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Abstract. Explainable artificial intelligence (XAI) has gained increasing interest in
recent years in the argumentation community. In this paper we consider this topic
in the context of logic-based argumentation, showing that the latter is a particu-
larly promising paradigm for facilitating explainable AI. In particular, we provide
two representations of abductive reasoning by sequent-based argumentation frame-
works and show that such frameworks successfully cope with related challenges,
such as the handling of synonyms, justifications, and logical equivalences.
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1. Introduction

EXplainable Artificial Intelligence (XAI) is an AI research area aimed at providing ex-
planation to inferences and decisions made by intelligent systems [1]. Argumentative
XAI is a fast growing area that studies XAI by means of computational argumentation
(see, e.g., the recent survey papers in [2,3]).

Computational argumentation is based here on argumentation frameworks (AFs) [4],
which are pairs of set of arguments and attack relation between the arguments, where
conclusions are derived by determining subsets of arguments that can collectively be ac-
cepted in the framework. In logic-based argumentation [5,6] the arguments are instan-
tiated by applying an underlying logic. Studying argumentative XAI from a logic-based
perspective has several advantages. Beyond the fact that explanations in this context can
be justified in a logical and rational manner, a logic-based setting is especially suitable
for modeling abductive reasoning [7], which can be viewed as inference to the best ex-
planation. Thus, it allows also for ‘backwards reasoning’, seeking for explanations for
drawing conclusions from a set of observations.

In this work, we show that logic-based argumentation (and in particular sequent-
based argumentation [6,8]) provides robust mechanisms for abductive reasoning in argu-
mentative settings. In particular, we consider two ways in which abductive reasoning can
be modeled by sequent-based argumentation. The first one is based on the derived argu-
mentative conclusions, where explanations can be determined in terms of entailment re-
lations. In the other approach, abductive reasoning is represented within the frameworks,
where explanations are incorporated in the arguments and in the attack relations. The two
approaches are then related and are used for providing information on how explanations
are justified relative to the assumptions.

1Supported by the Israel Science Foundation (grant 550/19).



2. Preliminaries; Sequent-Based Argumentation

In this paper, we denote by L a propositional language. Atomic formulas in L are denoted
by p,q,r, formulas are denoted by φ ,ψ,δ ,γ,ε , sets of formulas are denoted by X, S,
E, and finite sets of formulas are denoted by Γ,∆,Π,Θ, all of which can be primed or
indexed. The set of atomic formulas appearing in the formulas of S is denoted Atoms(S).
The set of the (well-formed) formulas of L is denoted WFF(L), the power set of WFF(L)
is denoted ℘(WFF(L)). Sequent-based argumentation is then described as follows:

• The base logic is an arbitrary propositional logic, namely a pair L= 〈L,`〉, consisting
of a language L and a consequence relation ` on ℘(WFF(L))×WFF(L). ` is assumed
to satisfy: reflexivity (S ` φ if φ ∈ S), monotonicity (if S′ ` φ and S′ ⊆ S, then S ` φ ),
and transitivity (if S ` φ and S′,φ ` ψ then S,S′ ` ψ).

Let L = 〈L,`〉 be a logic and let S be a set of L-formulas. The `-closure of S is
the set CNL(S) = {φ | S ` φ}. We say that S is `-consistent, if there are no formulas
φ1, . . . ,φn ∈ S for which ` ¬(φ1∧·· ·∧φn).

•The language L contains at least a `-negation operator¬, satisfying p 6` ¬p and¬p 6` p
(for atomic p), and a `-conjunction operator ∧, for which S ` ψ ∧φ iff S ` ψ and S ` φ .
We denote by

∧
Γ the conjunction of all the formulas in Γ. We shall sometimes assume

the availability of a deductive implication→, satisfying S,ψ ` φ iff S ` ψ → φ .

• Arguments based on a logic L = 〈L,`〉 are single-conclusioned L-sequents [9],
namely: expressions of the form Γ⇒ ψ , where⇒ is a symbol that does not appear in L,
and such that Γ `ψ . Γ is called the argument’s support (also denoted Supp(Γ⇒ψ)) and
ψ is the argument’s conclusion (denoted Conc(Γ⇒ ψ)). Given a set S of L-formulas
(premises), an S-based argument is an L-argument Γ⇒ ψ , where Γ ⊆ S. We denote by
ArgL(S) the set of all the L-arguments that are based on S.

We distinguish between two types of non-intersecting premises: a `-consistent set
X of strict (i.e., non-attacked) premises, and a set S of defeasible premises. Their non-
defeasible character will give them a special status when we define argumentative attacks
below. We write ArgXL (S) for the set ArgL(X∪S). In particular, Arg /0

L(S) = ArgL(S).

• Attack rules are sequent-based inference rules for representing attacks between se-
quents. Such rules consist of an attacking argument (the first condition of the rule), an
attacked argument (the last condition of the rule), conditions for the attack (the other con-
ditions of the rule) and a conclusion (the eliminated attacked sequent). The outcome of
an application of such a rule is that the attacked sequent is ‘eliminated’ (or ‘invalidated’;
see below the exact meaning of this). The elimination of Γ⇒ φ is denoted by Γ 6⇒ φ .

Given a set X of strict (non-attacked) formulas, some common attack rules are:

• Defeat:
Γ1⇒ ψ1 ψ1⇒¬

∧
Γ2 Γ2,Γ

′
2⇒ ψ2

Γ2,Γ
′
2 6⇒ ψ2

(Γ2 6= /0, Γ2∩X= /0)

• Direct Defeat:
Γ1⇒ ψ1 ψ1⇒¬γ Γ2,γ ⇒ ψ2

Γ2,γ 6⇒ ψ2
(γ 6∈ X)

• Undercut:
Γ1⇒ ψ1 ψ1⇒¬

∧
Γ2 ¬

∧
Γ2⇒ ψ1 Γ2,Γ

′
2⇒ ψ2

Γ2,Γ
′
2 6⇒ ψ2

(Γ2 6= /0, Γ2∩X= /0)



• Direct Undercut:
Γ1⇒ ψ1 ψ1⇒¬γ ¬γ ⇒ ψ1 Γ2,γ ⇒ ψ2

Γ2,γ 6⇒ ψ2
(γ 6∈ X)

• Consistency Undercut:
Γ1⇒¬

∧
Γ2 Γ2,Γ

′
2⇒ ψ

Γ2,Γ
′
2 6⇒ ψ

(Γ2 6= /0,Γ2∩X= /0,Γ1⊆X)

For instance, in the particular case where Γ1 = /0, consistency undercut indicates that an
argument with an inconsistent support is eliminated.

• A (sequent-based) argumentation framework (AF), based on the logic L and the
attack rules in AR, for a set of defeasible premises S and a `-consistent set of strict
premises X, is a pair AFX

L,AR(S) =
〈
ArgXL (S),A

〉
where A ⊆ ArgX

L (S)×ArgX
L (S) and

(a1,a2) ∈ A iff there is a rule RX ∈ AR, such that a1 RX-attacks a2. In what follows we
shall use AR and A interchangeably, denoting both of them by A.

• Semantics of sequent-based frameworks are defined as usual by Dung-style exten-
sions [4]: Let AF = AFX

L,A(S) =
〈
ArgX

L (S),A
〉

be an argumentation framework and let
E ⊆ ArgX

L (S) be a set of arguments. It is said that: E attacks a if there is an a′ ∈ E such
that (a′,a) ∈ A, E defends a if E attacks every attacker of a, and E is conflict-free (cf) if
for no a1,a2 ∈ E it holds that (a1,a2) ∈ A. We say that E is admissible if it is conflict-
free and defends all of its elements. A complete (cmp) extension of AF is an admissible
set that contains all the arguments that it defends. By this, various argumentative seman-
tics may be defined. For instance, the grounded (grd) extension of AF is the ⊆-minimal
complete extension of ArgXL (S), a preferred (prf) extension of AF is a ⊆-maximal com-
plete extension of ArgX

L (S), and a stable (stb) extension of AF is a conflict-free set in
ArgXL (S) that attacks every argument not in it.2 We denote by Extsem(AF) the set of all
the extensions of AF of type sem.

•Entailments induced from an argumentation framework AF=AFX
L,A(S)= 〈ArgX

L (S),A〉
are based on the extensions derived from AF under a semantics sem:

• Skeptical entailment: S |∼∩,semL,A,X φ if there is an argument a ∈
⋂
Extsem(AF) such

that Conc(a) = φ .
• Weakly skeptical entailment: S |∼e,sem

L,A,X φ if for every extension E ∈ Extsem(AF)
there is an argument a ∈ E such that Conc(a) = φ .

• Credulous entailment: S |∼∪,semL,A,X φ iff there is an argument a ∈
⋃
Extsem(AF) such

that Conc(a) = φ .

Example 1. Consider an AF, based on classical logic CL and the following set of defea-
sible assumptions:

S=

{
clear skies, rainy, clear skies→¬rainy, rainy→¬sprinklers,
rainy→ wet grass, sprinklers→ wet grass

}
Suppose further that there are no strict assumptions (X= /0) and that the only attack rule
is undercut (Ucut). Then, for instance, the arguments

a1 : clear skies, clear skies→¬rainy⇒¬rainy,
a2 : rainy, clear skies→¬rainy⇒¬clear skies

2Further extensions and the relations among them are discussed e.g. in [10].



Ucut-attack each other. In this case there are two stable/preferred extensions E1 and E2,
where a1 ∈ E1 and a2 ∈ E2. It follows, for instance, that with respect to these seman-
tics, wet grass credulously follows from the framework (since, e.g. rainy, rainy→
wet grass⇒ wet grass is in E2), but it does follow skeptically (since there is no ar-
gument in E1 whose conclusion is wet grass).

3. Abductive Reasoning in Sequent-Based Frameworks

Abductive reasoning is a common method of providing explanations in logic-based con-
texts. Sequent-based formalisms are particularly adequate for this, as instead of the usual
understanding of a sequent Γ,∆⇒ φ by ‘φ is a conclusion of Γ∪∆’, one may intuitively
read it as ‘∆ is a (prima facia) explanation of φ in the presence of Γ’. This kind of ‘back-
ward reasoning’ is also our starting point for showing the usefulness of sequent-based
frameworks for abductive reasoning. We then proceed in two directions, external and
internal ones, for defining abductive reasoning in sequent-based argumentation.

3.1. Explanations: External View

We start with an ‘external’ approach, which is based on argumentative entailment rela-
tions. Let L= 〈L,`〉 be a logic and |∼ a non-monotonic entailment induced by it.3 Given
sets of strict (X) and defeasible (S) assumptions, an explanation E of an explanandum φ

with respect to |∼, is a finite set that satisfies at least the following two properties:

Sufficiency (w.r.t. |∼): X,S,E |∼ φ

Consistency (w.r.t. `): X 6` ¬
∧
E

Thus, the set of explanations should be `-consistent with the strict assumptions, and
together with the strict and defeasible assumptions they are sufficient for |∼-inferring the
explanandum φ . We call these two conditions the basic explanation properties.

The basic explanation properties per-se may sometimes be too weak, and so they are
usually accompanied with further conditions. The following ones are inspired by [11]:

Non-vacuity (w.r.t. `): E 0 φ

Minimality (w.r.t. |∼): S,E′ 6|∼ φ for every E′ for which E,X `
∧
E′ and E′,X 0

∧
E.

Non-vacuity prevents self-explanations, and minimality assures the conciseness of the
explanations. In order to make sure that the explanation is indeed necessary (i.e., the ex-
planandum cannot be inferred from the assumptions alone), the property of non-idleness
(X,S 6` φ ) or strict non-idleness (X 0 φ) may be required. Here it will be convenient to
use the following argumentative variations of this property:

Non-idleness (w.r.t. sem): there is no a ∈
⋃
Extsem(AFX

L,A(S)) s.t. Conc(a) = φ .

Strict non-idleness (w.r.t. sem): there is no a ∈
⋃
Extsem(AFX

L,A( /0)) s.t. Conc(a) = φ .

By the above principles, external argumentative explanations are defined as follows:

3In our case, |∼ is the entailment induced from a framework that is based on L.



Definition 1. Given a framework AF = AFX
L,A(S) based on a logic L = 〈L,`〉, a finite

set E of L-formulas is called:

• external skeptical sem-explanation of φ if it satisfies |∼∩,semL,A,X -sufficiency (X,S,E
|∼∩,semL,A,X φ ), `-consistency (X 6` ¬

∧
E), and holds in every sem-extension: for every

E ∈ Extsem(AFX
L,A(S∪E)) there is a ∈ E, such that Conc(a) =

∧
E.

• external weakly-skeptical sem-explanation of φ if it satisfies |∼e,sem
L,A,X -sufficiency

(X,S,E |∼e,sem
L,A,X φ ), `-consistency (X 6` ¬

∧
E), and holds in every sem-extension:

for every E ∈ Extsem(AFX
L,A(S∪E)) there is a ∈ E, such that Conc(a) =

∧
E.

• external credulous sem-explanation of φ if it satisfies |∼∪,semL,A,X -sufficiency (X,S,E
|∼∪,semL,A,X φ ), `-consistency (X 6` ¬

∧
E), and holds in some sem-extension: there is

some E ∈ Extsem(AFX
L,A(S∪E)) and a ∈ E, such that Conc(a) =

∧
E.

Example 2. Consider again the framework in Example 1. Note that E= {sprinklers}
is a (stable and preferred) credulous explanation for wet grass. Indeed, using the no-
tations of Example 1, the framework that is based on S∪E has two stable/preferred ex-
tensions: E′1 and E′2 = E2 (see Figure 1). In E′1 the grass is wet since the sprinklers are
activated, and in E′2 the grass is wet since it rains.

clear skies⇒ clear slies

sprinklers⇒ sprinklers

sprinklers,rainy→¬sprinklers
⇒¬rainy

clear skies,clear skies→¬rainy
⇒¬rainy

sprinklers,sprinklers→ wet grass

⇒ wet grass

rainy⇒ rainy

rainy,rainy→¬sprinklers
⇒¬sprinklers

rainy,clear skies→¬rainy
⇒¬clear skies

rainy,rainy→ wet grass

⇒ wet grass

E1 E2

Figure 1. Part of the AF of Example 2. The arguments with dark background are added by the explanation.

3.2. Explanations: Internal View

We now turn to the ‘internal’ approach, where abductive explanations are handled by
ingredients of the framework. We do so by considering another type of sequents, called
‘abductive sequents’. These are expressions of the form φ ⇐ Γ, [ε],4 and it intuitively
means that ‘φ may be inferred from Γ under the assumption that ε holds’. Note that
while Γ ⊆ S∪X, ε may not be an assumption, but rather a hypothetical explanation of
the conclusion.

4Note the reverse direction of the sequent sign, to emphasize the backward inference in this case.



Abductive sequents may be produced by the following rule that roughly models the
usual idea of abductive inference as backwards reasoning:

ε,Γ⇒ φ

φ ⇐ Γ, [ε]
(Abduction)

In our running example, this rule will allow us to produce abductive sequents such as

wet grass⇐ [sprinklers], sprinklers→ wet grass

that provides an alternative explanation to the wetness of the grass (i.e., sprinklers, in
addition to rainy), or

¬rainy⇐ [sprinklers], rainy→¬sprinklers

that provides another possible evidence for refuting the defeasible assumption that it is
rainy (i.e., sprinklers, in addition to the assumption that the sky is clear).

Since abductive reasoning is a form of non-monotonic reasoning, which in logic-
based argumentation is modeled with the attack relations, we need a way to attack ab-
ductive sequents. To this end, we consider rules similar to those from Section 2, e.g.:

Γ1⇒ φ1 φ1⇒¬γ φ2⇐ [ε], Γ2

φ2 6⇐ [ε], Γ2
γ ∈ (Γ2∪{ε})\X (Abductive Direct Defeat)

which models an attack on a subset of the assumptions and a hypothetical explanation of
an abductive sequent. Note that this attack rule assures, in particular, the consistency of
explanations with the strict assumptions, thus it renders the following rule admissible:

Γ1⇒¬ε φ ⇐ [ε], Γ2

φ 6⇐ [ε], Γ2
Γ1 ⊆ X (Consistency)

Abductive reasoning has to fulfill certain requirements to ensure proper behavior also in
the internal view. This time, attack rules may be introduced for obtaining counterparts of
the properties discussed in Section 3.1 for the external view. Note that, since abductive
sequents are now derived according to the underlying sequent calculus and the abduction
rule introduced above, the sufficiency property is automatically satisfied. Attack rules for
the other properties are given next.

Non-vacuity Rules for preventing self-explanations:

` ε → φ φ ⇐ [ε]

φ 6⇐ [ε]
(Non Vacuity)

Thus, in our running example, wet grass⇐ [wet grass] is excluded.

Minimality Rules for assuring that explanations will be as general as possible.

φ ⇐ [ε1], Γ1 ` ε2→ ε1 0 ε1→ ε2 φ ⇐ [ε2], Γ2

φ 6⇐ [ε2], Γ2
(Minimality)



This rule assures that in our example sprinklers∧irrelevant fact should not ex-
plain wet grass, since sprinklers is a more general and so more relevant explanation.

Non-Idleness The [strict] assumptions should not already explain the explanandum.

Γ1⇒ φ φ ⇐ [ε], Γ2

φ 6⇐ [ε], Γ2
(Defeasible Non Idleness)

Γ1⇒ φ φ ⇐ [ε], Γ2

φ 6⇐ [ε], Γ2
Γ1 ⊆ X (Strict Non Idleness)

Note that defeasible non-idleness excludes the explanation sprinklers for wet grass,
since the latter is already inferred from the defeasible assumptions (assuming that it is
rainy), while strict non-idleness will allow this alternative explanation (since wet grass

cannot be inferred from the strict assumptions).

The next step is to adapt sequent-based argumentation frameworks to an abductive
setting, using abductive sequents, the new inference rule, and additional attack rules.
Given a sequent-based framework AFX

L,A(S), an abductive sequent-based framework
AAFX

L,A?(S) is constructed by adding to the arguments in ArgX
L (S) also abductive argu-

ments, produced by Abduction, and where A? is obtained by adding to the attack rules in
A also (some of) the rules for maintaining explanations that are described above. Expla-
nations according to the internal view are then defined as follows:

Definition 2. Given an abductive sequent-based framework AAFX
L,A?(S) as described

above, a finite set E of L-formulas is called:

• internal skeptical sem-explanation of φ , if there is Γ ⊆ S such that the abductive
argument φ ⇐ [

∧
E], Γ is in every sem-extension of AAFX

L,A?(S).
• internal weakly-skeptical sem-explanation of φ , if in every sem-extension of
AAFX

L,A?(S) there is an abductive argument φ ⇐ [
∧
E], Γ for some Γ⊆ S

• internal credulous sem-explanation of φ , if there is Γ⊆ S such that the abductive
argument φ ⇐ [

∧
E], Γ is in some sem-extension of AAFX

L,A?(S).

Example 3. As noted above, wet grass⇐ [sprinklers], sprinklers→ wet grass

is producible by the Abduction rule from the sequent-based framework in Example 1,
and belongs to a stable/preferred extension of the corresponding abductive sequent-based
framework. Therefore, sprinklers credulously stb/prf-explains wet grass also ac-
cording to Definition 2.

3.3. Explanations: Relating the Two Views

Next, we relate the two approaches for producing argumentative explanations by ab-
ductive reasoning in sequent-based frameworks. In what follows we restrict ourselves
to singleton explanations in the assumptions language.5 We consider {ConUcut} ⊂ A⊆
{ConUcut,DirectDefeat,DirectUndercut}. The main results are the following:

5Thus, using the notations of the previous sections, E= {ε}, where Atoms(ε)⊆ Atoms(S∪X).



Theorem 1. Let AF = AFX
L,A(S) where L = CL, A is as specified above, and AAF =

AAFX
L,A?(S) where A? = A∪{Abductive Direct Defeat}. For sem ∈ {stb,prf}, E is an

external weakly skeptical (resp. skeptical) sem-explanation of φ w.r.t. AF iff E is an
internal weakly skeptical (resp. skeptical) sem-explanation of φ w.r.t. AAF. Moreover,
E satisfies non-vacuity and/or strict non-idleness iff the non-vacuity and/or the strict
non-idleness attack rule is added to A?.

Theorem 2. Let AF = AFX
L,A(S) where L = CL, A is as specified above, and AAF =

AAFX
L,A?(S) where A? = A∪{Abductive Direct Defeat}. Then E is an external weakly

skeptical (resp. skeptical) grd-explanation of φ w.r.t. AF iff E is an internal weakly skep-
tical (resp. skeptical) grd-explanation of φ w.r.t. AAF. Moreover, E satisfies non-vacuity
and/or strict non-idleness iff the non-vacuity and/or the strict non-idleness attack rule is
added to A?.

The proofs of Theorems 1 and 2 are based on the correspondence to reasoning with
maximally consistent sets of assumptions, shown in [12]. Next, we sketch the proof
of Theorem 1 for A? = A∪ {Abductive Direct Defeat} and the weakly skeptical ver-
sion (the proof for the skeptical version and the proof of Theorem 2 are similar). In the
proof, MCSXL(S) is the set of the maximally `-consistent subsets of S, which are also
`-consistent with X.

Proof outline of Theorem 1. [⇒] Suppose that E = {ε} is an external weakly skeptical
sem-explanation of φ w.r.t. AFX

L,A(S), where sem ∈ {stb,prf}. In particular, S,ε |∼e,sem
L,A,X

φ , and for every E ∈ Extsem(AFX
L,A(S∪ {ε}) there is a ∈ E, such that Conc(a) = ε .

By [12, Theorem 1], (†) for all ∆ ∈MCSXL (S∪{ε}) we have that X,∆ ` φ and X,∆ ` ε .
Let now E ∈ Extsem(AAFX

L,A?(S)). Then E∩ArgX
L (S) ∈ Extsem(AFX

L,A(S)), and so,
by [12, Theorem 1] again, E∩ArgX

L (S) = ArgX
L (∆) for some ∆ ∈MCSXL (S). By (†), for

all Ω ∈MCSXL (S), Ω,X 0 ¬ε . So, X,∆ 0 ¬ε . Thus ∆∪{ε} ∈MCSXL (S∪{ε}). By (†),
there is some finite Γ ⊆ ∆ \ {ε}, for which X,Γ,ε ` φ . It follows that φ ⇐ [ε], Γ is an
abductive argument in AAFX

L,A?(S).
Note that X,∆ 6` ¬γ for all γ ∈ (Γ∪{ε})\X, otherwise X,∆ ` ¬ε , in a contradiction

to (†) and the consistency of Γ⊆ ∆. Thus φ ⇐ [ε], Γ is not abductively attacked by any
element of E, and so φ ⇐ [ε], Γ ∈ E. It follows that ε is an internal weakly skeptical
sem-explanation of φ w.r.t. AAFX

L,A?(S).

[⇐] Suppose that E = {ε} is an internal weakly skeptical sem-explanation of φ w.r.t.
AAFX

L,A?(S). Let E ∈ Extsem(ArgX
L (S∪{ε})). By [12, Theorem 1], E = ArgX

L (∆) for
some ∆ ∈ MCSXL (S∪{ε}). Then X,∆ 0 ¬ε , and so ∆′ = ∆∩ S ∈ MCSXL (S). Let E′ be
the set of all the (X∪∆)-based sequents and (X∪∆)-based abducitive sequents. It can be
shown that E′ ∈ Extsem(AAFX

L,A?(S)). Thus, there is an φ ⇐ [ε], Γ ∈ E, and Γ,ε ` φ (for
Γ⊆ ∆∪X). Thus, X,∆ ` φ and X,∆ ` ε . It follows that ε is an external weakly skeptical
sem-explanation of φ w.r.t. AFX

L,A(S).

We note that not in all cases the external and internal explanations coincide, even
when L= CL and A= {Direct Defeat,ConUcut}. The next example illustrates this:

Example 4. Let L= CL, A= {Direct Defeat,ConUcut}, S= {p,¬p∧q} and X= {q∧
r→ s}. Then:



1. q∧ r is an external weakly-skeptical stb-explanation of s, since the correspond-
ing sequent-based framework has two stable extensions: ArgX

L ({p, q ∧ r}) and
ArgX

L ({¬p∧q, q∧r}), both of which contain arguments for q∧r and for q∧r→ s.
Note that this explanation satisfies Non-vacuity (s does not follow from q∧ r).

2. q∧ r is an internal weakly-skeptical stb-explanation of s, since the correspond-
ing abductive sequent framework also has two stable extensions, both with the ab-
ducible sequent s⇐ [q∧ r], q∧ r→ s.This holds also when the non-vacuity and/or
strict non-idleness attack rules are part of the framework.

This is in accordance with Theorem 1. Suppose now that minimality is imposed. Then:

1. q∧ r remains an external weakly-skeptical stb-explanation of s, since it satisfies
the minimality condition.

2. q∧ r is no longer an internal weakly-skeptical stb-explanation of s, since one
extension also contains a minimality attacker of s⇐ [q∧ r], q∧ r→ s, namely:
s⇐ [r], ¬p∧q, q∧ r→ s.

4. Some Further Considerations

In this section we briefly comment on some other aspects of argumentation explanation.

4.1. Handling of Synonyms and Antonyms

Synonyms and antonyms may be handled by the strict assumptions, as they should not
be revised. This may be done either to clarify the meaning of some terminology used by
defeasible formulas, or for extending the vocabulary describing the domain of discourse.
For instance, suppose that in our running example we add the strict assumption X =
{blue skies↔ clear skies}. Then, since

blue skies, blue skies↔ clear skies, clear skies→¬rainy ` ¬rainy

we derive, by the Abduction rule, the abductive sequent

¬rainy⇐ [blue skies], blue skies↔ clear skies, clear skies→¬rainy

Thus, under stable or preferred semantics, blue skies explains ¬rainy. Similarly,
blue skies explains ¬wet grass, etc.

4.2. Keeping Track of Explanations; Explanations Justifications

In the context of defeasible reasoning explanatory arguments are threatened by defeaters.
While abductive sequents φ ⇐ [ε],Γ state that in the context Γ the explanandum φ is de-
ducible from the explanation ε , it contains no information of how this explanation is jus-
tified against the background of possible defeaters. In the terminology of argumentation
theory, abductive sequents cover the illative tier (support) but not the dialectic tier (de-
feating defeaters) of argumentation [13,14]. In order to keep track of the latter, we incor-



porate some ideas in the spirit of [15], adapted to logic-based argumentation in general
and abductive argumentation frameworks in particular.

Let AAFX
L,A?(S) be an abductive sequent-based framework with a set ArgX

L (S) of
ordinary and abductive arguments, and a set A of attack rules on ArgX

L (S)×ArgX
L (S). For

a semantics sem and operator 2 ∈ {∪,∩}, we consider the following sets:

• AbdArg(φ , [ε]) = {a ∈ ArgX
L (S) | a is of the form φ ⇐ Γ, [ε] for some Γ⊆ S}

• AbdArg2sem(φ , [ε]) = {a ∈ AbdArg(φ , [ε]) | a ∈2Extsem(AAFX
L,A?(S))}

Thus, AbdArg2sem(φ , [ε]) consists of all the abductive arguments in which ε explains φ

(namely, the elements of AbdArg(φ , [ε])), and that belong to the intersection (if 2= ∩)
or the union (if 2= ∪) of all the sem-extensions of AAFX

L,A?(S).
To justify the explanation of φ by ε with respect to sem and 2, we therefore need

to compute the supports of the arguments that defend the elements in AbdArg2sem(φ , [ε])
(divided by sem-extensions)

• DefE(a) = {Supp(b) | b ∈ E, b defends a in AAFX
L,A?(S)}

• Justify2sem(φ , [ε]) = {DefE(a) | a ∈ AbdArg2sem(φ , [ε]), E ∈ Extsem(AAFX
L,A?(S))}

Example 5. Suppose that we want to justify the comment in Example 3 that sprinklers
credulously stb-explains wet grass. For this, note that:

1. The abductive sequent a = wet grass⇐ [sprinklers], sprinklers→ wet grass

is in AbdArg(wet grass, [sprinklers]) and AbdArg∪stb(wet grass, [sprinklers]).

2. By Abductive Defeat, the abductive sequent a in Item 1 is attacked by the sequent
b= rainy, rainy→¬sprinklers⇒¬sprinklers, which in turn is counter-attacked
(using Defeat) by c = clear skies,clear skies→ ¬rainy⇒ ¬rainy. It follows
that c defends a.

3. By the introduced notation, Supp(c) = {clear skies,clear skies→¬rainy} is
in DefE(a), where E is one of the two stable extensions of the abductive argumentation
framework under consideration. Thus, for these a and E, we have:

(?)
DefE(a) ∈ Justify∪stb(wet grass, [sprinklers]),
{clear skies,clear skies→¬rainy} ∈ DefE(a).

An intuitive description of (?) is the following: sprinklers is an explanation for
wet grass. The set {clear skies, clear skies→¬rainy} is a justification for this
explanation. Indeed, it is assumed that the sky is clear, and in that case there is no rain.
Therefore, the wetness of the grass can be explained by the operation of the sprinklers.

4.3. Explanations Reduction; Avoiding Logically Equivalent Explanations

By its definition, if ε explains φ (either internally or externally), then – unless the range
of the explanations is restricted – every formula that is logically equivalent to ε according
to the base logic L also explains φ . This ‘explosion’ in the number of explanations may
be avoided in several ways, e.g., by introducing appropriate attack rules that exclude
logically equivalent alternatives of a derived explanation, or by switching to equivalence
classes of logically equivalent formulas (see, e.g., [16]). Briefly, the idea is the following:



1. equivalence in L is defined as usual by: ψ ≡ φ iff ψ ` φ and φ ` ψ .
2. classes of arguments are defined by: JΓ⇒ ψK = {∆⇒ φ | ∆ ∈ JΓK, φ ∈ JψK}, where:

JψK = {φ | φ ≡ ψ} and Jψ1, . . . ,ψnK = {{φ1, . . . ,φn} | ∀1≤ i≤ n φi ∈ JψiK}.

Now, given a framework AFX
L,A(S) =

〈
ArgX

L (S),A
〉

we switch to a framework whose
arguments are classes JaK for a ∈ ArgX

L (S), and where JaK attacks JbK if there are some
a′ ∈ JaK∩ArgX

L (S) and b′ ∈ JbK∩ArgXL (S) such that (a′,b′) ∈ A. As usual, one has to
show independence of the choice of representatives. This is rather routine.

5. Discussion and Conclusion

Abduction has been widely applied in different deductive systems, such as adaptive log-
ics (see, e.g., [17,18]), and AI-based disciplines, perhaps the most prominent one is logic
programing (see [19,20] for surveys). Argumentation-based approaches include frame-
works for agent-based dialogues [21,22] and assumption-based argumentation frame-
works [23]. In [24,25] abduction is studied as the problem of adding arguments to a given
argumentation framework so that a given argument is rendered acceptable.

Our approach offers several novelties. In terms of knowledge representation we
transparently represent abductive inferences by an explicit inference rule that produces
abductive arguments. The latter are a new type of hypothetical arguments that are sub-
jected to potential defeat. A variety attack rules address the quality of the offered expla-
nation and thereby model critical questions [26] and meta-argumentative reasoning [27].
This is both natural and philosophically motivated, as argued in [28], where also a gap
in argumentative accounts of abduction is identified. Instead of imposing desiderata on
abductive inferences from the outside we incorporate them in the argumentative reason-
ing process. Our framework offers a high degree of modularity, and in comparison to ap-
proaches in logic programming we allow for fully propositional base logics. Desiderata
on abductive arguments can be disambiguated in various ways by simply changing the
attack rules, all in the same base framework. This allows for a thorough logical analysis
and disambiguation of these properties as demonstrated in Theorems 1, 2 and Example 4.

The presented work is mainly focused on representation considerations. In future
work we plan to take advantage of the uniformity of the sequent-based methods for expla-
nation, and carry them on to more expressive logics (involving, e.g., preference relations
among arguments) and to other types of explanations. We also plan to further develop
meta-theoretical results concerning our setting and incorporate other approaches to the
dialectic tier of explanation, such as related admissibility [14] or strong explanation [29].
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