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Abstract. We introduce a uniform approach of representing a
variety of paraconsistent non-monotonic formalisms by quantified
Boolean formulae (QBFs) in the context of four-valued semantics.
This framework provides a useful platform for capturing, ina simple
and natural way, a wide range of methods for preferential reasoning.
Off-the-shelf QBF solvers may therefore be incorporated for simu-
lating the corresponding consequence relations.

1 INTRODUCTION

Preferential reasoningwas introduced by McCarthy [16] and later
by Shoham [19] as a generalization of the notion of circumscrip-
tion. It became a common method behind many general patternsof
non-monotonic reasoning [15], and it is often used as a technique
for defining consequence relations that areparaconsistent, i.e., for-
malisms in which inconsistent sets of premises do not entailany well-
formed formula whatsoever. The essential idea behind preferential
reasoning is that only a subset of ‘preferred’ models of a given the-
ory should be taken into consideration for making inferences from
that theory. The relevant models are determined by pre-defined con-
ditions, the satisfaction of which yields the exact kind of preference
one wants to work with.

In this paper we introduce a uniform setting for representing a va-
riety of preferential paraconsistent consequence relations. Inferences
are expressed by what we callsigned theories, and preferences are
represented by quantified Boolean formulae (QBFs) in the context
of four-valued semantics. Thisrepresentionplatform yields an easy
way to handle thecomputationalaspects of the underlying conse-
quence relations; by incorporating off-the-shelf computational mod-
els for processing QBFs, such asQuBE [12] andDECIDE [18],2 it
is possible to simulate a variety of non-monotonic and paraconsis-
tent formalisms, such as Priest’s LPm [17], Besnard and Schaub’s
inference relations|=m and|=n [7, 8], various bilattice-based point-
wise preferential relations [2] and formula-preferentialrelations [4],
consequence relations (such as|=4

c) for reasoning with graded un-
certainty [1], and some other adaptive logics (e.g., Batens’ ACLuNs2
[5]).3

2 FOUR-VALUED SEMANTICS

The formalism that we consider here is based on four-valued seman-
tics and a corresponding four-valued algebraic structure (denoted by
FOUR), introduced by Belnap [6]. This structure is composed of
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four elementsFOUR = {t, f,⊥,⊤}, arranged in two lattice struc-
tures: one is the standard logical partial order,≤t, which intuitively
reflects differences in the ‘measure of truth’ that every value rep-
resents. According to this order,f is the minimal element,t is the
maximal one, and the other two elements⊥ (‘partial information’)
and⊤ (‘contradictory information’) are intermediate values that are
incomparable.({t, f,⊤,⊥},≤t) is a distributive lattice with an or-
der reversing involution¬, for which¬⊤=⊤ and¬⊥=⊥. We shall
denote the meet and the join of this lattice by∧ and∨, respectively.

The other partial order,≤k, is understood (again, intuitively) as
reflecting differences in the amount ofknowledgeor informationthat
each truth value exhibits. Again,({t, f,⊤,⊥},≤k) is a lattice in
which⊥ is the minimal element,⊤ is the maximal element, andt, f
are incomparable.

The elements ofFOUR can be represented by pairs of two-
valued components of the lattice({0, 1}, 0 < 1) as follows: t =
(1, 0), f = (0, 1), ⊤ = (1, 1), ⊥ = (0, 0). One way to intuitively
understand this representation is that a truth value(x, y) of p corre-
sponds to the amountx of belief in p and the amounty of disbelief
in p. The following lemma expresses the partial orders and the basic
operators ofFOUR in terms of this representation by pairs.

Lemma 1 [11] Letx, y, xi, yi ∈ {0, 1} (i = 1, 2). Then:

(x1, y1) ≤t (x2, y2) iff x1≤x2 andy1≥y2,
(x1, y1) ≤k (x2, y2) iff x1≤x2 andy1≤y2.

(x1, y1) ∨ (x2, y2) = (x1 ∨ x2, y1 ∧ y2),
(x1, y1) ∧ (x2, y2) = (x1 ∧ x2, y1 ∨ y2),
¬(x, y) = (y, x).

The next step in usingFOUR for reasoning is to choose its set
of designatedelements. The obvious choice isD = {t,⊤}, since
both values intuitively represent formulae ‘known to be true’. The
setD has the property thata∧b∈D iff both a andb are inD, while
a∨b∈D iff at least one ofa or b is inD. From this point the various
semantic notions are defined onFOUR as natural generalizations
of similar classical notions: the underlying propositional language
consists of an alphabetΣ of propositional variables, propositional
constantst andf, and logical symbols¬,∧,∨. We denote elements
in Σ by p, q, r, formulae byψ, φ, and sets of formulae byT , ∆.
The set of all atoms occurring inψ is denoted byA(ψ), andA(T )=
{A(ψ) |ψ ∈ T }. Now, avaluationν is a function that assigns a truth
value fromFOUR to each atomic formula, andν(t) = t, ν(f) = f .
Any valuation is extended to complex formulae in the obviousway.
We will sometimes writeψ : b∈ ν instead ofν(ψ) = b. A valuation
ν satisfiesψ iff ν(ψ)∈D. A valuation that satisfies every formula in
T is amodelof T . The set of models ofT is denoted bymod(T ).

Note that in the four-valued context there are no tautologies in the
propositional language defined above. Thus, e.g., excludedmiddle is



not valid, asν(p ∨ ¬p) = ⊥ whenν(p) = ⊥. This implies that
the definition of the material implicationψ → φ as¬ψ ∨ φ is not
adequate for representing entailments. Instead, we use a different im-
plication connective, defined bya ⊃ b = t if a 6∈ D, anda ⊃ b = b
otherwise (see Footnote 6 below as well as references [2, 8] for some
justifications and other applications of this definition).

Note thata ⊃ b = a → b whena, b ∈ {t, f}, and so the new
connective is a generalization of the material implication. The propo-
sitional language extended with⊃ is denoted byL.

Lemma 2 Letx1, x2, y1, y2 ∈ {0, 1}. Then(x1, y1) ⊃ (x2, y2) =
(¬x1 ∨ x2, x1 ∧ y2).

3 SIGNED FORMULAE

It is obvious that the representation of truth values in terms of pairs of
two-valued components, considered in the previous section, implies
a similar way of representing four-valued valuations; a four-valued
valuation ν may be represented in terms of a pair of two-valued
components(ν1, ν2) by ν(p) = (ν1(p), ν2(p)). So if, for instance,
ν(p)= t, thenν1(p)=1 andν2(p)=0. Note also thatν = (ν1, ν2)
is a four-valued model ofT iff ν1(ψ) = 1 for everyψ ∈ T .

Definition 1 A signed alphabetΣ± is a set that consists of two sym-
bolsp+, p− for each atomp of Σ. The language overΣ± is denoted
byL±. Now,

• The two-valued valuationν2 onΣ± that isinduced by(or associ-
ated with) a four-valued valuationν4 = (ν1, ν2) on Σ, interprets
p+ asν1(p) andp− asν2(p).

• The four-valued valuationν4 onΣ that isinduced bya two-valued
valuationν2 onΣ± is defined, for every atomp ∈ Σ, by ν4(p) =
(ν2(p+), ν2(p−).

In what follows we shall denote byν2 a valuation into{0, 1}, and
by ν4 a valuation into{t, f,⊤,⊥}.

Definition 2 For an atomp ∈ Σ and formulaeψ, φ ∈ L, define the
following formulae inL±:

τ1(p) = p+, τ2(p) = p−,
τ1(¬ψ) = τ2(ψ), τ2(¬ψ) = τ1(ψ),
τ1(ψ ∧ φ) = τ1(ψ) ∧ τ1(φ), τ2(ψ ∧ φ) = τ2(ψ) ∨ τ2(φ),
τ1(ψ ∨ φ) = τ1(ψ) ∨ τ1(φ), τ2(ψ ∨ φ) = τ2(ψ) ∧ τ2(φ),
τ1(ψ ⊃ φ) = ¬τ1(ψ) ∨ τ1(φ), τ2(ψ ⊃ φ) = τ1(ψ) ∧ τ2(φ).

Given a setT of formulae inL, denoteτi(T ) = {τi(ψ) | ψ ∈ T },
for i = 1, 2.

Example 1 Consider, e.g., the formulaψ = ¬(p∨¬q)∨¬q. Then,

τ1(ψ) = τ1(¬(p ∨ ¬q)) ∨ τ1(¬q) = τ2(p ∨ ¬q) ∨ τ2(q)
= (τ2(p) ∧ τ2(¬q)) ∨ τ2(q) = (τ2(p) ∧ τ1(q)) ∨ τ2(q)
= (p− ∧ q+) ∨ q−.

We call τi(ψ) (i = 1, 2) the signed formulaethat are obtained
from ψ. Intuitively, τ1(ψ) indicates whetherψ should be ‘at least
true’ (i.e., it is assignedt or ⊤), and τ2(ψ) indicates ifψ is ‘at
least false’. In other words, ifτ1(ψ) (respectively,τ2(ψ)) is true in
the two-valued context, thenψ (respectively,¬ψ) holds in the four-
valued context (cf. Corollaries 1 and 2).

Proposition 1 Letψ ∈ L. If ν4 is induced byν2 or ν2 is induced by
ν4, thenν4(ψ) =

(

ν2(τ1(ψ)), ν2(τ2(ψ))
)

.

Corollary 1 If ν2 is induced byν4 or ν4 is induced byν2, then for
everyψ ∈ L, ν2(τ1(ψ)) = 1 iff ν4(ψ) ≥k t, andν2(τ2(ψ)) = 1 iff
ν4(ψ) ≥k f .

The last corollary may be re-formulated as follows:

Corollary 2 If ν2 is induced byν4 or ν4 is induced byν2, then for
everyψ∈L, ν4 satisfiesψ iff ν2 satisfiesτ1(ψ), andν4 satisfies¬ψ
iff ν2 satisfiesτ2(ψ).

Definition 3 Forψ∈L define the following signed formulae inL±:

val(ψ, t) = τ1(ψ) ∧ ¬τ2(ψ), val(ψ, f) = ¬τ1(ψ) ∧ τ2(ψ),
val(ψ,⊤) = τ1(ψ) ∧ τ2(ψ), val(ψ,⊥) = ¬τ1(ψ) ∧ ¬τ2(ψ).

Proposition 2 If ν2 is induced byν4, or ν4 is induced byν2, then
for everyψ ∈ L, ν4(ψ) = x iff ν2(val(ψ, x)) = 1.

In terms of models of a given theory, then,

Proposition 3 Let T be a set of formulae inL. There is a one-to-
one correspondence between the four-valued models ofT and the
two-valued models ofτ1(T ); ν4 is a model ofT if the two-valued
valuation that is associated withν4 is a model ofτ1(T ), andν2 is
a model ofτ1(T ) if the four-valued valuation that is associated with
ν2 is a model ofT .

4 SIMULATING BASIC ENTAILMENTS BY
SIGNED FORMULAE

In the following sections we show how signed theories can be used
for simulating paraconsistent reasoning by classical entailment. In
this section we consider basic three- and four-valued entailment rela-
tions, and in Section 5 we show that three- and four-valuedpreferen-
tial entailments can be defined in terms of a classical entailmentfor
the signed theories, augmented with quantified Boolean axioms.

In what follows we denote by|=2 the two-valued classical conse-
quence relation and by|=4 the four-valued counterpart, i.e.,T |=4ψ
if every four-valued model ofT is a four-valued model ofψ. By
Proposition 3 we immediately have the following theorem:

Theorem 1 T |=4 ψ iff τ1(T ) |=2 τ1(ψ).

The theorem above implies, in particular, that one can simulate
four-valued entailment by two-valued entailment. Thus, four-valued
reasoning may be implemented by two-valued theorem proversor
SAT solvers. Moreover, asτ1(T ) is obtained fromT in polynomial
time, Theorem 1 shows that four-valued entailment in the context of
Belnap’s logic ispolynomially reducibleto the classical entailment.4

Example 2 Let T1 = {p, ¬p, q, ¬p ∨ r, ¬q ∨ s}. Thenτ1(T1) =
{p+, p−, q+, p− ∨ r+, q− ∨ s+}. In this case, e.g.,τ1(T1) 6|=

2 r+

andτ1(T1) 6|=
2 s+, so indeedT1 6|=4 r andT1 6|=4 s (consider, e.g.,

a valuation that assigns⊤ to p andq, andf to r ands).5

Consider nowT2 = {p, ¬p, q, p ⊃ r, q ⊃ s}. Here,τ1(T2) =
{p+, p−, q+, ¬p+ ∨ r+, ¬q+ ∨ s+}, and this timeτ1(T2) |=

2 r+

andτ1(T2) |=2 s+. This corresponds to the fact thatT2 |=4 r and
T2 |=4 s.6

4 This is a generalization of a similar result, given in [3], which concerns the
classical fragment ofL (i.e., without the implication connective ‘⊃’).

5 This example also shows that|=4 is aparaconsistentconsequence relation,
since (unlike classical logic), not every formula is a|=4-consequence of a
classically inconsistent theory.

6 This example demonstrates the fact that in the four-valued setting Modus
Ponens and the Deduction Theorem are satisfied by⊃ but not by→. This
is another vindication to the claim that in the four-valued setting the former
connective is more suitable for representing entailment than the latter.



Note also, that if the connective⊃ does not appear inT , then
τ1(T ) is apositive theory(i.e., a theory without negations). In partic-
ular, then, Theorem 1 also implies the following well-knownresult:

Corollary 3 In positive propositional logic (i.e., w.r.t. the{∨,∧}-
fragment of the language),T |=4ψ iff T |=2ψ.

Theorem 1 also shows that some basic three-valued logics canbe
simulated in our framework:

Definition 4 For a setT of formulae inL, denote:

EM(T ) = {p ∨ ¬p | p ∈ A(T )}, (excluded middle)

EFQ(T ) = {(p ∧ ¬p) ⊃ f | p ∈ A(T )}. (ex falso quodlibet)

Corollary 4 LetT be a set of formulae inL andψ a formula inL.

• Let |=3
LP be the entailment relation of Priest’s three-valued logic

LP [17]. Then:T |=3
LP ψ iff τ1(T ∪ EM(T )) |=2 τ1(ψ). 7

• Let |=3
Kl be the entailment relation of Kleene’s three-valued logic

[13]. Then:T |=3
Kl ψ iff τ1(T ∪ EFQ(T )) |=2 τ1(ψ).

5 SIMULATING PREFERENTIAL
ENTAILMENTS BY SIGNED QBFS

5.1 Preferential reasoning

Consider again the theoryT1 = {p, ¬p, q, ¬p∨r, ¬q∨s} of Exam-
ple 2. The fact thatT1 6|=4 r may be intuitively justified here by the
relation of the data aboutr to the inconsistent (thus unreliable) in-
formation aboutp. However, the fact thatT1 6|=4 s seems to be more
controversial in this case. Indeed, the information aboutq ands is
not related to the cause of inconsistency inT1, and so it makes sense
to apply here classically valid rules, such as the Disjunctive Syllo-
gism (applied to{q,¬q ∨ s}), for concludings from T1. In terms of
Batens [5], then,|=4 is notadaptive, since it does not presuppose the
consistency of all the assertions ‘unless and until proven otherwise’.
Note, further, thats is not even a|=4-consequence of theclassically
consistentsubtheory{q,¬q ∨ s}, and so|=4 is strictly weaker than
classical logic (see also [2]). It is well known that Priest’s |=3

LP (see
Corollary 4) has the same drawback.

One way to overcome these shortcomings is to refine the underly-
ing consequence relations, and rather than referring toall the models
of the premises, consider only a subset ofpreferential models[15, 19]
as relevant for making inferences.

Definition 5 Let ν1 andν2 be two valuations,Υ ⊆ FOUR, and∆
a set of formulae inL. ν1 is Υ-preferredthanν2 w.r.t. ∆ (notation:
ν1 ≤∆

Υ ν2), if {ψ ∈ ∆ | ν1(ψ) ∈ Υ} ⊆ {ψ ∈ ∆ | ν2(ψ) ∈ Υ}. We
denote byν1 <∆

Υ ν2 thatν1 ≤∆
Υ ν2 andν2 6≤∆

Υ ν1.

Definition 6 Let T ,∆ be sets of formulae inL, andΥ ⊆ FOUR.
A valuationν ∈ mod(T ) is a≤∆

Υ-minimal model ofT if there is no
µ ∈ mod(T ) s.t.µ <∆

Υ ν.

Intuitively, ∆ represents the ‘abnormal formulae’ (see [5]), and
the purpose is to minimize theΥ-assignments of the elements in
∆. When Υ consists of the designated elements, the order rela-
tions of Definition 5 are calledformula-preferential orders[4]. When
∆ ⊆ Σ, these kinds of orders are calledpointwise-preferential[2, 4],
and their minimal elements are the valuations with minimal set of

7 See [3] and [8, Theorem 2] for other representations of Priest’s logic in
terms of signed formulae.

atoms8 that are assigned values inΥ. If ∆ = T [respectively, if
∆ = A(T )], the purpose is to minimize theΥ-assignments of the
[atomic] formulae that appear in [some formulae of] the premises.

Example 3 Consider again the setT1 = {p, ¬p, q, ¬p∨r, ¬q∨s}
of Example 2, and letΥ = {⊤,⊥}, ∆ = {u ∧ ¬u | u ∈ Σ}. The
≤

A(T1)
Υ -minimal models ofT1 areν1 = {p :⊤, q : t, r : t, s : t} and

ν2 = {p :⊤, q : t, r :f, s : t}. These are also the≤∆
Υ-minimal models

of T1, but onlyν1 is a≤T1

Υ -minimal model ofT1, sinceν2(¬p∨r) =
⊤ while ν1(¬p ∨ r) = t.

Definition 7 Denote byT |=4
(Υ,∆) ψ that every≤∆

Υ-minimal (four-
valued) model ofT is a (four-valued) model ofψ.

Example 3 – continued In the notations of Example 3,T1 |=
4
(Υ,∆) s,

T1 6|=
4
(Υ,∆) r, T1 |=

4
(Υ,A(T1)) s, T1 6|=

4
(Υ,A(T1)) r, T1 |=

4
(Υ,T1) s, and

T1 |=
4
(Υ,T1) r. It follows that these preferential relations are adaptive,

and althoughT1 6|=
4 s, in all of thems is deducible fromT1, as indeed

intuitively expected.

Example 4 Below are some particular cases of the consequence re-
lations of Definition 7, considered elsewhere in the literature:

1. Denote by|=3
LPm the consequence relation of Priest’s three-

valued logic LPm of minimal inconsistency [17].9 Then:
T |=3

LPm ψ iff T ,EM(T ) |=4
({⊤},Σ) ψ. Equivalently,T |=3

LPm

ψ iff T ,EM(T ) |=4
({⊤},∆) ψ, where∆ = {p∧¬p | p ∈ A(T )}.

In fact, if we denote by|=3
({⊤},Σ) the three-valued counterpart

of |=4
({⊤},Σ) (i.e., the same definition, but only w.r.t.{t, f,⊤}),

then for the same∆ it holds thatT |=3
LPm ψ iff T |=3

({⊤},Σ)

ψ iff T |=3
({⊤},∆) ψ. The same pointwise consequence relations

also simulate Besnard and Schaub’s three-valued logic|=m [7, 8],
and Batens’ adaptive logic ACLuNs2 [5].

2. Arieli and Avron’s pointwise-preferential consequencerelation
for reasoning with minimal inconsistency|=4

I1
[2] is represented

as follows:T |=4
I1

ψ iff T |=4
({⊤},Σ) ψ. Similarly, the conse-

quence relation|=4
I2

for reasoning with valuations that are as clas-
sical as possible, introduced in the same paper, is represented by
T |=4

I2
ψ iff T |=4

({⊤,⊥},Σ)ψ.
3. Besnard and Schaub’s three-valued formula-preferential conse-

quence relation|=n [7, 8] is represented as follows:T |=n ψ
iff T ,EM(T ) |=4

({⊤},T ) ψ iff T |=3
({⊤},T ) ψ, where|=3

({⊤},T )

is the three-valued counterpart (i.e., without⊥) of |=4
({⊤},T ).

4. Given a set∆ of formulae, denote by|=P Avron and Lev’s [4]∆-
preferential consequence relation that is based on the deterministic
four-valued preferential systemP = (|=4,≤∆

{⊤,t}).
10 The intu-

ition here is, again, to consider models of the premises thatsatisfy
a minimal amount of abnormal formulae (in∆). In our context,
then,Υ is the setD = {⊤, t}, andT |=P ψ iff T |=4

({⊤,t},∆) ψ.

5.2 QBFs and signed QBFs

In the following sections we show how the consequence relations
that are obtained from Definition 7 can be simulated by signedfor-
mulae and classical entailment. In order to extend the technique of

8 Where the minimum is taken with respect to set inclusion.
9 In [17] the language without ‘⊃’ is considered, but the results here hold for

the extended language as well.
10 In [4] extensions to non-deterministic matrices are also considered, but we

shall not deal with this here.



Section 4 (and the result of Theorem 1) to deal with preferential
four-valued reasoning, we should express that a given interpretation
is minimal with respect to the underlying preference relation. This is
accomplished by introducing (signed)quantified Boolean formulae
(QBFs) that encode the required axioms. To do that, we first extend
the languageL (respectively,L±) with quantifiers∀,∃ over proposi-
tional variables. Denote the extended language byLQ (respectively,
L±

Q
). The elements ofLQ are called quantified Boolean formulae

(QBFs), and the elements ofL±
Q

are calledsignedQBFs. Intuitively,
the meaning of a QBF of the form∃p ∀q ψ is that there exists a truth
assignment ofp such that for every truth assignment ofq, ψ is true.
Next we formalize this intuition.

Consider a QBFΨ overLQ. An occurrence of an atomp in Ψ is
calledfree if it is not in the scope of a quantifierQp, for Q ∈ {∀, ∃}.
Denote byΨ[φ1/p1, . . . , φn/pn] the uniform substitution of each
free occurrence of a variable (atom)pi in Ψ by a formulaφi, for
i = 1, . . . , n. Now, the definition of a valuation can be extended to
QBFs as follows:

ν(¬ψ) = ¬ν(ψ),
ν(ψ ◦ φ) = ν(ψ) ◦ ν(φ) where◦ ∈ {∧,∨,⊃},
ν(∀p ψ) = ν(ψ[t/p]) ∧ ν(ψ[f/p]),
ν(∃p ψ) = ν(ψ[t/p]) ∨ ν(ψ[f/p]).

As usual, we say that a (two-valued) valuationν satisfiesa QBF
Ψ if ν(Ψ) = 1, ν is amodelof a setΓ of QBFs if ν satisfies every
element ofΓ, and a QBFΨ is (classically)entailed byΓ (notation:
Γ |=2 Ψ) if every model ofΓ is also a model ofΨ.

5.3 Preferential reasoning by signed QBFs

We are now ready to use signed QBFs for representing preferential
reasoning. In what followsT denotes afinite set of formulae inL,
andT∧ denotes the conjunction of the elements inT .

Definition 8 For a subsetΥ = {x1, . . . , xn} ⊆ FOUR, denote:
Υ(ψ) = val(ψ, x1) ∨ . . . ∨ val(ψ, xn).

Note that by Proposition 2, ifν2 is induced byν4, orν4 is induced
by ν2, thenν4(ψ) ∈ Υ iff ν2(Υ(ψ)) = 1.

Definition 9 A±(T ) = {p+ | p ∈ A(T )} ∪ {p− | p ∈ A(T )}.

Proposition 4 Let∆ = {ψ1, . . . , ψk} andT be finite sets of formu-
lae inL, andA±(T ∪∆) = {p1, . . . , pn}. Thenν4 is a≤∆

Υ-minimal
model ofT iff the two-valued valuationν2 that is associated withν4

is a model ofτ1(T ) andMin(≤∆
Υ , T ), whereMin(≤∆

Υ , T ) is the fol-
lowing signed QBF:

∀ q1, . . . , qn

(

τ1(T∧)
[

q1/p1, . . . , qn/pn

]

→

(

k
∧

i=1

(

Υ(ψi)
[

q1/p1, . . . , qn/pn

]

→ Υ(ψi)
)

→

k
∧

i=1

(

Υ(ψi) → Υ(ψi)
[

q1/p1, . . . , qn/pn

]

))

)

.

Proposition 4 immediately implies the following theorem and
corollary, applied to finite setsT , ∆ of formulae inL:

Theorem 2 T |=4
(Υ,∆) ψ iff τ1(T ),Min(≤∆

Υ , T ) |=2 τ1(ψ).

Corollary 5 T |=4
(Υ,∆) ψ iff τ1(T∧) ∧ Min(≤∆

Υ , T ) → τ1(ψ) is
classically valid.

Example 5 ConsiderT = {p1,¬p1, p2}, Υ = {⊤}, and ∆ =
A(T ) = {p1, p2}. Here, for everyp ∈ Σ, Υ(p) = p+ ∧ p−. Thus,

Min(≤∆
Υ , T ) = ∀ q+1 q

−
1 q

+
2 q

−
2

(

q+1 ∧ q−1 ∧ q+2 →
((

(q+1 ∧ q−1 ) → (p+
1 ∧ p−1 )

)

∧
(

(q+2 ∧ q−2 ) → (p+
2 ∧ p−2 )

)

→
(

(p+
1 ∧ p−1 ) → (q+1 ∧ q−1 )

)

∧
(

(p+
2 ∧ p−2 ) → (q+2 ∧ q−2 )

) ))

.

Both ν1 = {p+
1 : t, p−1 : t, p+

2 : t, p−2 : t} andν2 = {p+
1 : t, p−1 :

t, p+
2 : t, p−2 : f} satisfyτ1(T ) = {p+

1 , p
−
1 , p

+
2 }, but onlyν2 also

satisfiesMin(≤∆
Υ , T ). The four-valued valuation that is associated

with ν2 is {p1 : ⊤, p2 : t}, and this indeed is the only≤∆
Υ-minimal

model ofT . Thus, e.g.,T 6|=4
(Υ,∆) ¬p2.

Example 6 By Theorem 2, it is now possible to simulate the conse-
quence relations of Example 4 by classical entailment. IfT ,∆ are
finite sets of formulae inL, then

• T |=3
LPm ψ iff τ1(T ∪ EM(T )), Min(≤

A(T )

{⊤}
, T ) |=2 τ1(ψ).

Similarly for |=m and|=4
I1

.

• T |=4
I2
ψ iff τ1(T ), Min(≤

A(T )

{⊤,⊥}
, T ) |=2 τ1(ψ).

• T |=n ψ iff τ1(T ∪ EM(T )), Min(≤T
{⊤}, T ) |=2 τ1(ψ).

• T |=P ψ iff τ1(T ), Min(≤∆
{⊤,t}, T ) |=2 τ1(ψ)

whereP = (|=4,≤∆
{⊤,t}).

5.4 Complexity

The representation theorems by signed formulae (Theorems 1, 2) al-
low, in particular, to derive complexity results for the corresponding
consequence relations. For instance, Theorem 1 and Corollary 4 im-
ply the following well-known result (see also [9, 10]).

Proposition 5 The entailment problems for|=4, |=3
KL, and|=3

LP are
all coNP-complete.

Theorem 2 implies the following result for the preferentialcase.11

Proposition 6 The entailment problems for|=4
(Υ,∆) and|=3

(Υ,∆) are

in ΠP
2 .

5.5 Reasoning with graded abnormality

The consequence relation|=4
(Υ,∆) of Definition 7 can be generalized

in several ways to capture other formalisms that are considered in the
literature. Here we demonstrate one such generalization, and show
how to simulate, by signed QBFs and classical entailment, preferen-
tial reasoning with different levels of uncertainty [1].

Definition 10 A partial order≺ on a setS is calledmodular if y≺
x2 for everyx1, x2, y∈S s.t.x1 6≺x2, x2 6≺x1, andy≺x1.

Modular orders will be used here for grading uncertainty. As
shown in [14],≺ is a modular order onS iff there is a total order< on
a setS ′ and a functiong :S → S ′ s.t.x1≺x2 iff g(x1)<g(x2). For
a modular order≺ onFOUR, then, there is a partitionΥ1 . . .Υm of
FOUR s.t.x ≺ y iff x ∈ Υi, y ∈ Υj , and1 ≤ i < j ≤ m.

Let≺ be a modular order onFOUR andν, µ ∈ mod(T ). Denote
ν≺µ, if there is aq∈A(T ) s.t.ν(q)≺µ(q), and for everyp∈A(T )
eitherν(p)≺µ(p), or ν(p) andµ(p) are≺-incomparable.

A valuationν ∈ mod(T ) is a≺-minimal model ofT if there is
no µ ∈ mod(T ) s.t.µ ≺ ν. DenoteT |=4

≺ ψ if every ≺-minimal
model ofT is a model ofψ.

11 This is a generalization of a corresponding results, given in [10].



Example 7 Consider the modular order≺c3 of [1], in which there
are three ‘uncertainty levels’:{t, f} ≺c3 ⊥ ≺c3 ⊤. Thus, the theory
T = {¬q, (p ⊃ q) ∨ (¬q ⊃ ¬p), (¬p ⊃ q) ∨ (¬q ⊃ p)} has three
≺c3 -minimal models:ν1 = {p :⊥, q :f}, ν2 = {p : t, q :⊤}, ν3 =
{p :f, q :⊤}. Therefore, e.g.,T |=4

≺c3
p ⊃ q andT 6|=4

≺c3
q ⊃ p.

In order to express and simulate by QBFs consequence relations
such as|=4

≺c3
, it is necessary to extend Definition 5. In particular,Υ

should be partitioned according to the underlying preference order.

Definition 11 Let ν1 andν2 be two valuations,∆ a set of formulae,
and~Υ = ~Υ≺ = {Υ1,Υ2, . . . ,Υm} – a partition ofFOUR. Denote
ν1 ≤∆

~Υ
ν2 if the following conditions are satisfied:

{ψ∈∆ | ν2(ψ)∈Υ1} ⊆ {ψ∈∆ | ν1(ψ)∈Υ1},

{ψ∈∆ | ν2(ψ)∈Υ2} ⊆ {ψ∈∆ | ν1(ψ)∈Υ1 ∪ Υ2}, . . . ,

{ψ∈∆ | ν2(ψ)∈Υm−1} ⊆ {ψ∈∆ | ν1(ψ)∈Υ1 ∪ . . . ∪ Υm−1}.

Denote byν1 <∆
~Υ
ν2 thatν1 ≤∆

~Υ
ν2 andν2 6≤∆

~Υ
ν1. ν1∈mod(T ) is

a≤∆
~Υ

-minimal model ofT if there is noν2 ∈ mod(T ) s.t.ν2 <∆
~Υ
ν1.

Proposition 7 Let T be a finite set of formulae inL, and
A±(T ) = {p1, . . . , pn}. Thenν4 is a≤

A(T )
~Υ

-minimal model ofT ,

where~Υ = {Υ1,Υ2, . . . ,Υm}, iff the two-valued valuationν2 that
is associated withν4 is a model ofτ1(T ) and the following signed

QBF, denotedMin(≤
A(T )
~Υ

, T ) : 12

∀ q1, . . . , qn

(

τ1(T∧)

[

q1/p1, ..., qn/pn

]

−→

(

∧

n

i=1

(

(

Υ1(qi)→Υ1(pi)

)

∧...∧

(

Υm−1(qi)→
∨

m−1

j=1
Υj(pi)

)

)

−→

∧

n

i=1

(

(

Υ1(pi)→Υ1(qi)

)

∧...∧

(

Υm−1(pi)→
∨

m−1

j=1
Υj(qi)

)

)) )

.

Definition 12 DenoteT |=4
(~Υ,∆)

ψ if every≤∆
~Υ

-minimal model of
T is a model ofψ.

Sinceν1 ≺ ν2 iff ν1 <
A(T )
~Υ

ν2, we get the next result.

Proposition 8 T |=4
≺ ψ iff T |=4

(~Υ,A(T ))
ψ.

By Proposition 7, for a finite set of formulaeT in L, we have:

Corollary 6 T |=4
(~Υ,A(T ))

ψ iff τ1(T ),Min(≤
A(T )
~Υ

, T ) |=2 τ1(ψ).

Corollary 7 T |=4
≺ ψ iff τ1(T ),Min(≤

A(T )
~Υ

, T ) |=2 τ1(ψ).

Other generalizations of Definition 5 could be useful as well. For
instance, the set∆ may contain formulae with different levels of ab-
normality, in which case it should be graded. Again, it is possible to
simulate reasoning with such consequence relations by signed QBFs
just as described above for cases in whichΥ is graded.

6 RELATED WORKS

The use of QBF axiomatic systems has also been considered by
Besnard et al. for circumscribing inconsistent theories inthe context
of three-valued logics [8]. Following the same motivation,we use
here a different transformation to another kind of signed formulae,
which allows us to reason with a boarder class of preferential logics.

12 In order to simplify the corresponding QBF, we consider onlythe case
∆ = A(T ). However, similar results can be obtained foranyfinite set∆
of formulae inL (cf. Proposition 4).

Another approach of reducing (multi-valued) preferentialreason-
ing to higher-order classical propositional logic is considered in
[3]. This approach expresses preferences by second-order formulae,
so (instead of QBF solvers) algorithms for processing circumscrip-
tive theories (i.e., reducing second-order formulae to their first-order
equivalents) are needed in order to implement preferentialreasoning.
The relation between our approach and that of [3] w.r.t. the classical
fragment ofL (i.e., the language without ‘⊃’) 13, is the following:

Proposition 9 For a formulaψ in Σ, denote byψ the formula inΣ±

that is obtained by the transformation of[3]. Given a finite theory
T in the classical fragment ofL, let T = {ψ | ψ ∈ T }. Then the
two-valued models ofT are the same as those ofτ1(T ), and

1. T |=4 ψ iff T |=2 ψ (iff τ1(T ) |=2 τ1(ψ)).

2. T |=4
(Υ,∆) ψ iff T ,Min(≤∆

Υ , T ) |=2 ψ

(iff τ1(T ),Min(≤∆
Υ , T ) |=2 τ1(ψ)).

Thus, the current work extends that of [3] in the following senses:
(1) the language is more expressive (and is functionally complete for
FOUR)14, (2) a wider range of preferential logics are simulated, (3)
a natural approach to reasoning with graded abnormality is provided.
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