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Abstract. We introduce a modular framework for formalizing reason-
ing with incomplete and inconsistent information. This framework is
composed of non-deterministic semantic structures and distance-based
considerations. The combination of these two principles leads to a va-
riety of entailment relations that can be used for reasoning about non-
deterministic phenomena and are inconsistency-tolerant. We investigate
the basic properties of these entailments and demonstrate their useful-
ness in the context of model-based diagnostic systems.

1 Introduction

In this paper, we propose a general framework for representing and reasoning
with uncertain information and demonstrate this in the context of model-based
diagnostic systems. Our framework consists of two main ingredients:

e Semantic structures for describing incompleteness: The principle of truth func-
tionality, according to which the truth-value of a complex formula is uniquely
determined by the truth-values of its subformulas, is in an obvious conflict with
non-deterministic phenomena and other unpredictable situations in everyday life.
To handle this, Avron and Lev [6] introduced non-deterministic matrices (Nma-
trices), where the value of a complex formula can be chosen non-deterministically
out of a certain nonempty set of options. This idea turns out to be very useful for
providing semantics to logics that handle uncertainty (see [4]). In this paper, we
incorporate this idea and consider some additional types of (non-determinisitic)
semantic structures for describing incompleteness.

e Distance-based considerations for handling inconsistency: Logics induced by
Nmatrices are inconsistency-intolerant: whenever a theory has no models in a
structure, everything follows from it, and so it becomes useless. To cope with
this, we incorporate distance-based reasoning, a common technique for reflecting
the principle of minimal change in different scenarios where information is dy-
namically evolving, such as belief revision, data-source mediators, and decision
making in the context of social choice theory. Unlike ‘standard’ semantics, in
which conclusions are drawn according to the models of the premises, reasoning



in distance-based semantics is based on the valuations that are ‘as close as pos-
sible’ to the premises, according to a pre-defined metric. As this set of valuations
is never empty, reasoning with inconsistent set of premises is not trivialized.

Ezxample 1. Consider the circuit that is represented in Figure 1.
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Fig. 1. The circuit of Example 1.

Here, partial information (e.g., when it is unknown whether the ?-gate is an AND
or an OR gate) may handled by non-deterministic semantics (see Example 7),
and conflicting evidences (e.g., that the input line iny and the output line out;
always have opposite values) can be handled by the incorporation of distance-
based considerations (see Example 12).

In [2] Nmatrices were first combined with distance considerations and some
properties of the resulting framework were investigated. This paper generalizes
these results in two aspects: First, we incorporate new types of structures into the
framework and study the relations among them. Secondly, we define new meth-
ods of constructing distance functions, tailored specifically for non-deterministic
semantics, some of them are a conservative extension of well-known distances
used in the classical case. The robustness of what is obtained for reasoning with
uncertainty is demonstrated in the context of model-based diagnosis.

2 Semantic Structures for Incomplete Data

2.1 Preliminaries

Below, £ denotes a propositional language with a set W, = {4, ¢, ...} of well-
formed formulas. Atoms = {p,q,r ...} are the atomic formulas in W,. A theory
I' is a finite set of formulas in W,. Atoms(I") and SF(I") denote, respectively,
the atoms appearing in the formulas of I', and the subformulas of I.

Given a propositional language £, a propositional logic is a pair (£, ), where
I is a consequence relation for £, as defined below:

Definition 1. A (Tarskian) consequence relation for £ is a binary relation +
between sets of formulas in W, and formulas in W,, satisfying:

Reflexivity: if¢ € I' then I' 4.

Monotonicity: if I'=1) and I' C I, then I + 1.

Transitivity: if ' and I',9 F ¢ then I, I’ F .



2.2 Matrices, Nmatrices and Their Families

We start with the simplest semantic structures used for defining logics: many-
valued (deterministic) matrices (see, e.g., [12] and [14]).

Definition 2. A (deterministic) matriz for £ is a tuple M = (V, D, O), where
V is a non-empty set of truth values, D is a non-empty proper subset of V, called
the designated elements of V, and for every n-ary connective ¢ of £, O includes
an n-ary function S : V" — V.

A matrix M induces the usual semantic notions: An M-valuation for £
is a function v: W, — V such that for each n-ary connective ¢ of £ and every
Y1y ey P € We, V(01 ., 0n)) = 3(v(¥1), - . ., v(1h,)). We denote by A%, the
set of all the M-valuations of £.*> A valuation v € A}, is an M-model of ¢ (or
M-satisfies 1), if it belongs to modg(¢) = {v € A3, | v(v) € D}. A formula o) is
M-satisfiable if mods, (1) # 0 and it is an M-tautology if mody, (1) = A3,. The
M-models of a theory I" are the elements of the set mod3,(I") = Nyermods, ().

Definition 3. The relation 5, that is induced by a matrix M is defined for
every theory I" and formula 1) € W, by I' 3, 1 if mod},(I") € mod3(1)).

It is well-known that -5  is a consequence relation in the sense of Definition 1.

Deterministic matrices do not always faithfully represent incompleteness.
This brings us to the second type of structures, called non-deterministic matri-
ces, where the truth-value of a complex formula is chosen non-deterministically
out of a set of options.

Definition 4. [6] A non-deterministic matriz (Nmatrix) for £ is a tuple N' =
(V, D, O), where V is a non-empty set of truth values, D is a non-empty proper
subset of V, and for every n-ary connective ¢ of £, O includes an n-ary function
vV — 2V )\ {0}

Ezample 2. Consider an AND-gate, ¢1, that operates correctly when its inputs
have the same value and is unpredictable otherwise, and another gate, ¢o, that
operates correctly, but it is not known whether its is an OR or a XOR gate. These
gates may described by the following non-deterministic truth-tables:

5 | t f Sy | ot | f
t | {t [{tf} t [ {uf} | {t
fo{ef ] {f} fop{er [H{f}

Non-determinism can be incorporated into the truth-tables of the connectives
by either a dynamic [6] or a static [5] approach, as defined below.

Definition 5. Let A/ be an Nmatrix for £.

3 The ‘s’, standing for ‘static’ semantics, is for uniformity with later notations.



— A dynamic N -valuation is a function v: W, —V that satisfies the following
condition for every n-ary connective ¢ of £ and every 1,...,1%, € W,:

v(o(t1,. .., n)) €n (W), ..., v(thy,)). (1)

— A static N-valuation is a function v : Wy — V that satisfies condition (1)
and the following compositionality principle: for every n-ary connective ¢ of

L and every ¥, ..., 0n, ¢1,...,0n € Wr,

fV1<i<nuv()=v(¢), then v(o(tr,...,vn)) = v(o(¢1,...¢n)). (2)

We denote by A, the space of the dynamic A-valuations and by A§. the static
N-valuations. Clearly, A3, C Ag,.

In both of the semantics considered above, the truth-value v(o(¢1,...,%y,))
assigned to the formula o(41,...,1,) is selected non-deterministically from a
set of possible truth-values S(v(¢1),...,v(¢y)). In the dynamic approach this
selection is made separately, independently for each tuple (i1,...,1,), and
v(i1),...,v(¢y,) do not uniquely determine v(o(¢1,...,1,)). In the static se-
mantics this choice is made globally, and so the interpretation of ¢ is a function.

Note 1. In ordinary (deterministic) matrices each ¢ is a function having singleton
values only (thus it can be treated as a function & : V" — V). In this case the
sets of static and dynamic valuations coincide, as we have full determinism.

Example 3. Consider the circuit of Figure 2.

in44>
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Fig. 2. A circuit of Example 3.

If both of the ¢ components implement the same Boolean function, which
is unknown to the reasoner, the static approach would be more appropriate. In
this case, for instance, whenever the inputs of these components are the same
(that is, iny = ing and ing = iny), the outputs will be the same as well, and so
the output line (out) of the circuit will be turned off.

If, in addition, each one of these components has its own unpredictable be-
haviour, the dynamic semantics would be more appropriate. In this case, for
instance, the outputs of the ¢-components need not be the same for the same
inputs, and so the value of the circuit’s output line cannot be predicted either.*

4 Also, in Example 2, the situation represented by &; is more suitable for dynamic
semantics, while the one represented by ¢z is more adequate for the static semantics.



Definition 6. Let A be an Nmatrix for £.

— The dynamic models of ¢ and I" are defined, respectively, by:
mody (V) = {v € Ay | v(¢) € D} and mody, (I") = Nyer modg,(1)).

— The consequence relation induced by the dynamic semantics of A is
I' =3 4 if modg,(I') € modg(v).

— The corresponding definitions for the static semantics are defined similarly,
replacing d in the previous items by s.

Again, it is easily verified that f, and 5, are consequence relations for £.

Note 2. Tt is important to observe that by Note 1, if A is a deterministic Nmatrix
and M is its corresponding (standard) matrix, it holds that 3 = F§- = 3,

Ezample 4. Consider again the circuit of Figure 2. The theory below represents
this circuit and the assumption that both of the ¢-gates have the same input:

I = {out < (iny oing) @ (ing o iny), iny < ing, ing < ing }

Suppose now that A is a two-valued non-deterministic matrix in which < and @
have the standard interpretations for double-arrow and xor, and ¢ has the truth-
table of ¢9 in Example 2. Denote by t and f the propositional constants that
are always assigned the truth-values t and f, respectively. Then I" I, out « f,
while I" I/}, out — f (consider a valuation v € Ag; such that v(out) = v(in;) =t
for 1 <7 <4, and v(iny ¢ing) =t but v(ing ¢iny) = f; see also Example 3).

A natural question to ask at this stage is whether logics induced by non-
deterministic matrices are representable by (finite) deterministic matrices. The
answer is negative for dynamic semantics (Proposition 1) and is positive for static
semantics (Proposition 2). To show this, we use yet another type of semantic
structures, which is a simplification of the notion of a family of matrices of [14].

Definition 7. A family of matrices is a finite set of deterministic matrices F =
{My,..., Mg}, where M; = (V,D,0;) for all 1 <1i < k. An F-valuation is any
M-valuation for i € {1,...,k}. We denote A% = Uj<;<i A3, . The relation -3
that is induced by F is defined by: I' -3 v if I" -3 4 for every M € F.

Ezample 5. The circuit of Figure 1 may be represented as follows:
I = {out1 Aad (in1 A ing) V il"ll , outy < (in1 A ing) <>in3}.

Suppose that the connectives in I” are interpreted by a family F of matrices with
the standard meanings of A, V, and «+, and the following interpretations for ¢:

|t f So| t | f S|t | f Sql t | f
t|t t|t]f tjt]t t|t]f
t|f flflf fIf|f fle|f

—| e+ | Ot

In this case we have, for instance, that I" F% out; < iny, but I" /3 outy < iny
(a counter-model assigns f to ing, t to in3, t to outy, and interprets ¢ by &1).



Lemma 1. For a family F of matrices, denote mods (1) = {v € A3 | v(¢)) € D}
and modi-(I") = Nyer mods(y). Then I' 5 iff mods(I") C mods-(¢). °

Corollary 1. For a family F of matrices, 3 is a consequence relation for L.

The next proposition, generalizing [6, Theorem 3.4], shows that dynamic
Nmatrices characterize logics that are not characterizable by ordinary matrices.

Proposition 1. Let N be a two-valued Nmatriz with at least one proper non-
deterministic operation. Then there is no family of matrices F such that -5, =F5-.

In static semantics the situation is different, as reasoning with 5, can be
simulated by a family of ordinary matrices. To show this, we need the following;:

Definition 8. [4] Let Ny = (V1,D1,01) and Ny = (Va, Ds, O2) be Nmatrices
for £. N is called a simple refinement of No if V1 = Vs, D1 = Dy, and Su, (T) C
37, (T) for every n-ary connective ¢ of £ and every tuple T € V™.

Intuitively, an Nmatrix refines another Nmatrix if the former is more re-
stricted than the latter in the non-deterministic choices of its operators.

Definition 9. For an Nmatrix N, the family of matrices -\ is the set of all the
deterministic matrices that are simple refinements of A'. A family of matrices F
for L is called Cartesian, if there is some Nmatrix N for £, such that F = 3N,

Ezample 6. Consider the Nmatrix A for describing ¢; in Example 2. Then A
is the (Cartesian) family of the four deterministic matrices in Example 5.

Proposition 2. For every Nmatriz N it holds that -3, = F5, 5.

Proposition 2 shows that Nmatrices are representable by Cartesian families
of deterministic matrices. Yet, there are useful families that are not Cartesian:

Example 7. Suppose that a gate ¢ is either an AND or an OR gate, but it is not
known which one. This situation cannot be represented by truth table of &; in
Example 2, as in both static and dynamic semantics the two choices for &;(t,f)
are completely independent of the choices for &;(f,t). What we need is a more
precise representation that makes choices between two deterministic matrices,
each one of which represents a possible behaviour of the unknown gate. Thus,
among the four matrices of Example 5, only the first two faithfully describe ©:

S|t f So |t | f
t t|t|f
FIe[f  F[f[f

]::

‘We now combine the concepts of Nmatrices and of their families.

5 Due to a lack of space proofs are omitted. For full proofs see the longer version of
the paper in http://www2.mta.ac.il/~oarieli/, or ask the first author.



Definition 10. A family of Nmatrices is a finite set G = {N7,...,Ni} of Nma-
trices, where N; = (V,D,0;) for all 1 < i < k.5 A G-valuation is any N;-
valuation for i € {1,...,k}. For x € {d,s}, we denote A3 = Uj<;<n A5, and
define: I' F3 o if I 5 o for every N € G.

Lemma 2. Let G = {Ny,..., Ny} be a family of Nmatrices. For x € {d,s},
denote modg(¢) = {v € A% | v(¢) € D} and modi(I') = Nyer modj(1p). Then
g iff modg(I') € modg (V).

Corollary 2. Both of F§ and --§ are consequence relations for L.

Concerning the simulation of F by other consequence relations, note that:

(a) In the dynamic case we have already seen that even logics induced by a single
Nmatrix cannot be simulated by a family of ordinary matrices.

(b) In the static case, logics induced by a family of Nmatrices can be simulated
using a family of ordinary matrices:

Proposition 3. For every family of Nmatrices G there is a family of matrices
F such that F§ =%

2.3 Hierarchy of the Two-Valued Semantic Structures

In the rest of the paper we focus on the two-valued case, using a language £ that
includes the propositional constants t and f. We shall also use a meta-variable 97t
that ranges over the two-valued structures defined above, and the metavariable
x that ranges over {s,d}, denoting the restriction on valuations. Accordingly,
A%, and mod§, (1) denote, respectively, the relevant space of valuations and the
models of ¥. The following conventions will be useful in what follows:

— An M-logic is a logic that is induced by a (standard) two-valued matrix. The
class of M-logics is denoted by M.

— An SN-logic (resp., a DN-logic) is a logic based on a static (resp., a dynamic)
two-valued Nmatrix. The class of SN-logics (DN-logics) is denoted SN (DN).

— An F-logic is a logic that is induced by a family of two-valued matrices. The
corresponding class of F-logics is denoted by F.

— An SG-logic (DG-logic) is a logic based on a family of static (dynamic) two-
valued Nmatrices. The class of SG-logics (DG-logics) is denoted SG (DG).

For relating the classes of logics above, we need the following proposition.

Proposition 4. Let F be a family of matrices for L with standard negation and
conjunction. Then L = (L,+5) is an SN-logic iff F is Cartesian.

Ezample 8. The family of matrices F in Example 7 (enriched with classical
negation and conjunction) is not Cartesian and so, by Propositions 1 and 4, it
is not representable by a (finite) non-deterministic matrix.

Theorem 1. In the notations above, we have that: (a) M = DNNSN, (b) SN C
F, (c) F ¢ DN, (d) SG =F, and (e¢) DN C DG

A graphic representation of Theorem 1 is given in Figure 3.

5 To the best of our knowledge, these structures have not been considered yet.



Fig. 3. Relations among the different classes of logics

3 Distance Semantics for Inconsistent Data

A major drawback of the logics considered above is that they do not tolerate
inconsistency properly. Indeed, if I" is not 91-consistent, then I" F§; v for every
1. To overcome this, we incorporate distance-based considerations. The idea is
simply to define a distance-like measurement between valuations and theories,
and for drawing conclusions, to consider the valuations that are ‘closest’ to the
premises. This intuition is formalized in [2] for deterministic matrices and for
Nmatrices under two-valued dynamic semantics only. It can also be viewed as a
kind of a preferential semantics [13]. Below, we extend this method to all the se-
mantic structures of Section 2. We also introduce a new method for constructing
distances, which allows us to define a wide range of distance-based entailments.

3.1 Distances Between Valuations

Definition 11. A pseudo-distance on a set S is a total function d : S x S — Rt
that is symmetric (V v, € S d(v, n) = d(u,v)) and preserves identity (V v, u €
S d(v, ) = 0iff v = ). A pseudo-distance d is a distance (metric) on S if it also
satisfies the has the triangular inequality (Vv, u,o € S d(v,0) < d(v, u)+d(p, 0)).

Ezxample 9. The following functions are two common distances on the space of
the two-valued valuations.

- The drastic distance: dy (v, n) =0 if v = p, otherwise dy (v, ) = 1.
- The Hamming distance: dg(v,p) = |{p € Atoms | v(p) # u(p)}|.”
These distances can be applied on any space of static valuations (see also Note 3

below).

" Note that this definition assumes a finite number of atomic formulas in the language.



In the context of non-deterministic semantics, one needs to be more cautious
in defining distances, as two dynamic valuations can agree on all the atoms of a
complex formula, but still assign two different values to that formula. Therefore,
complex formulas should also be taken into account in the distance definitions,
but there are infinitely many of them to consider. To handle this, we restrict the
distance computations to some context, i.e., to a certain set of relevant formulas.®

Definition 12. A context C is a finite set of formulas closed under subformulas.
The restriction to C of v € A%, is a valuation v*¢ on C, such that v'¢(y)) = v(¢)
for every ¢ in C. The restriction to C of A%, is the set A" = {v'C | v € A%, }.

Distances between valuations are now defined as follows:

Definition 13. Let 90t be a semantic structure, x € {d, s}, and d a function on
Usczsrr)irewey Ag}tc X Agyltc-

e The restriction of d to C is a function d' s.t. Vv, ,ueAgjltc, d'C(v, u) = d(v, ).
e d is a generic (pseudo) distance on A%, if for every context C, d'C is a (pseudo)
distance on A%C.

General Constructions of Generic Distances

We now introduce a general method of constructing generic distances. These
constructions include the functions of Example 9 as particular cases of generic
distances, restricted to the context C = Atoms (see Note 3 and Proposition 6).

Definition 14. A numeric aggregation function is a complete mapping f from
multisets of real numbers to real numbers, such that: (a) f is non-decreasing in
the values of the elements of its argument, (b) f({z1,...,2,}) =0iff z; = 29 =
...xp =0, and (¢) f({z}) =z for every z € R.

As we aggregate non-negative (distance) values, functions that meet the con-
ditions in Definition 14 are, e.g., summation, average, and the maximum.

Definition 15. Let 91 be a (two-valued) structure, C a context, and x € {d, s}.
For every ¢ € C, define the function >?: A’E‘;{C X A’;}TC — {0,1} as follows:
e for vy, ve € {t,f}, let V(v1,v2) = 0 if v1 = v, otherwise V(v1,v2) = 1.
e for an atomic formula p, let > (v, u) = V(v(p), u(p))
e for a formula ¢ = (11, ...,1,), define

) { L) # ) but Vi vl) = u),

> (v, p) =
0 otherwise.

For an aggregation g, define the following functions from A%C X A%C to RT:

o di (v.11) = g({V(v(¥), u(®)) | ¥ € C}),
o diSo(v, i) = g({¥(v, ) | ¥ € C).

8 Thus, unlike [1,8] and other frameworks that use distances as those of Example 9,
we will not need the rather restricting assumption that the number of atoms in the
language is finite.



Proposition 5. Both of ding and diig are pseudo-distances on A%C.

The difference between dvag and diS ba,g is that while dyy compares truth as-
signments, dyq g compares (non-deterministic) choices (see also Example 10).

Note 8. The pseudo distances defined above generalize those of Example 9:

o Both dymax and dwqmax are natural generalizations of diyr. Moreover, for any

= d9™ (v, 1) = d¥iean (v, 1)

e Both dy » and diq x are natural generalizations of dg. Moreover, for any
v, i1 € A3y and finite set Atoms, dg (v, ) = dlvé;’ms(y, W) = diﬁ)t;ms(y, ).

v, b € Afy; and finite set Atoms, dy (v, p) =

Proposition 6. Ifg({x1,...,2,,0}) = g({x1,...,2n}) forallzy,...,2,€{0,1},

then di$ (v, 1) = dlAtoms(C) (v, ).

By Proposition 5, generic pseudo distances may be constructed as follows:
Proposition 7. For an aggregation function g, define the following functions:
g (v, 1) = g({V (W), () | v € C), (3)
o, (v, 1) = g ({2 (v, ) | ¢ € C}). (4)

Then dv,g and dw g are generic pseudo distances on Myy.

3.2 Distance-based Entailments
We now use the distances between valuations for defining entailments relations.

Definition 16. A (semantical) setting for £ is a tuple S = (9, (d, x), f), where
9N is a structure, d is a generic pseudo distance on A}y, for some x € {d, s}, and
f is an aggregation function.

A setting identifies the underlying semantics, and can be used for measuring
the correspondence between valuations and theories.

Definition 17. Given a setting S = (M, (d, x), f) define

Ay — LW ) [ € modiy ()} i modgy (44:) # 0,
_ (V7 1/)1) - 1+ maX{dlC(M{C,/Léc) | 1, o € A% } otherwise.
= 03 T) = S0 ), d (0, ),

The intuition here is to measure how ‘close’ a valuation is to satisfying a
formula and a theory. To be faithful to this intuition, we are interested only
in contexts where the distance between a formula and its model is zero, and is
strictly positive otherwise.

Proposition 8. Let M be a semantic structure, C a context, and x € {d,s}.
e If Atoms()) CC, then d'“(v,1) = 0 iff v € modgy ().
o If SF(1)) CC, then d'(v,v)) = 0 iff v € moddy (¢).



It follows that the most appropriate contexts to use are the following:

Definition 18. Given a setting S = (M, (d, x), f), denote:

(I = Atoms(I) ifx=s,
() = SF(I") if x =d.

Definition 19. The most plausible valuations of I' with respect to a semantic
setting S = (M, (d, x), f) are the elements of the following set:

{ve Ay | Vue tyy 005w, 1) <5,G " (n. 1)} i T #0,

Ay otherwise.

AS(F):{

Ezxample 10. Let N' be an Nmatrix that interprets negation in the standard
way, and ¢ according to ¢; in Example 2. Then I' = {p,q,~(p < q)} is not N-
satisfiable, and mod4,(I") = (0. Consider now the settings S; = (N, (dv,x,d), X)
and S; = (N, (dg,x,d), X), where dy 5 and diq 5> are, respectively, the generic
distances defined in (3) and (4). Then:

p | a |poq|-(poglds(vi )05 (v, T)
|| t |t t f 3 1
1] t f t f 3 2
1% t f f t 1 1
V4 f t t f 3 2
vs| f t f t 1 1
vel|l £ | f f t 2 2

and so As, (I') = {vs,vs} and As, (I') = {v1,v3,v5}.

Proposition 9. For every S = (M, (d,x), f) and ', As(I") is nonempty. If I’
is M-satisfiable, As(I") = modiy (I").

Next, we formalize the idea that, according distance-based entailments, con-
clusions should follow from all of the most plausible valuations of the premises.

Definition 20. For S = (M, (d,x), f), denote: I pvs ¢ if Ag(I") C modiy ()
or I' = {¢y}.

Ezample 11. In Example 10, under the standard interpretation of disjunction,
I' s, 7pV —q while I' [fs, =p V —g.

Ezxample 12. Consider the F-consistent theory I' of Example 5 that represents
the circuit of Figure 1. Learning that lines in; and out; always have opposite
values, the revised theory, I'" = I"'U{out; < —iny }, is not F-satisfiable anymore,
so Fx is useless for making plausible conclusions from I". However, using the
setting S = (F, (dy,z,s), X), or § = (F, (dw, 5, s), X, it can be verified that:

e The assertion out; < (iny Aing) V iny is falsified by some most plausible
valuations of I, and so, while I" -z out; < iny, we have IV [£s out; < inj.

e The assertion outy < (iny Aing) ¢ ing is validated by all the most plausible
valuations of I, and so, despite the F-inconsistency of I, the information
about the relation between outy and iny, ino may be retained.



The distance-based entailments defined above generalize the usual methods
for distance-based reasoning in the context of deterministic matrices. This in-
cludes, among others, the operators in [8,10, 11] and the distance-based entail-
ments for deterministic matrices in [1, 3]. The entailment |~s for Nmatrices and
dynamic valuations is studied in [2]. To the best of our knowledge, distance en-
tailments for Nmatrices and static valuations, and entailments based on families
of matrices and (static or dynamic) Nmatrices, have not been considered before.

Theorem 2. Let S = (M, (d,x), f). For every M-consistent theory I, it holds
that I s v iff I' Fiy .

Theorem 3. Let S = (M, (d,x), f) be a setting in which f is hereditary.® Then
I~s is a cautious consequence relation, i.e., it has the following properties:

Cautious Reflexivity: P os
Cautious Monotonicity [9]: if I’ vs ¥ and I |~s ¢, then Iy pos .
Cautious Transitivity [7):  if I s ¥ and Ty s @, then I s ¢.
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9 An aggregation function f is hereditary, if f({z1,...,2,}) < f({y1,...,yn}) implies
that f({z1,...,2n,2}) < f{y1,---,Yn,2}).



