
A FOUR-VALUED APPROACH FOR HANDLINGINCONSISTENCY IN PRIORITIZED KNOWLEDGE-BASESOfer ArieliDepartment of Computer ScienceSchool of Mathematical SciencesTel-Aviv UniversityTel-Aviv 69978, Israel.Email: ofera@math.tau.ac.ilAbstractThe use of priorities among formulae is an importanttool to appropriately revise inconsistent knowledge-bases. We present a four-valued semantical ap-proach for recovering consistent data from prioritizedknowledge-bases. This approach is nonmonotonicand paraconsistent in nature.1 IntroductionThere are many cases in which a knowledge-base con-tains formulae with di�erent importance. For in-stance, rules that state default assumptions are usu-ally considered as less reliable than rules without ex-ceptions. Also, inference rules are usually given alower priority than explicit data. These kinds of con-siderations are particularly common when revisinginconsistent knowledge-bases; If some formulae aremore certain than others, one would probably like toreject the least certain �rst.Many di�erent approaches for resolving conictsin prioritized knowledge-bases have been proposed inthe literature (see, e.g., [5, 6, 8, 9, 11, 12]). A lotof these methods draw conclusions based on maximalconsistent subsets of the knowledge-base under con-sideration (see, e.g., [6] for a survey). However, the se-mantics of the maximal consistent sets might not cor-respond to that of the original knowledge-base. Forexample, none of the maximal consistent subsets ofthe simplest inconsistent knowledge-base fp;:pg re-ects its intended meaning. Moreover, each maximalconsistent set even contradicts an explicit assertionof the original knowledge-base.The method that is presented here also considers0

consistent sets of formulae as representing \recov-ered" data. However, instead of insisting on maximal-ity, our major concern here is to preserve the origi-nal semantics of the assertions that are assigned highpriority in the knowledge-base. Roughly speaking,the idea is to construct consistent subsets of formulaethat reect the semantics of the higher priority data,and to choose one of them according to some pref-erence criteria. Then it is possible to apply classicalinferences for making plausible conclusions from therecovered set of assertions. This kind of approach iscalled coherent [6] or conservative [13], since it treatscontradictory data as useless, and regards the remain-ing data una�ected.2 Recovery of knowledge-bases2.1 PreliminariesOur method is based on Belnap well-known logic[3, 4], which consists of four truth values: the clas-sical ones (t; f), a value that intuitively representslack of information (?), and a value that indicatesinconsistency (>). The two latter values make Bel-nap logic particularly useful for reasoning with un-certainty. (ft; f;>;?g;�) is a distributive lattice inwhich f is the minimal element, t is the maximal one,and ?;> are two intermediate values that are incom-parable (see Figure 1). We shall denote the meet andthe join of this lattice by ^ and _, respectively. It isalso possible to de�ne an involution : on this lattice,for which :>= > and :?= ?. The truth values tand > are called the designated elements, since theyintuitively represent formulae known to be true. Theother semantic notions are natural generalizations ofthe similar classical ones: A valuation � is a func-tion that assigns a truth value from ft; f;>;?g toeach atomic formula. Any valuation is extended tocomplex formulae in the obvious way. The set of val-uations on a set S of formulae is denoted V(S). We



ufu? u>ut������@@@@@@������@@@@@@Figure 1: The four-valued latticewill usually write  : b 2 � instead of �( ) = b. Avaluation � satis�es  i� �( )2ft;>g. A valuationthat satis�es every formula in S is a model of S. Theset of all the models of S is denoted mod(S).De�nition 2.1 Let S be a set of formulae and  {a formula. S j= if every model of S is a model of  .The language we treat here is the standard propo-sitional one. Given a set S of propositional formulae,we shall denote by A(S) the set of the atomic formu-lae that appear in the language of S, and by L(S)the set of the literals that appear in some formulaof S. The formulae considered here are clauses, i.e.:disjunctions of literals. A set of clauses is called aknowledge-base, and is denoted by KB. As the fol-lowing lemma shows, representing the formulae in aclause form does not reduce the generality.Lemma 2.2 For every formula  there is a �nite setS of clauses such that for every valuation �, �( )2f>; tg i� �(�)2f>; tg for every �2S.De�nition 2.3 Let � 2V(KB). De�ne:Inc� (KB) = fp2A(KB) j �(p)=>g.De�nition 2.4 Let M;N 2 mod(KB). M is moreconsistent than N i� IncM (KB) � IncN (KB). M isa most consistent model of KB (mcm, for short) ifthere is no model of KB which is more consistentthan M . The set of the most consistent models ofKB is denoted mcm(KB).2.2 Recovered setsAs we have noted before, a drawback of using maxi-mal consistent subsets is that none of these sets nec-essarily corresponds to the intended semantics of theoriginal information. An approach that \salvages"consistent data from \polluted" knowledge-bases and

still preserves their semantics is presented in [1, 2].In what follows we briey review this method andin the next section we generalize it for prioritizedknowledge-bases.De�nition 2.5 A model M of a set of clauses KBis consistent if IncM (KB) = ;. A knowledge-base isconsistent if is has a consistent model.Proposition 2.6 A knowledge-base is consistent i�it is classically consistent.De�nition 2.7 A recovered set S of KB is a subsetof KB with a consistent model M s.t. there is a (notnecessarily consistent) model M 0 of KB and M (p)=M 0(p) for every p2A(S).De�nition 2.8 Let � 2 V(KB). The set that is as-sociated with � is de�ned as follows:S�(KB)=f 2KB j �( )= t; A( ) \ Inc�(KB)=;g.Example 2.9 Consider the knowledge-base KB =fp; q; :p_:qg. S1=fpg and S2=fqg are the recov-ered sets of KB. These sets are associated with the(most consistent) models fp : t; q :>g and fp :>; q : tg,respectively. Note that S1 is no longer a recoveredset of KB0 =KB [ f:pg, since there is no consistentmodel of S1 that is expandable to a model of KB0.Proposition 2.10 [1, 2] Every set that is associatedwith a model of KB is a recovered set of KB.Given an inconsistent knowledge-base, the idea isto choose one of its maximal recovered sets (see [2]),and to treat this set as the relevant knowledge-basefor deducing classical inferences. As the followingproposition shows, there is a strong connection be-tween maximal recovered sets of a knowledge-baseand its mcms:Proposition 2.11 [1, 2] Every maximal1 recoveredset of KB is associated with some mcm of KB.3 Prioritized knowledge-basesConsider a knowledge-base KB = S [ fp;:pg wherep is an atomic formula, and S is a consistent set ofclauses. For simplicity assume that p 62 A(S). Theapproach described in the previous section considersS as the recovered set of KB and ignores p;:p. Anylarger consistent set will not properly reect the in-tended semantics of KB.This state of things should completely be changedif we know, for example, that p is more usual than1The maximality is taken w.r.t. the containment relation.



:p. In such a case we would like to include p inthe recovered set after all, since now the intended se-mantics is a�ected not only by the assertions in theknowledge-base, but also by some \meta-knowledge"that is provided with the original information. Inthis case p is given a higher priority than :p, and itseems reasonable that the recovered knowledge-basewould contain p as well. The idea is, therefore, to dis-tinguish between higher priority formulae and thosewith lower priority, and to assure that it will not bepossible to draw any conclusion that contradicts for-mulae with high priority. In what follows we formalizethis intuition.De�nition 3.1 Let � 2 V(KB) and S � KB. Thereduction of � to S is the set � #S=f�(p) j p2A(S)g.De�nition 3.2 A ranking of a knowledge-baseKB isa function r from the clauses in KB to f1; 2; : : :; ng.The ranking function determines a preference rela-tion on the clauses of a knowledge-base; Intuitively,a clause with a lower rank has a higher priority.Notation 3.3 KBi=f 2KB j r( )� ig.De�nition 3.4 Let Ri=fS� (KB) j �2V(KB); � #KBi2mcm(KBi)g. Denote the maximal elements ofRi by Ri. I.e., Ri=fS2Ri j :9T 2Ri s.t. S�Tg.The Ri's are the candidates to be the set of therecovered knowledge-bases of KB. Following [5], weprovide some criteria for choosing the preferred set.The index of this set determines what would be con-sidered as a high ranking level:� set cardinality: Ri �sc Rj i� 8S 2Ri 9T 2Rjs.t. jT j�jSj.� set inclusion: Ri�siRj i� 8S 2Ri 9T 2Rj s.t.T �S.� cardinality of consistent consequences: Ri �ccRj i� 8S 2Ri 9T 2Rj s.t. jfl 2 L(KB) j T j=l; T 6j= lgj � jfl2L(KB) j S j= l; S 6j= lgj.2� inclusion of consistent consequences: Ri�ciRji� 8S 2Ri 9T 2Rj s.t. fl2L(KB) j T j= l; T 6j=lg � fl2L(KB) j S j= l; S 6j= lg.De�nition 3.5 The optimal recovery level of KBw.r.t. �sc is i0 =maxfi j :9j 6= i s.t. Rj �sc Rig.The optimal recovery levels of KB w.r.t. �si, �cc,and �ci, are de�ned similarly.2Where l denotes the complement of l.

De�nition 3.6 Let i0 be the optimal recovery levelof a prioritized knowledge-base KB. The recoveredknowledge-bases of KB are the elements of Ri0 .De�nition 3.6 generalizes the notion of recov-ered sets (De�nition 2.7) to the case of prioritizedknowledge-bases:Proposition 3.7 If all the clauses in KB have thesame priority, then S is a recovered set of KB i�S2R1.Proof: Immediate from Proposition 2.11 and De�ni-tion 3.4, since KB=KB1. 2Preference criteria like inclusion of consistent con-sequences (see above) or maximal information [10]might be applied to the elements of Ri0 for choosingthe \best" recovered knowledge-base. For other pref-erence criteria see, e.g., [6].Before considering an example we extend the dis-cussion to a language with predicates and variables.It is possible to do so in a straightforward way, pro-vided that each clause that contains variables is con-sidered as universally quanti�ed. Consequently, aknowledge-base containing a non-grounded formula, , will be viewed as representing the correspondingset of ground formulae formed by substituting eachvariable in  with every possible member of the Her-brand universe, U . Formally: KBU = f�( ) j  2KB; � :var( )!Ug.Example 3.8 (Tweety Dilemma) Consider thefollowing well-known puzzle:bird(x)!fly(x),penguin(x)!:fly(x),penguin(x)!bird(x),bird(Tweety), bird(Fred), penguin(Tweety)Denote the above knowledge-base by KB, and abbre-viate the predicates bird, penguin, fly with b, p, andf (respectively)3. Also, T , F will stand for the indi-viduals Tweety and Fred. KB has three mcms (seeFigure 2) and three corresponding associated sets:SM1(KB) = KBU n f 2KBU j f(T )2A( )gSM2(KB) = KBU n f 2KBU j p(T )2A( )gSM3(KB) = KBU n f 2KBU j b(T )2A( )g3Note that the symbol f has double meanings here: ab-breviating the predicate fly, and representing the truth valueFALSE. Each appearance of f will be understood by thecontext.



mcm b(T ) p(T ) f(T ) b(F ) p(F ) f(F )M1 t t > t f tM2 t > t t f tM3 > t f t f tFigure 2: The mcms of KBThere is no maximal recovered set of KB that en-tails all the properties of Tweety that one would ex-pect to infer (i.e., that it is a bird, a penguin, andcannot y). We claim, however, that this state ofthings is due to the fact that the actual representa-tion of the problem does not properly reect the intu-itive understanding of this particular puzzle: Whileaccording to the above representation every rule isgiven the same importance, usually an explicit data(i.e. rules with empty bodies) is assigned a higher pri-ority than other inference rules. Also, the �rst rulerepresents default assumption, and unlike the otherrules it has exceptions, so it should be given a lowerpriority. In other words, we claim that a more accu-rate representation of this problem should be accom-panied with some mechanism for making precedencesamong the rules. In our case this is a ranking functionr. A possible ranking of KB is r(b(T )) = r(b(F )) =r(p(T ))=1, r(p(x)!:f(x))=r(p(x)!b(x))=2, andr(b(x)!f(x))=3. By Proposition 3.10 below it fol-lows that the optimal recovery level w.r.t. either �cior �cc is i=2, and KB2=fb(T ); b(F ); p(T ); p(x)!:f(x); p(x)! b(x)g. The most consistent models ofKB2 are given in the table of Figure 3.mcm b(T ) p(T ) f(T ) b(F ) p(F ) f(F )M21 t t f t f fM22 t t f t f tM23 t t f t f ?M24 t t f t t fM25 t t f t ? fFigure 3: The mcms of KB2It follows that R2= fSM22 (KB)g, so the recoveredknowledge-base of KB is the following:SM22 (KB) = KBU n fb(T )! f(T )g:This recovered knowledge-base is associated withM22 , which coincides with the expected conclusions:Tweety is a bird, a penguin, and cannot y, whileFred is a bird that can y and it is not a penguin.KBU n fb(T )! f(T )g is also the (single) recoveredknowledge-base obtained when taking �sc or �si asthe preference order, or when the ranking is the fol-lowing: r(b(T )) = r(b(F )) = r(p(T )) = r(p(x) !

:f(x)) = r(p(x) ! b(x)) = 1, r(b(x) ! f(x)) = 2.2We conclude with some basic properties of recov-ered knowledge-bases:Proposition 3.9 Every recovered knowledge-base Sof KB has a model that assigns classical values to theelement of A(S).Proof: Every recovered knowledge-base S is of theform S�(KB), where 8p2A(S) �(p)2ft; f;?g. Con-sider the valuation �0 s.t. �0(p)=�(p) if �(p)2ft; fgand �0(p)= t otherwise. By an induction on the struc-ture of the clauses  2 S it is easy to verify that�0( ) 2 ft;>g whenever �( ) 2 ft;>g, thus �0 is amodel of S. 2Proposition 3.10 Let either �cc or �ci be the pref-erential relation de�ned on the sets Rj , and supposethat KB1 is consistent. Then:a) The optimal recovery level is the maximal rank is.t. KBi is consistent.b) Every recovered knowledge-base of KB is associ-ated with a classical model on A(KB).Proof: By the assumption on KB1, there existsat least one Rj for which KBj is consistent. Ev-ery such Rj is maximal w.r.t both <cc and <ci,since by Proposition 2.6, mcm(KBj ) consists onlyof consistent models of KBj , which can be modi-�ed to classical models in the same way as in theproof of Proposition 3.9. These models can be ex-tended to classical valuations �jk on A(KB) by as-signing classical values to every atom in A(KBnKBj ).Each valuation �jk has a set S�jk (KB) with which itis associated, and for every p 2 A(KB), either p or:p is in fl 2 L(KB) j S�jk(KB) j= l; S�jk(KB) 6j= lg.Therefore, S�jk(KB) 2 Rj , and so part (b) of theclaim obtains. On the other hand, if KBm is in-consistent, then for every model M of KBm thereis a pM 2 A(KBj) s.t. M (pM) = >. Thus, ifSM (KB)2Rm, then neither pM nor :pM is in the setfl 2 L(KB) j SM (KB) j= l; SM (KB) 6j= lg. ThereforeRj >cc Rm and Rj >ci Rm. 2Proposition 3.11 Let i be the optimal recoverylevel of KB and S { a recovered knowledge-base ofKB. Then:a) S\KBi is a maximal recovered set of KBi.b) There is an M i2mcm(KBi) s.t. S=SMi (KB).c) If KB1 is consistent, and the preference relation iseither �cc or �ci, then S =KBi [ SMi(KB nKBi),where i is the maximal rank s.t. KBi is consistent,and M i is a (most) consistent model of KBi.Proof: (a) and (b) immediately follow from Propo-sition 2.11 and De�nitions 3.4, 3.6. Part (c) follows



from (b) and Proposition 3.10, since S=SMi(KBi)[SMi (KBnKBi)=KBi [ SMi (KBnKBi). 2Each recovered knowledge-base is therefore a max-imal set that is consistent (in the sense of De�nition2.5), and preserves the semantics of the clauses withthe i-highest priorities (where i is an optimal recov-ery level w.r.t. some pre-de�ned criteria). To themaximal recovered set of KBi we add clauses withlower priority than the optimal recovery level, pro-vided that they are still true in the intended seman-tics and the consistency of the recovered set is notdamaged.4Corollary 3.12 Let S be a recovered knowledge-base of KB, and i { the optimal recovery level ofKB. Then:a) If S j= then S 6j=: .b) If  ;: 2KB and r( )� i then : 62S.c) Under the conditions of Proposition 3.10, if  2KBi there is no recovered knowledge-base S0 of KBs.t. S0 j=: .Proof: (a) { Otherwise S cannot be consistent. (b){ If  2S then from (a), : 62S. Suppose, then, that 62S. By 3.11(b) S=SMi(KB). Since  2KBi nec-essarily A( )\IncMi (KB) 6=;, and so : 62S as well.(c) { Otherwise, by 3.11(b) S0Mi(KB) j= : , whereM i2mcm(KBi). Thus M i( )=>, and so there ex-ists some p2A( ) s.t. M i(p) => { a contradictionto 3.10(a). 24 ConclusionWe introduced a nonmonotonic and paraconsistent [7]method that copes with inconsistency in prioritizedknowledge-bases. This approach preserves the seman-tics of the most valuable information of the originalknowledge-base. Clauses with lower priorities are alsoadded to the recovered knowledge-base provided thatit remains consistent and the correspondence to thesemantics of the data with higher priority is kept.This method might be applied in various applica-tions, among which are satisfactions of theories withprioritized constraints, systems that reason with pri-oritized default rules, knowledge-bases with multiplesources that have di�erent priorities, diagnostic sys-tems that analyze devices with di�erent reliability,etc.4In Example 3.8, for instance, b(x)! f(x) is not part ofthe recovered knowledge-base, but the instance b(F )! f(F )is included in it, since this instance is true in the intendedsemantics, and its addition still preserves the consistency ofthe recovered knowledge-base.
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