and Gargov5 defined another generalization of the IFS con-

struct, called interval–valued intuitionistic fuzzy set (IVIFS), which devi-

ates from the line of thinking of ILFS, and which is more related to the

intuition behind IVFSs.

Definition 2.4. An interval-valued intuitionistic fuzzy set5 in a universe

U is a mapping g : U → (LI)2, such that g(u) = ([xl
1, x

h
1 ], [xl

2, x
h
2 ]) and

xh
1 + xh

2 ≤ 1, for all u in U .

Indeed, applying Definition 2.2 to (LI ,≤LI ), where the involution N on

the lattice (LI ,≤LI ) is defined by N ([x1, x2]) = [1 − x2, 1 − x1], gives the

alternative condition [xl
1, x

h
1 ] ≤LI [1 − xh

2 , 1 − xl
2].

2.3. Bilattices

As noted above, bilattices are used here for relating IFSs and IVFSs. First,

we recall some basic definitions and notions that are related to these struc-

tures.

Definition 2.5. A pre-bilattice11,12 is a structure B = (B,≤t,≤k), such

that B is a nonempty set containing at least two elements, and (B,≤t),

(B,≤k) are complete lattices.

Definition 2.6. A bilattice15 is a structure B = (B,≤t,≤k,¬), such that

(B,≤t,≤k) is a pre-bilattice, and ¬ is a unary operation on B that has the

following properties: for every x, y in B,

(1) if x ≤t y then ¬x ≥t ¬y, (2) if x ≤k y then ¬x ≤k ¬y, (3) ¬¬x = x.

The original motivation of Ginsberg15 for using bilattices was to provide

a uniform approach for a diversity of applications in artificial intelligence. In

particular, he considered first-order theories and their consequences, truth

maintenance systems, and default reasoning. Later, it was shown that

bilattices are useful for giving semantics to logic programs11,12 and that

they provide an intuitive semantics to consequence relations for reasoning

with uncertainty1,2. In particular, bilattices were also considered in the

context of fuzzy reasoning, e.g., by Cornelis et al7.b

bIn fact, the structures considered by Cornelis et al.7 are not bilattices in the sense of
Definition 2.6, but rather pre-bilattices that are interlaced11 , that is, pre-bilattices in
which the four basic operators are monotonic w.r.t. both ≤t and ≤k.
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Following the conventional notations in the literature, we shall denote

by ∧ (respectively, by ∨) ≤t-meet (≤t-join), and by ⊗ (respectively, by ⊕)

≤k-meet (≤k-join) of a bilattice B. Also, f and t will denote the extreme

elements of (B,≤t), and ⊥, ⊤ will denote the extreme elements of (B,≤k).

In some bilattices a dual negation operator, called conflation12 (−), is

definable. It is an involution of (B,≤k) and order preserving of (B,≤t):

(1) if x ≤k y then −x ≥k −y, (2) if x ≤t y then −x ≤t −y, (3) −−x = x.

Proposition 2.1. Let B = (B,≤t,≤k,¬) be a bilattice. Then:

a) 15 ¬f = t, ¬t=f , ¬⊥=⊥, ¬⊤=⊤. Also, for every x, y in B,

¬(x∧y)=¬x∨¬y, ¬(x∨y)=¬x∧¬y, ¬(x⊗y)=¬x⊗¬y, ¬(x⊕y)=¬x⊕¬y.

b) 12 If B has a conflation, then −f =f , −t= t, −⊥=⊤, −⊤=⊥. Also, for

every x, y in B, −(x∧y) = −x∧−y, −(x∨y) = −x∨−y, −(x⊗y) = −x⊕−y,

and −(x ⊕ y) = −x ⊗−y.

3. Squares and Triangles

3.1. Squares

Definition 3.1. 15 Let L = (L,≤L) be a complete lattice. The structure

L2 = (L×L,≤t,≤k,¬) is defined as follows: (1) ¬(x1, x2) = (x2, x1),

(2) (x1, x2) ≤t (y1, y2) iff x1 ≤L y1 and x2 ≥L y2,

(3) (x1, x2) ≤k (y1, y2) iff x1 ≤L y1 and x2 ≤L y2.

In what follows we refer to L2 as a square. A pair (x1, x2) ∈ L2 may

intuitively be understood so that x1 represents the amount of belief for

some assertion, and x2 is the amount of belief against it. This is clearly the

same idea as that of Atanassov3, discussed in Section 2.1, of splitting a belief

about the membership of an element u to two components (µ(u), ν(u)). As

we shall show, this similarity does not remain only on this intuitive level.

Proposition 3.1. Let L = (L,≤L) be a complete lattice with a join ⊓L

and a meet ⊔L. Then:

a) 15 L2 is a bilattice, in which ⊥L2 = (inf(L), inf(L)),

⊤L2 = (sup(L), sup(L)), tL2 = (sup(L), inf(L)), fL2 = (inf(L), sup(L)).

The basic operations in L2 are defined as follows: ¬(x1, x2) = (x2, x1),

(x1, x2)∨(y1, y2)=(x1⊔Ly1, x2⊓Ly2), (x1, x2)∧(y1, y2)=(x1⊓Ly1, x2⊔Ly2),

(x1, x2)⊕(y1, y2)=(x1⊔Ly1, x2⊔Ly2), (x1, x2)⊗(y1, y2)=(x1⊓Ly1, x2⊓Ly2).
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b) 11 Suppose that L has an involution. Denote by x− the ≤L-involute of

x in L. Then a conflation is defined on L2 by −(x1, x2)=(x−

2 , x−

1 ).

Example 3.1. The square derived from ({0, 1

2
, 1},≤) is shown in Figure 1

(left); Belnap’s four-valued bilattice6 is obtained by the square that is de-

rived from ({0, 1},≤).

Remark that the square L2 endorses the main intuition behind ILFSs:

if the membership degree of an element u is x ∈ L, it is not necessarily the

case that the non-membership degree of u is 1 − x, but it is rather some y

in L. Also note that, when L = [0, 1], the structure B=L2 simultaneously

encompasses the order relations among IVFSs and IFSs: the ≤k–ordering of

this bilattice is exactly the same as the partial order of LI (Definition 2.3).

The ≤t–order of B, on the other hand, corresponds to the partial order of

L∗ (Definition 2.1).

3.2. Triangles

Definition 3.2. 12 For a complete lattice L = (L,≤L), let I(L) be a triple

(I(L),≤t,≤k), such that I(L) is a set of intervals of the form [x1, x2]={x |
x ∈ L and x1≤L x≤L x2}, and

(1) [x1, x2] ≤t [y1, y2] iff x1 ≤L y1 and x2 ≤L y2,

(2) [x1, x2] ≤k [y1, y2] iff x1 ≤L y1 and x2 ≥L y2.

An interval [y1, y2] in I(L) is ≤k–greater (i.e., more informative) than

[x1, x2] in I(L) if [y1, y2] ⊆ [x1, x2]; it is ≤t–greater than [x1, x2] if (∀x ∈
[x1, x2]) (∃y ∈ [y1, y2]) (x ≤L y) and (∀y ∈ [y1, y2]) (∃x∈ [x1, x2]) (y ≥L x).

Note that I(L) is not closed under ≤k–join, and so it is not a (pre-)bilattice

but only a so called pseudo ≤k-lower pre-bilattice12. In what follows we

shall call I(L) a triangle.

Example 3.2. The triangle I({0, 1

2
, 1}), derived from ({0, 1

2
, 1},≤), is

shown in Figure 1 (right). Kleene’s three-valued structure17 is obtained

by the triangle that is derived from ({0, 1},≤).

When L is the unit interval, I(L) naturally describes membership of

IVFSs, and the valuation lattice LI is exactly (I(L),≤t). Moreover, I(L)

extends LI in the sense that it contains the partially ordered set (I(L),≤k),

that orders the intervals according to their amount of information.

Definition 3.3. 12 Let B be a bilattice with a conflation. An element x in

B is called exact if x=−x; it is consistent if x≤k−x.
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Figure 1. The square {0, 1

2
, 1}2 and the triangle I({0, 1

2
, 1})

The next proposition relates squares and triangles through an isomor-

phism that can be applied to arbitrary complete lattices with an involution

operation (not necessarily the unit interval).

Proposition 3.2. 12 Let L be a complete lattice with involution. Then

I(L) is isomorphic to the substructure on the consistent elements of L2.

The last proposition vindicates the strong relationship between bilat-

tices and the fuzzy sets constructs, considered above. Below are some

further observations about this.

(1) The isomorphism f :I(L) → L2 for the proof of Proposition 3.2 is

given by f([x1, x2]) = (x1,−x2), where −x2 is the involute of x2 in

L. For the unit interval, then, f([x1, x2]) = (x1, 1−x2), which is the

same transformation considered by Cornelis et al.8 for switching

between IVFSs and IFSs. Proposition 3.2 shows that the same

transformation is useful not only for LI and L∗ (i.e., when the

underlying lattice is the unit interval), but for any complete lattice

with involution.

(2) Proposition 3.2 is another justification for Atanassov’s decision to

consider only the “lower triangle” of [0, 1]2 (i.e., the elements (a, b)

in [0, 1]2 s.t. a + b ≤ 1): these are exactly the consistent elements

of [0, 1]2 and so, as Proposition 3.2 above indicates, the lattice L∗

(for which the underlying set is the set of consistent elements in

[0, 1]) is isomorphic to the lattice LI of the [0, 1]-interval-valued

fuzzy sets. The fact that we consider super-lattices of L∗ (i.e.,
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all the elements in [0, 1]2) allows us to introduce elements such as

(a, b) = (1, 1), in which the membership degree (a) and the non-

membership degree (b) are both maximal. This means that we have

a totally inconsistent belief in this case. As an important aspect

of fuzzy logic is reasoning with imprecise and possibly conflicting

information, such values should not be ruled out!

(3) Remarkably, Atanassov and Stoeva’s ILFS construct4 (Defini-

tion 2.2), is the exact embodiment of Proposition 3.2. It is not

difficult to see that the condition on g in Definition 2.2 means that

g(u) is a consistent element of L2, where the conflation is defined

as −(x1, x2) = (N (x2),N (x1)), for every (x1, x2) ∈ L2.

(4) Pankowska and Wygralak18 introduced a kind of an ILFS based on

the lattice ([0, 1],≤) with an involution operation defined, for any

positive real number n, by Nn(x)= n
√

1 − xn. It is easy to see that

when n increases, so does the number of elements (x1, x2) in [0, 1]2

for which x1≤Nn(x2), or equivalently x2≤Nn(x1). In fact, if x 6=1,

then lim
n→+∞

Nn(x) = 1, but when x = 1, always Nn(x) = 0. Hence,

when n approaches infinity, the set of the consistent elements of

[0, 1]× [0, 1] is arbitrary close (but not equal) to the square, as this

set approaches [0, 1]2 without the elements (x1, 1) and (1, x2), for

which x1, x2 >0.

4. Concluding Remarks

Bilattices are rich mathematical structures that nicely reflect the intuitions

behind IFSs and IVFSs and relate the corresponding theories. For instance,

the square L2, together with its ‘information order’ ≤k, generalizes the [0,1]-

interval-valued structure LI , and at the same time L2 with its ‘truth order’

≤t extends the [0,1]-intuitionistic fuzzy structure L∗. In particular,

• lattices other than the unit interval fit into Atanassov’s framework, and

• inconsistent elements are allowed (for representing inconsistent beliefs).

These considerations open up new and challenging directions and applica-

tions for (L-) fuzzy set theory, in particular with respect to the processing

of collections of partial and potentially conflicting positive and negative

information items.
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