
Using Four Values for Computerized ReasoningOfer Arieli Arnon AvronDepartment of Computer Science Department of Computer ScienceSchool of Mathematical Sciences School of Mathematical SciencesTel-Aviv University Tel-Aviv UniversityRamat-Aviv 69978, Israel. Ramat-Aviv 69978, Israel.Email: ofera@math.tau.ac.il Email: aa@math.tau.ac.il1 IntroductionIn [Be77a, Be77b] Belnap introduced a logic intended to deal in a useful way with inconsistentand incomplete information. This logic is based on a structure called FOUR, which has fourtruth values: the classical ones, t and f , and two new ones: ? that intuitively denotes lack ofinformation (no knowledge), and > that indicates inconsistency (\over"-knowledge). Belnap gavequite convincing arguments why \the way a computer should think" should be based on these fourvalue.In this paper we further examine the logical role of FOUR and its adequacy for computerizedreasoning. For that we incorporate Shoham's approach [Sh87, Sh88] and consider four-valued logicsthat are preferential , i.e.: they are based on the idea that inferences should be taken not accordingto all models of a given theory, but only w.r.t. a subset of them, determined according to certainpreference criteria. Here we shall particularly be interested in two main guidelines for making suchpreferences: (a) prefer models that assume as much consistency as possible, and (b) prefer modelsthat assume a minimal amount of knowledge.We consider the main properties of the resulting inference relations, and demonstrate theirusefulness in some practical examples. We also show that the four-valued setting might be usedto overcome some of the drawbacks of classical logic. For instance, it is possible to de�ne withinthis setting a nonmonotonic inference relation that is the same as the classical logic on consistenttheories, but allows nontrivial reasoning with inconsistent data.12 The language and its four-valued semanticsThe truth values of Belnap's logic mentioned above have two natural orderings: One, �t, intuitivelyre
ects di�erences in the \measure of truth" that every value represents. According to this order,f is the minimal element, t is the maximal one, and ?;> are two intermediate values that areincomparable. (ft; f;>;?g;�t) is a distributive lattice with an order reversing involution :, forwhich :> = > and :? = ?. We shall denote the meet and the join of this lattice by ^ and _,respectively. The other partial order, �k, is understood (again, intuitively) as re
ecting di�erencesin the amount of knowledge or information that each truth value exhibits. Again, (ft; f;>;?g;�k)is a lattice where ? is its minimal element, > { the maximal element, and t, f are incomparable.1Due to a lack of space some of the proofs of the propositions are omitted or shortened. They will be provided inthe full version of this paper. 1



Following Fitting [Fi89] we shall denote the meet and the join of the �k-lattice by 
 and �,respectively.The two lattice orderings are closely related. The knowledge operators 
 and � are monotonew.r.t. the truth ordering �t, and the truth operators ^, _, and : (as well, of course, as 
 and�) are monotone w.r.t. �k. Moreover, all the 12 distributive laws hold, as well as De-Morgan'slaws. The structure that consists of these four elements and the �ve basic operators (^;_;:;
;�)is usually called FOUR.The next step in using FOUR for reasoning is to choose its set of designated elements. Theobvious choice is D = ft;>g, since both values intuitively represent formulae known to be true.The set D has the property that a^b 2 D i� a
b 2 D i� both a and b are in D, while a_b 2 Di� a � b 2 D i� either a or b is in D. From this point the various semantic notions are de�nedon FOUR as natural generalizations of similar classical notions: A valuation M is a function thatassigns a truth value from FOUR to each atomic formula. Any valuation is extended to complexformulae in the obvious way. We will sometimes write  : b2M instead of M( )= b. A valuationM satis�es  i�M( )2D. A valuation that satis�es every formula in a given set � of formulae isa model of �. The set of all models of � is denoted mod(�). The structure FOUR together with Das the set of the designated elements will be denoted in the sequel by hFOURi.Unlike in the classical calculus, Belnap's logic has no tautologies. Thus, excluded middle isnot valid in it. This implies that the de�nition of the material implication p 7! q as :p_q isnot adequate there for representing entailments. We introduce instead the following implicationoperation on FOUR:De�nition 2.1 [Av91, AA94] a � b = b if a 2 D, a � b = t otherwise.2Note that on ft; fg the material implication ( 7!) and the new implication (�) are identical, so� is a generalizations of the classical implication.Example 2.2 (Tweety dilemma) Consider the following well-known puzzle:� = f bird(Tweety) 7!fly(Tweety), penguin(Tweety)�bird(Tweety),penguin(Tweety)�:fly(Tweety), bird(Tweety), penguin(Tweety) g:The �rst assertion of � is formulated by a weaker \implication" than the other two, since it is aninstance of a rule that has exceptions. The six four-valued models of � are given in Figure 1.Model No. bird(Tweety) fly(Tweety) penguin(Tweety)M1 { M2 > > >; tM3 { M4 > f >; tM5 { M6 t > >; tFigure 1: The models of �2The sense in which � is a true implication will be clari�ed in Proposition 3.3 below.2



Unlike the other connectives discussed above, � is not monotone w.r.t. �k . In the sequelwe distinguish between the k-monotomic languages and the nonmonotonic ones, and between lan-guages in which all the connectives have two-valued interpretations and languages that contain�k-connectives as well.Notation 2.3Lscl = f:;^;_;�g (the strict classical language)Lmcl = f:;^;_; t; fg (the monotonic classical language)Lcl = f:;^;_;�; t; fg (the classical language)Lmon = f:;^;_;
;�; t; f;>;?g (the monotonic language)Lfull = f:;^;_;
;�;�; t; f;>;?g (the full language)Notation 2.4 A(�) = the set of atomic formulae that appear in some formula of �. L(�) = theset of literals that appear in some formula of �.We conclude this section by examining the expressive power of the language we introducedabove. Theorem 2.6 below provides a strong evidence for its adequacy:De�nition 2.5 An operation g : FOURn ! FOUR is represented by a formula  s.t. A( ) �fp1; : : : ; png, if for every valuation M we have M( )=g(M(p1); : : : ;M(pn)).Theorem 2.6 The language Lfull is functionally complete for FOUR (i.e.: every function fromFOURn to FOUR is representable by some formula in Lfull).Note: The ten connectives of Lfull are not independent. Obviously, t = :f , a_b = :(:a^:b).Also, > = (a � a)�:(a � a), a�b = (a^>)_ (b^>)_ (a^b), ? = f 
:f , f = :(? � ?), anda
b=(a^?)_(b^?)_(a^b). Using these identities and Theorem 2.6, it follows that the languageof f:;^;�;?;>g, e.g., is functionally complete for FOUR.Our next theorem characterize the expressive power of the various fragments of the full languagewhich include at least the connectives of Lscl. It turns out that there is a correspondence betweenthese fragments and the combinations of the following conditions:[I] g(~>)=> [II] g(~x)=> ) 91� i�n xi=> [III] g(~x)=? ) 91� i�n xi=?Theorem 2.7 Let g :FOURn ! FOUR. Then:1. g is representable in f:;^;�g i� it satis�es I, II, and III.2. g is representable in f:;^;�; fg i� it satis�es II and III.3. g is representable in f:;^;�;�g i� it satis�es I and III.4. g is representable in f:;^;�;
g i� it satis�es I and II.5. g is representable in f:;^;�;
; fg i� it satis�es II.6. g is representable in f:;^;�;�;
g i� it satis�es I.7. g is representable in f:;^;�;�; fg i� it satis�es III.8. g is representable in f:;^;�;�;
; fg. 3



3 Reasoning in FOUR3.1 The basic consequence relationWe start with the simplest consequence relation which naturally corresponds to FOUR.De�nition 3.1 � j=4� if every model of � in hFOURi satis�es some formula of �.Example 3.2 Consider again the set � of Example 2.2. Although � is classically inconsistent,nontrivial conclusions about Tweety can be obtained by j=4: Tweety is a penguin, a bird, and itcannot 
y. The complementary conclusions cannot be obtained by j=4, as expected.Note: With respect to Lmcl, j=4 is identical to the set of \�rst degree entailments" in relevancelogic (see [AB75, Du86]). The exact connection is that  1; : : : ;  n j=4�1; : : : ; �m i�  1 ^ : : :^ n!�1 _ : : :_ �m is a �rst degree entailment.Proposition 3.3 [AA96] �;  j=4�;� i� � j=4 ��;�.Proposition 3.4 [AA96] j=4 is monotonic, compact, and paraconsistent ([dC74]).The consequence relation j=4 has also a corresponding sound and complete cut-free Gentzen-type proof system. See [AA94, AA96] for a detailed discussion of j=4 and this system.As we have seen, j=4 has a lot of nice properties. Still, it has some serious drawbacks as well:It is too restrictive and \overcautious". Thus it is strictly weaker than classical logic even forconsistent theories (a case in which one might prefer to use classical logic). Moreover, it totallyrejects some very useful (and intuitively justi�ed) inference rules, like the Disjunctive Syllogism:From :p and p_q one can never infer q by using j=4.3.2 Taking advantage of the other partial orderA natural approach for reducing the set of models which are used for drawing conclusions is toconsider only the k-minimal ones. The idea behind this approach is that one should not assumeanything that is not really known.De�nition 3.5 Let M1;M2 be two four-valued valuations, and � { a set of formulae.a) M1 is k-smaller than M2 (M1�kM2) if for every atomic p, M1(p)�kM2(p).b) M is a k-minimal model of � if M is a �k-minimal element of mod(�).De�nition 3.6 � j=4k� i� every k-minimal model of � in hFOURi satis�es some �2�.Note: Obviously, if � j=4� then � j=4k�.Example 3.7 Consider again Examples 2.2 and 3.2. Among the six models of � two are k-minimal:M4 and M6 (see Figure 1). Using these models we reach the same conclusions as in j=4:� j=4k bird(Tweety), � j=4k penguin(Tweety), � j=4k :fly(Tweety),� 6j=4k :bird(Tweety), � 6j=4k :penguin(Tweety), � 6j=4k fly(Tweety).4



The fact that in the last example we reached the same conclusions (at least with respect to theliterals) as in j=4 is not accidental. It is an instance of the following general proposition:Proposition 3.8 If � does not include �, then � j=4� i� � j=4k�.Sketch of proof: The \only if" direction is trivial. For the other direction, suppose that � j=4k�,and let M be some model of �. Using Zorn lemma and the fact that FOUR has a �nite numberof elements it can be shown that there is a k-minimal model N of � s.t. M�kN . Thus there is a�2� s.t. N(�)2D. Since all the operators that correspond to the connectives of � are monotonew.r.t. �k , M(�) �k N(�). But D is upwards-closed w.r.t. �k , therefore M(�)2D as well. 2Corollary 3.9 The logics j=4 and j=4k are identical w.r.t. Lmon.Proposition 3.8 shows that as long as we are interested in inferring formulae that do not include�, we can indeed limit ourselves to k-minimal models without any loss of generality. Example 3.7shows that this approach may lead to a considerable reduction in the number of models that shouldbe checked.The situation is completely di�erent when we do allow the implication connective to appear onthe right-hand side of j=4k :Example 3.10 In Example 2.2, � j=4k :penguin(Tweety)�f , although � 6j=4:penguin(Tweety)�f .3 It follows that in the full language j=4k 6= j=4. This can be strengthened as follows:Proposition 3.11 j=4k is nonmonotonic.Proof: q j=4k :q � p, since fp : ?; q : tg is the only k-minimal model of q. On the other hand,q;:q 6j=4k:q�p, since fp :?; q :>g is the only k-minimal model of fq;:qg. 2Proposition 3.12 j=4k is a plausibility logic in the sense of Lehmann ([Le92]). I.e., it satis�esinclusion (�;  j=4k ), right monotonicity (if � j=4k�, then � j=4k ;�), cautious left monotonicity (if� j=4k  and � j=4k�, then �;  j=4k�)4, and cautious cut (if �;  j=4k� and � j=4k ;�, then � j=4k�).3.3 A consequence relation for preferring consistencyRecall that the basic idea in taking the k-minimal models was to avoid meaningless (or redundant)information. A \by-product" of this approach is a reduction in the level of inconsistency of ourset of assumptions; When we assume less, the tendency of getting into con
icts decreases. Inwhat follows we shall use a more direct approach of preserving consistency: Given a (possiblyinconsistent) theory �, the idea is to give precedence to those models of � that minimize theamount of inconsistent beliefs in �.Notation 3.13 Let M be a four-valued valuation. Denote: I1= f>g and let I(M; I1)= fp j p isatomic and M(p)2I1g.Intuitively, I1 is the set of inconsistent values of hFOURi, and I(M; I1) is the inconsistentassignments of M w.r.t. I1.3The meaning of  �f is that  cannot be true. This, of course, is stronger than saying that  is not a theorem,or even that : is a consequence of the assumptions.4This rule was �rst proposed in [Ga85] 5



De�nition 3.14 Let � be a set of formulae, and M;N | models of �.a) M is more consistent than N w.r.t. I1 (M>I1N) if I(M; I1)�I(N; I1).b) M is a most consistent model of � w.r.t. I1 (I1-mcm, in short), if there is no other model of �which is more consistent thanM w.r.t. I1. The set of all the I1-mcms of � is denoted mcm(�; I1).De�nition 3.15 � j=4I1� if every I1-mcm of � satis�es some formula of �.Example 3.16 Consider again Examples 2.2, 3.2, 3.7, and 3.10. Denote by �0 the knowledge-basebefore Tweety is known to be a penguin, i.e.:�0 = f bird(Tweety) 7!fly(Tweety), penguin(Tweety)�bird(Tweety),penguin(Tweety)�:fly(Tweety), bird(Tweety) g.�0 has 18 models altogether. They are listed in Figure 2.Model No. bird(Tweety) fly(Tweety) penguin(Tweety)M1 { M8 > >; f >; t; f;?M9 { M12 > t;? f;?M13 { M16 t > >; t; f;?M17 { M18 t t f;?Figure 2: The models of �0Heremcm(�0; I1)=fM17, M18g. Thus, using j=4I1 one can infer that bird(Tweety) (but :bird(Tweety)is not true), and fly(Tweety) (while :fly(Tweety) is not true). Also, nothing is yet known aboutTweety being a penguin.Suppose now that a new data arrives: penguin(Tweety). The models of the modi�ed knowledge-base, �, are listed in Figure 1. The mcms of � w.r.t. I1 are denoted there by M4 and M6. Therefore,according to the new information one should alter his beliefs and infer the intuitive conclusions,that bird(Tweety), penguin(Tweety), and :fly(Tweety). The complements of these assertionscannot be inferred by j=4I1 , as one expects.Proposition 3.17 j=4I1 is: (a) paraconsistent, (b) nonmonotonic.Proof: For part (a) note that p;:p 6j=4I1 q. A countermodel assigns > to p and f to q. For part (b)consider, e.g., �=fp; :p_:qg. Then � j=4I1 :q while � [ fqg 6j=4I1 :q. 2Proposition 3.18 j=4I1 is a plausibility logic (see Proposition 3.12).A we have already noted, one of the advantages of j=4I1 w.r.t. j=4 is that the set of modelsneeded for drawing conclusions from the formers is never bigger than that of the latter. In thefollowing proposition we consider cases in which it is possible to reduce the amount of the relevantmodels even further, without changing the logic:Proposition 3.19 Suppose that the formulae of � are in the language Lmon (i.e., without �).Then � j=4I1� i� every k-minimal element of mcm(�; I1) is a model of some �2�. 55This result is a generalization of [AA98, Theorem 4.3] to the case that � is in�nite and may contain implications.6



Note: Proposition 3.19 is no longer true when � occurs in the conclusions. For a counter-exampleconsider, e.g., � = fp; p_qg. The k-minimal element of mcm(�; I1) assigns t to p and ? to q,therefore q�:q is true in it. However, p; p_q 6j=4I1 q�:q.We conclude this subsection by comparing j=4I1 with j=4, j=4k, and with the two-valued conse-quence relation:Proposition 3.20a) If � j=4� then � j=4I1�.b) If � j=4k� then � j=4I1 �, provided that the formulae of � do not contain �.c) j=4I1 6= j=4 and j=4I1 6= j=4k .Proof: Part (a) is immediate from the de�nition of j=4I1 . Part (b) follows from part (a) andProposition 3.8. Finally, part (c) follows from Proposition 3.17(b) and its proof, since both j=4 andj=4k are monotonic w.r.t. the language of f:;_g. 2Proposition 3.21 If �;  are in the classical language Lcl and � j=4I1  , then  classically followsfrom �.In the monotonic classical language Lmcl we have a partial converse:Proposition 3.22 Let � be a classically consistent set in Lmcl. Suppose also that  is a formulain CNF, none of its conjuncts is a tautology.6 Then  classically follows from � i� � j=4I1  .Proposition 3.22 together with Proposition 3.19 entail that for checking whether a formula inLmcl classically follows from a consistent set �, it is su�cient to perform the following steps: (a)convert the formula to a conjunctive normal form, (b) drop all the conjuncts which are tautologies,and (c) check the remaining formula only w.r.t. the k-minimal I1-mcms of �.73.4 A consequence relation for preferring classical assignmentsThe approach presented in this subsection is similar to that of the previous one. The di�erence isthat this time we prefer de�nite knowledge to an uncertain one. In particular, the approach takenhere prefers classical inferences whenever their use is possible.Notation 3.23 Let M be a four-valued valuation. Denote I2=f>;?g and let I(M; I2)=fp j p isatomic and M(p)2I2g.This time I2 is the set of the nonclassical values of FOUR, and I(M; I2) corresponds to thenonclassical assignments of the valuation M .De�nition 3.24 Let � be a set of formulae, and M;N { models of �.a) M is more consistent than N w.r.t. I2 (M>I2N) if I(M; I2)�I(N; I2).b) M is a most consistent model of � w.r.t. I2 (I2-mcm, in short), if there is no other model of �which is more consistent than M w.r.t. I2. The I2-mcms of � are denoted by mcm(�; I2).6Classically, every formulae which is not a tautology is equivalent to some formula of this form.7This process might be useful in case � is a �xed theory, but the check should be made for many di�erent potentialconclusions. Note that if � is consistent than the number of its k-minimal I1-mcms is never greater than the numberof its classical models, and is frequently smaller. 7



De�nition 3.25 � j=4I2� if every I2-mcm of � satis�es some formula of �.Example 3.26 Consider again Example 3.16 and Figure 2. When taking I2 as the set of the\inconsistent" values, M17 | the only classical model | is also the only I2-mcm of �0. It followsthat according to j=4I2 one can infer that bird(Tweety), fly(Tweety), and :penguin(Tweety).The inverse assertions are not true, as expected.Now, let � = �0 [ fpenguin(Tweety)g. As in the case of j=4I1 , mcm(�; I2) consists of thevaluations denoted M4 and M6 in Figure 1. The new conclusions are, therefore, bird(Tweety),penguin(Tweety), and :fly(Tweety). Again, the complements of these assertions cannot beinferred by j=4I2 , as expected.As in the case of j=4I1 we have the following propositions:Proposition 3.27 j=4I2 is: (a) paraconsistent, (b) nonmonotonic.Proposition 3.28 j=4I2 is a plausibility logic (see Proposition 3.12).Proposition 3.29a) If � j=4� then � j=4I2�.b) If � j=4k� then � j=4I2 �, provided that the formulae of � do not contain �.c) j=4I2 6= j=4 and j=4I2 6= j=4k .As in the case of j=4I1 , in certain cases it is possible to reduce the amount of models that haveto be considered for making conclusions in j=4I2 :Proposition 3.30 Suppose that � is �nite, and the formulae of � are in Lmon. Then � j=4I2 � i�each k-minimal element of mcm(�; I2) satis�es some �2�.Notes:(1) As in Proposition 3.19, the condition about � is necessary in Proposition 3.30 as well: Consider,e.g., � = fp�:p;:p� pg. The k-minimal element of mcm(�; I2) assigns ? to p, and so p� f istrue in it. On the other hand, � 6j=4I2 p�f .(2) The condition in Proposition 3.30 that � should be �nite is also necessary: If � is not �nite,it is not always su�cient to consider only the k-minimal elements of mcm(�; I2) for inferring� j=4I2 �, even if the formulae in � are all in the language without �. To see that, consider thefollowing in�nite set: � = fpi_:pi � pi+1^:pi+1 j i� 1g. It is easy to verify that mcm(�; I2) =fM t1;Mf1 ;M t2;Mf2 ; : : :g, where for every j � 1, M tj assigns ? to fp1; : : : ; pj�1g, t to pj , and >to fpj+1; pj+2; : : :g. Mfj is the same valuation as M tj , except that pj is assigned f instead of t.Therefore � 6j=4I2 p1. On the other hand, mcm(�; I2) has no k-minimal element (since for everyj � 1, M tj+1 <k M tj and Mfj+1 <k Mfj ), therefore everything would have followed from this set (inparticular p1), had we used only the k-minimal I2-mcms of � for drawing conclusions.(3) In the monotonic classical language, � may be in�nite:Proposition 3.31 Suppose that the formulae of � are in Lmcl. Then � j=4I2 � i� each k-minimalelement of mcm(�; I2) satis�es some �2�.Proof: By Proposition 3.34 below, in this case every I2-mcm of � is also k-minimal in mcm(�; I2),and so the claim follows. 2 8



We conclude this subsection by comparing j=4I2 with the other inference relations consideredhere:Proposition 3.32a) If � j=4� then � j=4I2�.b) If � j=4k� then � j=4I2 �, provided that the formulae of � do not contain �.c) j=4I2 6= j=4 and j=4I2 6= j=4k .Proof: The proof is the same as that of Proposition 3.20, using j=4I2 instead of j=4I1 . 2Proposition 3.33 Suppose that �;  are in Lcl.a) If � j=4I2  , then  classically follows from �.b) Suppose that � is classically consistent. Then  classically follows from � i� � j=4I2  .Proof: The proof of part (a) is the same as that Proposition 3.21. Part (b) follows from the factthat if � is classically consistent then the set of its classical models is the same as the set of theI2-mcms of � in FOUR. 2It follows that j=4I2 is a nonmonotonic consequence relation that is equivalent to classical logicon consistent theories, and is nontrivial w.r.t. inconsistent theories.Another important observation is that relative to the monotonic classical language, j=4I2 isactually a three valued logic:Proposition 3.34 Suppose that the formulae of � are in Lmcl and that M is an I2-mcm of �.Then there is no formula  s.t. M( )=?.Proof: Since ft; f;>g is closed under :;_ and ^, it is su�cient to show the proposition only foratomic formulae. De�ne a transformation g : FOUR ! ft; f;>g as follows: g(?) = t, g(b) = botherwise. Obviously, for every atom p, g�M(p)�kM(p). Since every connective in the languageof � is k-monotone, 8
 2 � g�M(
)�kM(
). Now, D is upward-closed w.r.t. �k , and so 8
 2�g�M(
)2D. Thus g�M is also a model of �. Since g�M�I2M , necessarily g�M=M . 2Finally, we compare j=4I1 and j=4I2 : In general, neither of these consequence relations is strongerthan the other. Consider, for instance, �=fp�:p;:p�pg. The only I1-mcm of � assigns ? to p,while this valuation as well as the one in which p is assigned > are the I2-mcms of �. Therefore,� j=4I1 p�q while � 6j=4I2 p�q. On the other hand, j=4I2 p_:p but 6j=4I1 p_:p.Proposition 3.35 Suppose that A(�;  ) = fp1; p2; : : :g. Then �; p1_:p1; p2_:p2; : : : j=4I1  i��; p1_:p1; p2_:p2; : : : j=4I2  .Proof: Denote: �0=�[fp1_:p1; p2_:p2; : : :g. Then mcm(�0; I1)=mcm(�0; I2), since each modelof �0 assigns to the formulae in A(�;  ) values from ft; f;>g. 2Proposition 3.36 Let �;�;  be in Lmcl.a) If � j=4I1 � then � j=4I2�.b) If  is a CNF-formula, none of its conjuncts is a tautology, then � j=4I1  i� � j=4I2  .Outline of proof: Part (a) follows from the fact that in Lmcl every I2-mcm of � is also an I1-mcmof �. For showing part (b) it su�ces to show the claim for a disjunction  of literals that does notcontain an atomic formula and its negation. So assume that � 6j=4I1  . Then there is an I1-mcm9



M of � s.t. M( ) 62 D. Consider the valuation M 0, de�ned as follows: M 0(p)= t if M(p) =? forp 62L( ); M 0(p)=f if M(p)=? for p2L( ); and M 0(p)=M(p) otherwise. M 0 is an I2-mcm of �and M 0( ) 62D, thus � 6j=4I2  . 2Note: The converse of part (a) of Proposition 3.36 is not true in general. For instance, j=4I2 p_:pwhile 6j=4I1 p_:p.3.5 An example: Four-valued diagnosisThe example below demonstrates a usage of the formalisms considered here in a practical problem:Figure 3 depicts a circuit that consists of six components: two and-gates A1 and A2, two xor-gatesX1 and X2, and two or-gates O1 and O2. It shows also the results of an experiment which wasdone with this circuit. According to this experiment the circuit is faulty; the values of the outputlines of X2 and O1 are not the expected ones. The third output line (that of O2) does have theexpected value, although one of its inputs is not known. Our goal is to �nd some minimal set ofcomponents the collective failure of which can explain the observed malfunction.
----- -- --- -- --
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Figure 3: A faulty circuitA description of this circuit, together with the results of the experiment, is given below. Here,every non-grounded formula represents its set of ground instances. We write  $ � instead of( ! �) ^ (� !  ), where  ! � = ( � �) ^ (:��: ). Note that in FOUR, M( $ �)2Di� M( )=M(�). Also, 2 abbreviates the formula  ^ (: �f). Its intuitive meaning is that  is absolutely true. Since we know in advance the values of three input wires and of all the outputwires, as well as the kind of each gate in the system, we attached this certainty operator (2) to thecorresponding predicates. The correct behavior of each gate, on the other hand, is only a defaultassumption. Therefore the predicate ok is not preceded by the 2-operator. Note that the resultingknowledge-base is classically inconsistent.andG(x) ^ ok(x) 7! (out(x) $ (in1(x) ^ in2(x))),88Recall that 7! denotes the material implication. 10



xorG(x) ^ ok(x) 7! (out(x) $ (in1(x) + in2(x))),9orG(x) ^ ok(x) 7! (out(x) $ (in1(x) _ in2(x))),:(andG(x) ^ orG(x)) ^ :(andG(x) ^ xorG(x)) ^ :(xorG(x) ^ orG(x))in1(X1) $ in1(A1), in1(X1) $ in1(O2), in2(X1) $ in2(A1),in1(A2) $ in2(X2), out(X1) $ in2(A2), out(X1) $ in1(X2),out(A1) $ in2(O1), out(A2) $ in1(O1),2andG(A1), 2andG(A2), 2xorG(X1), 2xorG(X2), 2orG(O1), 2orG(O2),2in1(X1), 2:in2(X1), 2in1(A2), 2out(X2), 2:out(O1), 2out(O2),ok(A1), ok(A2), ok(X1), ok(X2), ok(O1), ok(O2).Denote the above knowledge-base by �. In hFOURi, � has 232 models, but just three k-minimalones (which in this case are also the I1-mcms of �). The table of Figure 4 lists these models. Wehave omitted from it predicates that have the same value in all the models of �, and any predicatethat always has the same value as some other predicate that already appears in the table.Model in2 in1 in2 in2 ok ok ok ok ok okNo. A2 O1 O1 O2 A1 A2 X1 X2 O1 O2M1 f f f ? t t > t t tM2 t f f ? t > t > t tM3 t t f ? t t t > > tFigure 4: The k-minimal models of �From the table it follows that:� j=4k :ok(X1)_ (:ok(X2)^:ok(A2))_ (:ok(X2)^:ok(O1))This exactly corresponds to the diagnoses for the possible causes of the malfunction of a similar(but simpler) circuit in [Re87, Example 2.2], [Gi88, Sections 15,16], and [AA98, Section 6.2].4 ConclusionIn this work we have examined the applicability of the four-valued structure FOUR to computerizedreasoning. After de�ning a language which is functionally complete for FOUR, we have consideredseveral consequence relations and examined their main properties. We have seen that these relationshave many desirable properties, which are particularly suitable for commonsense reasoning. Wehave shown that these relations might be used for overcoming some of the drawbacks of classicallogic. Finally, we demonstrated the usefulness of the formalisms presented here through a practicalexample in the area of model-based diagnosis.The outcome of this paper is, so we believe, a vindication of Belnap's thesis that \the way acomputer should think" should be based on the four basic values.9To avoid overloading, we use here + (rather than �) for the xor operation.11
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