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Abstract.
variety of paraconsistent non-monotonic formalisms byntjtiad
Boolean formulae (QBFs) in the context of four-valued setican
This framework provides a useful platform for capturingaisimple
and natural way, a wide range of methods for preferentiaaeiag.
Off-the-shelf QBF solvers may therefore be incorporatedsfmu-
lating the corresponding consequence relations.

1 INTRODUCTION

Preferential reasoningvas introduced by McCarthy [16] and later
by Shoham [19] as a generalization of the notion of circuipscr
tion. It became a common method behind many general patérns
non-monotonic reasoning [15], and it is often used as a tqakn
for defining consequence relations that pagaconsistenti.e., for-
malisms in which inconsistent sets of premises do not esutgilvell-
formed formula whatsoever. The essential idea behind efial
reasoning is that only a subset of ‘preferred’ models of @mgithe-
ory should be taken into consideration for making infersntcem
that theory. The relevant models are determined by pre-etkfion-
ditions, the satisfaction of which yields the exact kind oéfprence
one wants to work with.

In this paper we introduce a uniform setting for represenéva-
riety of preferential paraconsistent consequence relsitimferences
are expressed by what we calgned theoriesand preferences are
represented by quantified Boolean formulae (QBFs) in theezbn
of four-valued semantics. Thiepresentiorplatform yields an easy
way to handle theomputationalaspects of the underlying conse-
guence relations; by incorporating off-the-shelf compateal mod-
els for processing QBFs, such @sBE [12] andDECIDE [18],2 it
is possible to simulate a variety of non-monotonic and parais-
tent formalisms, such as Priest’s LPm [17], Besnard and Brha
inference relations=,, andj=,, [7, 8], various bilattice-based point-
wise preferential relations [2] and formula-preferentihtions [4],
consequence relations (such}ag) for reasoning with graded un-
certainty [1], and some other adaptive logics (e.g., Bak@tuNs2

[5)).°

2 FOUR-VALUED SEMANTICS

The formalism that we consider here is based on four-valaaths-
tics and a corresponding four-valued algebraic structieadted by

We introduce a uniform approach of representing afour element"OUR = {t, f, L, T}, arranged in two lattice struc-

tures: one is the standard logical partial order, which intuitively
reflects differences in the ‘measure of truth’ that everyugatep-
resents. According to this ordef,is the minimal element; is the
maximal one, and the other two elementq‘partial information’)
andT (‘contradictory information’) are intermediate valuestlare
incomparable({t, f, T, L}, <:) is a distributive lattice with an or-
der reversing involutior, for which—T =T and—_1 = 1. We shall
denote the meet and the join of this lattice/bpndV, respectively.

The other partial ordergy, is understood (again, intuitively) as
reflecting differences in the amountlaiowledgeor informationthat
each truth value exhibits. Agai{¢, f, T, L}, <) is a lattice in
which L is the minimal element] is the maximal element, and f
are incomparable.

The elements ofFOUR can be represented by pairs of two-
valued components of the lattig¢0,1},0 < 1) as follows:t =
(1,0), f=(0,1), T = (1,1), L = (0,0). One way to intuitively
understand this representation is that a truth véuey) of p corre-
sponds to the amount of belief in p and the amouny of disbelief
in p. The following lemma expresses the partial orders and teeba
operators of FOUR in terms of this representation by pairs.

Lemmal [11] Letz,y, z:,y: € {0,1} (¢ = 1,2). Then:

(z1,y1) <t (x2,y2) iff z1 <z andy; >yo,
z1,y1) <k (T2,y2) iff x1 <z2 andy; <yo.

( )
(w1,91)
( )

V(z2,y2) = (21 V 22, Y1 A y2),
z1,91) A (22, y2) = (T1 A 22, Y1 V Y2),
—(z,y) = (y,2).

The next step in usingOUR for reasoning is to choose its set
of designatedelements. The obvious choice 8 = {¢, T}, since
both values intuitively represent formulae ‘known to beetrurhe
setD has the property thatAb € D iff both a andb are inD, while
aVbe D iff at least one ofz or b is in D. From this point the various
semantic notions are defined GfnOUR as natural generalizations
of similar classical notions: the underlying propositibfenguage
consists of an alphabét of propositional variables, propositional
constantg andf, and logical symbols-, A, V. We denote elements
in X by p, ¢, r, formulae by, ¢, and sets of formulae by, A.
The set of all atoms occurring i is denoted byA(v), andA(7T) =
{A(%) | ¥ € T}. Now, avaluationv is a function that assigns a truth
value fromF'OUR to each atomic formula, andt) = ¢, v(f) = f.
Any valuation is extended to complex formulae in the obvioay.

FOUR), introduced by Belnap [6]. This structure is composed of we will sometimes write) : b € v instead ofv(¢)) = b. A valuation

1 Department of Computer Science, Tel-Aviv Academic Collegéntokol-

sky Street, P.O.Box 16131, Tel-Aviv 61161, Israel. emaitieli@mta.ac.il
2 For other solvers, see http://www.mrg.dist.unige.it/ gfaibflib/solvers.html.
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v satisfies) iff v(+) € D. A valuation that satisfies every formula in

7 is amodelof 7. The set of models df is denoted bynod(7).
Note that in the four-valued context there are no tauto®gie¢he

propositional language defined above. Thus, e.g., exclodddle is



not valid, asv(p vV -p) = L whenv(p) = L. This implies that
the definition of the material implicatiot — ¢ as—p V ¢ is not
adequate for representing entailments. Instead, we usieeedi im-
plication connective, definedby> b=t if a ¢ D,anda Db =1
otherwise (see Footnote 6 below as well as references [2r 8pme
justifications and other applications of this definition).

Note thata D b = a — bwhena,b € {t, f}, and so the new
connective is a generalization of the material implicatibime propo-
sitional language extended withis denoted byl..

Lemma 2 Letz1,z2,y1,y2 € {0,1}. Then(z1,y1) D
(mx1 V 22, 1 AY2).

(w2,92) =

3 SIGNED FORMULAE

Itis obvious that the representation of truth values in teofrpairs of
two-valued components, considered in the previous sedtigplies
a similar way of representing four-valued valuations; arfealued

Corollary 1 If v2 is induced by* or v* is induced by 2, then for
everyy € L, v2(11(¥)) = 1iff v* () >x ¢, andv?(r2 () = 1 iff
Vi) >k f.

The last corollary may be re-formulated as follows:

Corollary 2 If 12 is induced by* or v* is induced by 2, then for
everyy € L, v* satisfiesy iff v* satisfiesr; (1), andv* satisfies—
iff 2 satisfiesr ().

Definition 3 Fory € L define the following signed formulae iii*:

val(i,t) = i (¢) A =72 (),  val(¥, f) = =11 (¥) A 2(¥),
val(, T) = T () Am2(¥p),  val(¥h, L) = =71 () A =m2(9)).

Proposition 2 If v2 is induced by*, or v* is induced by?, then
for everyy € L, v* () = z iff v2(val(2, z)) = 1.

In terms of models of a given theory, then,

Proposition 3 Let 7 be a set of formulae .. There is a one-to-

valuation~ may be represented in terms of a pair of two-valuedone correspondence between the four-valued models ad the

componentgvy, v2) by v(p) = (v1(p), v2(p)). So if, for instance,
v(p) =t, thenv,(p) =1 andvz(p) = 0. Note also that = (v, v2)
is a four-valued model of iff v1 () = 1 for everyy € 7.

Definition 1 A signed alphabeE* is a set that consists of two sym-
bolspt,p~ for each atonp of . The language over* is denoted
by L*. Now,

e The two-valued valuation? on ¥ that isinduced by(or associ-
ated with) a four-valued valuation* = (v1,v2) on Y, interprets
pt asvi(p) andp™ asva(p).

e The four-valued valuation* on ¥ that isinduced bya two-valued
valuation? on ¥ is defined, for every atom € X, by v*(p) =

@2 (1), v (p7).

In what follows we shall denote by? a valuation into{0, 1}, and
by v* a valuation into{t, f, T, 1}.

Definition 2 For an atonmp € ¥ and formulaey, ¢ € L, define the
following formulae inL™*:

mi(p) =p™, m2(p) =

() = 12 (), T2(ﬁ7/))—71 ),

TV A @) =71(¥) ATi(d), (Y A @) = T2(¥) V 12(9),
(Y V@) =71(¥) VTi(d), (Y V @) = T2(¥) A T2(9),
(Y D @) = -Ti(Y) VTi(P), T2 D) =Ti(Y) AT2(9).

Given a setZ” of formulae inL, denoter;(7) = {r:(¢)) |¢¥ € T},
fori=1,2.

Example 1 Consider, e.g., the formuta = —(p VvV —¢q) V —q. Then,

m(¥) = Ti(=(pV —=q) VTi(=g) = T2(pV —q)V T2(q)
(r2(p) A 72(=q)) V 12(q) = (m2(p) AT1(q)) V 72(q)
(P~ AgT) Vg .

We call 7;(¢) (¢ = 1,2) the signed formulaghat are obtained
from 1. Intuitively, 71 (¢) indicates whether) should be ‘at least
true’ (i.e., it is assigned or T), and2(¢) indicates ifv is ‘at
least false’. In other words, if (¢) (respectively(v)) is true in
the two-valued context, thep (respectively—) holds in the four-
valued context (cf. Corollaries 1 and 2).

Proposition 1 Lety € L. If v* is induced by/? or v* is induced by
v thenv' (v) = (V2 (11 (¥)), 2 (2(¥))).

two-valued models of; (7); v* is a model of7 if the two-valued
valuation that is associated with* is a model ofr; (7°), andv? is

a model ofr; (7) if the four-valued valuation that is associated with
v? is a model of7 .

4 SIMULATING BASIC ENTAILMENTS BY
SIGNED FORMULAE

In the following sections we show how signed theories candsslu
for simulating paraconsistent reasoning by classicalilemat. In
this section we consider basic three- and four-valued lemat rela-
tions, and in Section 5 we show that three- and four-vapreteren-
tial entailments can be defined in terms of a classical entailfioent
the signed theories, augmented with quantified Booleamasio

In what follows we denote bj=2 the two-valued classical conse-
guence relation and u;t“ the four-valued counterpart, i.€, ':41/1
if every four-valued model off is a four-valued model of). By
Proposition 3 we immediately have the following theorem:

Theorem 1 T =* ¢ iff 71(7) =2 71 ().

The theorem above implies, in particular, that one can siteul
four-valued entailment by two-valued entailment. Thusiyrfealued
reasoning may be implemented by two-valued theorem prawers
SAT solvers. Moreover, as (7)) is obtained fronZ” in polynomial
time, Theorem 1 shows that four-valued entailment in theedrof
Belnap’s logic ispolynomially reducibleo the classical entailmeft.

Example 2 Let7: = {p, —p, q, "pV r, 7qV s}. Thenr(T7) =
{pT,p7, ¢, p~vrT, ¢~ vsT}. Inthis case, e.gn (71) 2 rT
andr(71) £* sT, soindeedl; £* rand7; j£* s (consider, e.g.,
a valuation that assignris to p andg, andf to r ands).®

Consider nowZz = {p, -p, ¢, p D r, ¢ D s}. Here,m(72) =

{p*, p™, ¢, —pT vrT, =¢T vsT}, and this timer (72) 2 »
andti(7z) =2 sT. This corresponds to the fact th&t =* + and
7—2 |:4 86

4 This is a generalization of a similar result, given in [3],iegfhconcerns the
classical fragment of (i.e., without the implication connective>’).

5 This example also shows thiat* is aparaconsistentonsequence relation,
since (unlike classical logic), not every formula i$=e-consequence of a
classically inconsistent theory.

6 This example demonstrates the fact that in the four-valetiihg Modus
Ponens and the Deduction Theorem are satisfied iyt not by—. This
is another vindication to the claim that in the four-valuettiag the former
connective is more suitable for representing entailmesn the latter.



Note also, that if the connective does not appear i, then
71(7) is apositive theoryi.e., a theory without negations). In partic-
ular, then, Theorem 1 also implies the following well-knowsult:

Corollary 3 In positive propositional logic (i.e., w.r.t. thév, A}-
fragment of the languagey; |=* o iff T =2 1.

Theorem 1 also shows that some basic three-valued logicbecan
simulated in our framework:

Definition 4 For a setl” of formulae inL, denote:
EM(7T)={pV-p|pe A(T)}, (excluded middle
EFQ(T) ={(pA-p) Df|pec A(T)}. (ex falso quodlibgt

Corollary 4 Let7 be a set of formulae il andt a formula in L.

e Let=}, be the entailment relation of Priest’s three-valued logic
LP[17]. Then:T =ip o iff 7 (T UEM(T)) =2 mi(v). 7

e Let|=%, be the entailment relation of Kleene’s three-valued logic
[13]. Then:T =¥, o iff 7(T UEFQ(T)) E2 71 (¥).

5 SIMULATING PREFERENTIAL
ENTAILMENTS BY SIGNED QBFS

5.1 Preferential reasoning

Consider again the theo; = {p, —p, ¢, "pVr, ~qV s} of Exam-
ple 2. The fact thaff; [=* » may be intuitively justified here by the
relation of the data about to the inconsistent (thus unreliable) in-
formation aboup. However, the fact thely %4 s seems to be more
controversial in this case. Indeed, the information akpahd s is
not related to the cause of inconsistencinand so it makes sense
to apply here classically valid rules, such as the Disjwec8yllo-
gism (applied to{q, —¢ V s}), for concludings from 7;. In terms of
Batens [5], theni=* is notadaptive since it does not presuppose the
consistency of all the assertions ‘unless and until provaeravise’.
Note, further, that is not even g=*-consequence of theassically
consistensubtheory{q, ¢ V s}, and so=" is strictly weaker than
classical logic (see also [2]). It is well known that Prie$} » (see
Corollary 4) has the same drawback.

One way to overcome these shortcomings is to refine the ynderl
ing consequence relations, and rather than referriad) tbe models
of the premises, consider only a subsepaferential modelfl5, 19]
as relevant for making inferences.

Definition 5 Let v, andvs be two valuationsY C FOUR, andA
a set of formulae irL. vy is Y-preferredthany, w.r.t. A (notation:
vi <R ), if {Y € Alni(¥) €T} C {¥ € Alwe(y) € T} We
denote by, <% s thatyy <4 vs andvs €5 v1.

Definition 6 Let 7, A be sets of formulae id,, andY C FOUR.
Avaluationv € mod(7) is a<{-minimal model off if there is no
pw € mod(T) sty <5 v.

Intuitively, A represents the ‘abnormal formulae’ (see [5]), and
the purpose is to minimize th&-assignments of the elements in
A. When T consists of the designated elements, the order rela
tions of Definition 5 are callefbrmula-preferential order§4]. When
A C ¥, these kinds of orders are callpdintwise-preferentig2, 4],
and their minimal elements are the valuations with mininel of

7 See [3] and [8, Theorem 2] for other representations of Bsidsgic in
terms of signed formulae.

atom$ that are assigned values M. If A = 7 [respectively, if
A = A(T)], the purpose is to minimize th¥-assignments of the
[atomic] formulae that appear in [some formulae of] the [eas.

Example 3 Consider again the s& = {p, —p, ¢, "pVr, ~qV s}
of Example 2, and le¥ = {T, L}, A = {u A —~u|u € £}. The
g?”l)-minimal models of7; arevs = {p: T,q:¢,r:t,s:t} and
va = {p:T,q:t,7: f,s:t}. These are also the{-minimal models
of 71, but onlyv is ag?-minimal model of73, sinceve (—pVr) =

T whilevi(-pVvr)=t.

Definition 7 Denote byZ |:‘<1T’A) 1 that every<{-minimal (four-
valued) model off is a (four-valued) model of.

Example 3 — continued In the notations of Example 3; |:2‘T’A) s,
T ey ™ T Elraemy T amy ™ T i) 8 and
T |:?T771) r. It follows that these preferential relations are adaptive

and althougl?; j=* s, in all of thems is deducible front, as indeed
intuitively expected.

Example 4 Below are some particular cases of the consequence re-
lations of Definition 7, considered elsewhere in the literat

1. Denote by, the consequence relation of Priest’s three-

valued logic LPm of minimal inconsistency [1¥].Then:

T Eipm ¢iff T,EM(T) E{(1y ) ¢. Equivalently,7 {p,,
Qiff T,EM(T) ={(1y,a) ¥, WhereA = {pA—p|p € A(T)}.

In fact, if we denote b)4=?{n,z) the three-valued counterpart
of =((y 5 (i-e., the same definition, but only w.rft, £, T}),
then for the same\ it holds thatT Firm ¢iff T {15

Y iff T |:?{T}7A) 1. The same pointwise consequence relations
also simulate Besnard and Schaub’s three-valued legid7, 8],

and Batens’ adaptive logic ACLUNs2 [5].

2. Arieli and Avron’s pointwise-preferential consequerregation

for reasoning with minimal inconsistencbyz‘lz1 [2] is represented
as follows: T |=7, ¢ iff T {7,y . Similarly, the conse-
guence relatioﬂa:“z2 for reasoning with valuations that are as clas-
sical as possible, introduced in the same paper, is refezsey
TELYIf TE T 0.

3. Besnard and Schaub’s three-valued formula-prefetectiase-

quence relatiorf=,, [7, 8] is represented as follows: =, ¥
?ff T,EM(T) E{(ry ) v iff T '_Z?{T},_T) ¥, Whe:e':?{T},T)
is the three-valued counterpart (i.e., withautof =y 7.

. Given a sef\ of formulae, denote bj=" Avron and Lev's [4]A-
preferential consequence relation that is based on theieistic
four-valued preferential syste® = (=*, <{; ,;).*° The intu-

ition here is, again, to consider models of the premisessiuify

a minimal amount of abnormal formulae (k). In our context,

then,Y is the setD = {T, ¢}, and7 ¥ ¢ iff T {1 4y a) ¢

5.2 QBFs and signed QBFs

In the following sections we show how the consequence oelati
that are obtained from Definition 7 can be simulated by sigoed
mulae and classical entailment. In order to extend the tqaknof

8 Where the minimum is taken with respect to set inclusion.

9 In [17] the language without¥’ is considered, but the results here hold for
the extended language as well.

10 In [4] extensions to non-deterministic matrices are alstsiered, but we
shall not deal with this here.



Section 4 (and the result of Theorem 1) to deal with preféaent
four-valued reasoning, we should express that a givengregation
is minimal with respect to the underlying preference relatiThis is
accomplished by introducing (signedbantified Boolean formulae
(QBFs) that encode the required axioms. To do that, we fitenex
the languagd. (respectively*) with quantifiersv, 3 over proposi-
tional variables. Denote the extended languagd.§yrespectively,
Lé). The elements ofLq are called quantified Boolean formulae
(QBFs), and the elements ﬁ% are calledsignedQBFs. Intuitively,
the meaning of a QBF of the forfp Vq ¢ is that there exists a truth
assignment op such that for every truth assignmentgfy is true.
Next we formalize this intuition.

Consider a QBRI over Lq. An occurrence of an atomin ¥ is
calledfreeif it is not in the scope of a quantifi@p, for Q € {V, 3}.
Denote byW¥[¢1/p1, ..., ¢n/pn] the uniform substitution of each
free occurrence of a variable (atom) in ¥ by a formulag¢;, for
i=1,...,
QBFs as follows:

V(=) = ~w(¥),

v(ip o ¢) = v(v) o v(¢p) whereo € {A,V, D},

v(vp ) = v(y[t/p]) Av(¥[f/pl),

v(3pw) = v(¥lt/p) v v (If/p]).

As usual, we say that a (two-valued) valuatiosatisfiesa QBF
U if v(¥) = 1, v is amodelof a setl” of QBFs if v satisfies every
element ofl’, and a QBFY is (classically)entailed byI" (notation:
I' =2 ) if every model ofT" is also a model off.

5.3 Preferential reasoning by signed QBFs

We are now ready to use signed QBFs for representing preigren
reasoning. In what follow§™ denotes dinite set of formulae inZ,
and7, denotes the conjunction of the elementgin

Definition 8 For a subsefl’ = {z1,...

T(@) =val(y,z1) V... Vval(y, zn).

Note that by Proposition 2, if? is induced by*, or v* is induced
by v?, thenv? (v) € T iff v?(Y(¥)) = 1.

,Zn} C FOUR, denote:

Definition 9 A*(T) = {p™ | p € A(T)} U {p~ | p € A(T)}.

Proposition 4 LetA = {¢1,...,4} and7 be finite sets of formu-
laein L, and A (TUA) = {p1, ..., pn}. Thenv* is a<£-minimal
model of7 iff the two-valued valuation? that is associated with*
is a model ofr; (T) andMin (<%, T), whereMin(<%, T) is the fol-
lowing signed QBF:

Vi, . qn (n(TA)[ql/ph qn/pn} —

(

=

(vwola/pr, .. aufpa] = Tw)) -

1

.
Il

~.

(T(wi) — YW [a1/p1, -, qn/pn}))).

i=1

Proposition 4 immediately implies the following theoremdan
corollary, applied to finite set&, A of formulae inL:

Theorem 2 7 ={y Ay ¥ iff 71(T),Min(<2,7) E 71 ().

Corollary 5 7 =y ay ¥ iff 71(T0) AMin(<R,T) — 71(¥) is
classically valid.

n. Now, the definition of a valuation can be extended to

Example 5 Consider7 = {pi, p1,p2}, T {T}, andA =
A(T) = {p1,p2}. Here, foreverp € 3, T(p) = p* Ap~. Thus,
Min(<%,7) = Vaia a3 a5 (0 ANay Aaf —

(((aF Aay) = f Ap))) A ((6F Aaz) — (b3 Apy)) —

(@ Apy) = (af Aa)) A (03 Apy) = (5 Aay)) )
Bothuy = {pf :t, py :t, p3 :t, p; :t} aﬂdV2 = {p{ :t, py :
t, p3 ity py f} satisfyr(T) = {p{,py,ps }, but Onlyl’Q also
satisfiesMin(<%, 7). The four-valued valuation that is associated
with vz is {p1 : T, p2 : t}, and this indeed is the onlgs-minimal
model of 7. Thus, €.9.7 (v ) —p2-
Example 6 By Theorem 2, it is now possible to simulate the conse-
guence relations of Example 4 by classical entailmenf. I\ are
finite sets of formulae i, then
: A

o T Eipn ¢iff 7(TUEM(T)), Min(<H]), 7) 2 7

Similarly for =, and{=7, .

o T 5, viff 7 (T), Min(<{7),, T) 2 m ().

o T = ¢ iff 7(T UEM(T)), Min(<{+y,T) 2 1 ().

o TV yiff ni(7), Min( trop D) E ()
whereP = (=* ,_{T o)

1(¥).

5.4 Complexity

The representation theorems by signed formulae (Theore@)sal-

low, in particular, to derive complexity results for the sponding
consequence relations. For instance, Theorem 1 and Qgrdlian-

ply the following well-known result (see also [9, 10]).

Proposition 5 The entailment problems fé£?, =%, and=} » are
all coNP-complete.

Theorem 2 implies the following result for the preferentase*

Proposition 6 The entailment problems fo . ) and=fy A, are
in 1%

5.5 Reasoning with graded abnormality

The consequence relati@a?tA) of Definition 7 can be generalized
in several ways to capture other formalisms that are coreside the
literature. Here we demonstrate one such generalizatiah show
how to simulate, by signed QBFs and classical entailmeefepen-
tial reasoning with different levels of uncertainty [1].

Definition 10 A partial order< on a setS is calledmodularif y <
xo foreveryz, xa, y €S s.t.x1 Ax2, x2 Ax1, andy < x1.

Modular orders will be used here for grading uncertainty. As
shown in [14],< is a modular order o8 iff there is a total ordex on
asetS’ and a functiory: S — 8§’ s.t.z1 < z2 iff g(z1) <g(z2). For
a modular ordex on FOUR, then, there is a partitiolf; . .. T, of
FOURstax <yiff x € Ts,y e Tj,andl <i < j<m.

Let < be a modular order oFOUR andv, i1 € mod(7T). Denote
v=<p,ifthereisage A(T) s.t.v(q) < n(g), and for everyp € A(T)
eitherv(p) < (p), orv(p) andu(p) are<-incomparable.

A valuationv € mod(T) is a<-minimal model ofT if there is
no u € mod(T) s.t.u < v. DenoteT =% v if every <-minimal
model of 7 is a model ofi).

11 This is a generalization of a corresponding results, gimgi0].



Example 7 Consider the modular ordet., of [1], in which there Another approach of reducing (multi-valued) preferentéson-
are three ‘uncertainty levels{t, f} <., L <., T.Thus, thetheory ing to higher-order classical propositional logic is calesed in
T ={~q, (p Dq)V(~¢D-p), (—pDq)V(~qDp)}hasthree [3]. This approach expresses preferences by second-adeulae,
=<eg-minimal modelsyy = {p: L, q: f}, ve = {p:t, q¢: T}, vs = so (instead of QBF solvers) algorithms for processing oscrip-
{p:f, ¢: T}. Therefore, e.g7T I:ic3 p D qgand7 2 o3 4O P tive theories (i.e., reducing second-order formulae t@ first-order
equivalents) are needed in order to implement preferamigsoning.

In order to express and simulate by QBFs consequence reatio The relation between our approach and that of [3] w.r.t. taesical

such ag="%__, itis necessary to extend Definition 5. In particulir,  fragment ofL (i.e., the language withouts") 2, is the following:

should be partltioned according to the underlying prefeeeorder. N ) _ )
Proposition 9 For a formulay in X, denote byp the formula ins®

Definition 11 Letr; andv, be two valuationsA a set of formulag, that is obtained by the transformation [#]. Given a finite theory
andY = Y5 = {T1,Ys,...,Y,,} —apartition of FOUR. Denote 7 in the classical fragment of, let 7 = {4 | 1> € T}. Then the
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