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1. Motivation

A standard way of viewing an argument A in logical (or, deductive) argumentation frame-
works is as a pair A = 〈S,ψ〉, where ψ (the conclusion of A) is a formula that follows,
according to the underlying (base) logic, from the set of formulas S (called the support
of A). Earlier works on the subject concentrated on classical logic (CL) as the base logic,
and since the latter is trivialized in the presence of inconsistency, it was usual to assume
that S is consistent. In order to keep the support as relevant as possible to the conclusion,
S was kept minimal with respect to the subset relation (see [5]). These considerations
lead to the following definition of what we call classical-con-min arguments.

Definition 1 A CL-con-min argument is a pair A = 〈S,ψ〉, where S is a CL-consistent
and ⊆-minimal finite set of formulas that entails, according to CL, the formula ψ .2

Definition 1 is at the heart of many approaches to logic-based argumentation.3 How-
ever, as noted e.g. in [3], the consistency and minimality requirements on the supports
of the arguments cause some complications in the construction and the identification of
valid arguments, and so they may be lifted. Moreover, in some reasoning contexts non-
classical logics may better serve as the underlying logics of the intended argumenta-
tion frameworks, and in some cases (e.g., agent-based systems or deontic systems) the
standard propositional language should be extended (e.g., with modal operators), which
again means that in those cases classical logic is not adequate. Indeed, many approaches

1Supported by the Israel Science Foundation, grant No. 550/19.
2In order words, if F denotes the falsity operator and `CL is the consequence relation of classical logic, then

S is a finite set of formulas such that S 6`CL F, S `CL ψ , and there is no S′ ( S such that S′ `CL ψ .
3For more details and references see, e.g., [6,7,13].
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to structured argumentation like those that are based on ASPIC systems [16], deduc-
tive variation of assumption-based argumentation frameworks [15], sequent-based argu-
mentation [3], and so forth, do not assume anymore that the underlying logic is nec-
essarily classical. Concerning consistency and minimality, in some of these alternatives
the handling of these properties is done on the level of the argumentation frameworks
themselves, by means of appropriate attack rules, or by posing some restrictions on their
applications (see for instance [14]).

In this paper we examine relations between these two approaches for handling min-
imality and consistency, namely: the one that enforces these properties already on the
level of arguments and the other that takes care of them by appropriate attack rules. For
the latter we then show how the suitability of the attack rules is affected by the base logic.

2. Preliminaries

For defining logical argumentation frameworks, and arguments in particular, one first has
to specify what the underlying logic is.

Definition 2 A (propositional) logic is a pair L = 〈L ,`〉, where L is a propositional
language, and ` is a (Tarskian, [21]) consequence relation for a language L , that is: a bi-
nary relation between sets of formulas and formulas in L , satisfying the following con-
ditions: if ψ ∈ S then S ` ψ (reflexivity); if S ` ψ and S⊆ S′ then S′ ` ψ (monotonicity);
and if S ` ψ and S′,ψ ` φ then S,S′ ` φ (transitivity).

In the sequel we shall assume that the language L contains at least the following
(primitive or defined) connectives and constant:

• `-negation ¬, satisfying: p 6` ¬p and ¬p 6` p (for every atomic p),
• `-conjunction ∧, satisfying: S ` ψ ∧φ iff S ` ψ and S ` φ ,
• `-disjunction ∨, satisfying: S,φ ∨ψ ` σ iff S,φ ` σ and S,ψ ` σ ,
• `-falsity F, satisfying: F ` ψ for every formula ψ .4

In some cases we shall assume the availability of a (deductive) `-implication satisfying:
S,φ ` ψ iff S ` φ ⊃ ψ . Then we shall abbreviate (φ ⊃ ψ)∧ (ψ ⊃ φ) by φ ↔ ψ . For a
finite set of formulas S we denote by

∧
S (respectively, by

∨
S) the conjunction (respec-

tively, the disjunction) of all the formulas in S. We shall also denote by℘(S) (by℘fin(S))
the set of the (finite) subsets of S. We say that S is `-consistent if S 6` F.

The next definition is a generalization of Definition 1 to every propositional logic,
and it avoids the consistency and minimality requirements.

Definition 3 Given a logic L = 〈L ,`〉, an L-argument (an argument for short) is a
pair A = 〈S,ψ〉, where S (the support of A) is a finite set of L -formulas and ψ (the
conclusion of A) is an L -formula, such that S ` ψ . We denote: Supp(〈S,ψ〉) = S and
Conc(〈S,ψ〉) = ψ . Arguments of the form 〈 /0,ψ〉 are called tautological.

Attacks and counter-attacks between arguments are described by the rules in Table 1
(see, e.g., [3,13,20] for further rules).

4In particular, F is not a standard atomic formula, since F ` ¬F.
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Rule Name Acronym Attacking Attacked Attack Conditions

Defeat Def 〈S1,ψ1〉 〈S2 ∪S′2,ψ2〉 ψ1 ` ¬
∧

S2

Full Defeat FullDef 〈S1,ψ1〉 〈S2,ψ2〉 ψ1 ` ¬
∧

S2

Direct Defeat DirDef 〈S1,ψ1〉 〈{ϕ}∪S′2,ψ2〉 ψ1 ` ¬ϕ

Undercut Ucut 〈S1,ψ1〉 〈S2 ∪S′2,ψ2〉 ψ1 ` ¬
∧

S2, ¬
∧

S2 ` ψ1

Full Undercut FullUcut 〈S1,ψ1〉 〈S2,ψ2〉 ψ1 ` ¬
∧

S2, ¬
∧

S2 ` ψ1

Direct Undercut DirUcut 〈S1,ψ1〉 〈{ϕ}∪S′2,ψ2〉 ψ1 ` ¬ϕ , ¬ϕ ` ψ1

Consistency Undercut ConUcut 〈 /0,¬
∧

S2〉 〈S2 ∪S′2,ψ2〉

Rebuttal Reb 〈S1,ψ1〉 〈S2,ψ2〉 ψ1 ` ¬ψ2, ¬ψ2 ` ψ1

Defeating Rebuttal DefReb 〈S1,ψ1〉 〈S2,ψ2〉 ψ1 ` ¬ψ2

Table 1. Some attack rules. The support sets of the attacked arguments are assumed to be nonempty (to avoid
attacks on tautological arguments).

Logical argumentation frameworks are now defined as follows:

Definition 4 Let L= 〈L ,`〉 be a logic and A a set of attack rules with respect to L. Let
also S be a set of L -formulas. The (logical) argumentation framework for S, induced
by L and A , is the pair AFL,A (S) = 〈ArgL(S),Attack(A )〉,5 where ArgL(S) is the
set of the L-arguments whose supports are subsets of S, and Attack(A ) is a relation on
ArgL(S)×ArgL(S), defined by (A1,A2) ∈ Attack(A ) iff there is some R ∈A such that
A1 R-attacks A2 (that is, the pair (A1,A2) is an instance of the relation R).

The Dung-style semantics [12] of an argumentation framework and the correspond-
ing entailment relations are defined in the next two definitions.

Definition 5 Let AF (S) = 〈ArgL(S),Attack(A )〉 be a logical argumentation frame-
work, and let E ⊆ ArgL(S). Below, maximality and minimality are taken with respect to
the subset relation.

• We say that E attacks an argument A, if there is an argument B ∈ E that attacks A
(that is, (B,A) ∈ Attack). The set of arguments that are attacked by E is denoted
E +. We say that E defends A, if E attacks every argument that attacks A.

• The set E is called conflict-free with respect to AF (S), if it does not attack any of
its elements (i.e., E + ∩E = /0). A set that is maximally conflict-free with respect
to AF (S) is called a naive extension of AF (S). A conflict-free set E such that
E ∪E + = ArgL(S) is a stable extension of AF (S).

• An admissible extension of AF (S) is a subset of ArgL(S) that is conflict-free
with respect to AF (S) and defends all of its elements. A maximally admissible
extension of AF (S) is called a preferred extension of AF (S).

• A complete extension of AF (S) is an admissible extension of AF (S) that con-
tains all the arguments that it defends. The minimally complete extension of
AF (S) is called the grounded extension of AF (S).6

5In what follows we shall usually omit the subscripts and write just AF (S) for 〈ArgL(S),Attack(A )〉.
6 As is shown in [12, Theorem 25], the grounded extension of AF (S) is unique. Also, in the same paper

it is shown that preferred extensions are maximally complete and that every stable extension is also preferred.
For some other facts and definitions of other extensions, see e.g. [4].
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We denote by Adm(AF (S)) [respectively, by Cmp(AF (S)), Grd(AF (S)),
Prf(AF (S)), Stb(AF (S))] the set of all the admissible [respectively, the complete,
grounded, preferred, stable] extensions of AF (S).

Definition 6 Let AF (S) = 〈ArgL(S),Attack(A )〉 be a logical argumentation frame-
work, and let Sem ∈ {Adm,Cmp,Grd,Stb,Prf}. We denote:

• S |∼L,A
∪Sem ψ if there is an argument 〈Γ,ψ〉 ∈

⋃
Sem(AF (S)),

• S |∼L,A
∩Sem ψ if there is an argument 〈Γ,ψ〉 ∈

⋂
Sem(AF (S)),

• S |∼L,A
eSem ψ if for every E ∈ Sem(AF (S)) there is an argument 〈ΓE ,ψ〉 ∈ E .

In what follows, when the framework is clear from the context, we shall sometimes write
AF (S) |∼∪Sem ψ instead of S |∼L,A

∪Sem ψ (and similarly for the other two entailments).

3. Consistency Preservation in Logical Frameworks

In this section we relate the two methods of maintaining inconsistency in logical argu-
mentation frameworks: by posing the consistency restriction of the supports on the argu-
ments (cf. Definition 1) and by using appropriate attack relations between arguments.

Definition 7 Recall from Definition 5, that ArgL(S)+ is the set of arguments that are
attacked by some A ∈ ArgL(S). In what follows we shall also denote this set by S+.

Example 1 The set /0+ consists of the arguments that are attacked by tautological argu-
ments (i.e., by those whose support set is empty).

Definition 8 A set of attack is /0-normal if it excludes attacks on tautological arguments.

Example 2 By their definitions, all the rules in Table 1 are /0-normal, since they exclude
attacks on arguments with empty support sets (as is indicated in the caption of Table 1).
In [direct] undercut and [direct] defeat, this also follows from the attack conditions and
in consistency undercut this follows from the form of the attacking and the attacked
arguments.

Proposition 1 Let AF (S) = 〈ArgL(S),Attack(A )〉 be a logical argumentation frame-
work for S, based on a logic L = 〈L ,`〉 and a set A of /0-normal attack rules. For
E ⊆ /0+ and A ? ⊆ A such that Attack(A ?) ⊆ (ArgL ( /0)× E ), we let AF ?(S) =
〈ArgL(S)\E ,Attack(A \A ?)〉. Then Sem(AF (S))= Sem(AF ?(S)) for every Sem∈
{Adm,Cmp,Grd,Stb,Prf}.

Note 1 Intuitively, the set E in Proposition 1 consists of the ‘contradictory’ S-based
arguments (cf. Example 1) and A ? consists of the rules that allow to attack the elements
in E . What Proposition 1 says, then, is that if ‘contradictory’ arguments are not allowed
(as in Definition 1) then attack rules in the style of A ? may be avoided, and vice-versa:
in case that no restrictions are posed on the arguments’ supports (as in Definition 3) then
A ?-type attack rules are needed.
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Proof. We consider Sem ∈ {Adm,Prf,Stb}, leaving the other cases to the reader.

• Consider Sem = Adm. Let H ∈ Adm(AF (S)). We first observe that H ⊆
ArgL (S)\E . Indeed, if there were an argument A ∈ /0+ in H , there would be an argu-
ment B ∈ ArgL ( /0) A -attacking A,7 and by the /0-normality of A there would not be an
attacker of A in H , contradicting the admissibility of H in AF (S).

Clearly, H is conflict-free in AF ?(S). Suppose now that there is some A ∈
ArgL(S) \E that (A \A ?)-attacks some B ∈H . Since H ∈ Adm(AF (S)), there is
a C ∈H that A -attacks A. Since A is /0-normal, A has a non-empty support. Since
Attack(A ?) ⊆ (ArgL( /0)×E ) and A /∈ E , A also (A \A ?)-attacks A. This shows that
H ∈ Adm(AF ?(S)).

Let now H ∈ Adm(AF ?(S)). Clearly, H ⊆ ArgL(S). Assume for a contradic-
tion that there are A,B ∈H such that A A -attacks B. By the admissibility of H in
AF ?(S), A does not (A \A ?)-attack B. Thus, A A ?-attacks B. However, then B ∈ E ,
since Attack(A ?)⊆ (ArgL( /0)×E ). This is a contradiction to H ⊆ ArgL(S)\E . Thus,
H is conflict-free in AFL(S).

Suppose now that some B ∈ ArgL(S) A -attacks some A ∈ H . If it is an (A \
A ?)-attack, by the admissibility of H in AF ?(S) there is a C ∈H that A -attacks B.
Assume it is an A ?-attack. Then A ∈ E , since Attack(A ?) ⊆ (ArgL( /0)×E ). This is a
contradiction to H ⊆ ArgL(S)\E . Thus, H ∈ Adm(AF (S)).

•Consider Sem=Prf. This follows immediately from the fact that Adm(AF (S))=
Adm(AF ?(S)), since preferred extensions are the maximally admissible ones.

• Consider Sem = Stb. Let H ∈ Stb(AF (S)). Assume that H ∩E 6= /0. Let A ∈
H ∩ E . Then there is a B ∈ ArgL( /0) that (A \A ?)-attacks A. Since A is /0-normal,
there is no C ∈H that A -attacks B. By the stability of H , B ∈H , which contradicts
the conflict-freeness of H . Thus, H ∩E = /0 and so H ⊆ ArgL(S)\E .

Clearly, H is (A \A ?)-conflict-free since it is A -conflict-free. Suppose that A ∈
ArgL(S) \ (E ∪H ). Then A ∈ ArgL(S) \H and so there is a B ∈H that A -attacks
A. Since Attack(A ?) ⊆ (ArgL( /0)× E ) and A /∈ E , B also (A \A ?)-attacks A. Thus,
H ∈ Stb(AF ?(S)).

Suppose now that H ∈ Stb(AF ?(S)). Assume for a contradiction that H is not
conflict-free in AF (S). Thus, there are A,B ∈H such that A A -attacks B. Since H is
conflict-free in AF ?(S), A does not (A \A ?)-attack B, and so it A ?-attacks B. Since
Attack(A ?)⊆ (ArgL( /0)×E ), B∈ E , which contradicts the fact that H ⊆ArgL(S)\E .
Thus, H is conflict-free in AF (S).

Suppose now that B ∈ ArgL(S)\H . If B ∈ ArgL(S)\E , there is an argument A ∈
H that A -attacks B. Otherwise, B ∈ E , thus there is an A ∈ ArgL( /0) that A -attacks
B. Since A is /0-normal, A ∈ ArgL(S) \E and, since H is stable in AF ?(S), A ∈H .
Altogether, this shows that H ∈ Stb(AF (S)). 2

As a particular case of Proposition 1, we have the following corollary:

Corollary 1 Let AF (S) = 〈ArgL(S),Attack(A )〉 be a logical argumentation frame-
work for S, based on a logic L= 〈L ,`〉 and a set A of /0-normal attack rules that con-
tains ConUcut. Let also AF con(S) = 〈Argcon

L (S),Attack(A ?)〉 be a logical argumenta-

7We say that A A -attacks B iff there is some R ∈A such that A R-attacks B.
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tion framework in which A ? = A −{ConUcut} and Argcon
L (S) is the subset of ArgL(S)

that consists only of `L-consistent arguments (i.e, whose supports are `L-consistent).
Then Sem(AF (S)) = Sem(AF con(S)) for every Sem ∈ {Adm,Cmp,Grd,Stb,Prf}.

Proof. Follows from Proposition 1 since Attack(ConUcut) ⊆ ArgL( /0)× Argincon
L (S),

where Argincon
L (S) = ArgL(S)\Argcon

L (S). 2

Note 2 The use of ConUcut for attacking arguments that are based on inconsistent sup-
ports goes beyond the standard interpretation of inconsistency as in classical logic. For
instance, according to logics of formal inconsistency (LFIs, see [9,10]) S1 = {ψ,¬ψ}
is not considered inconsistent, but rather S2 = {ψ,¬ψ,◦ψ} (where ◦ is the consis-
tency operator, thus ◦ψ is intuitively understood as a claim that ‘ψ is consistent’). In-
deed, when an LFI is the base logic, an argument whose support is S1 is not ConUcut-
attacked, while an argument whose support set contains S2 is ConUcut-attacked (by
〈 /0,¬(ψ ∧¬ψ ∧◦ψ)〉). We shall return to this issue in Section 5.

We show that Proposition 1 and Corollary 1 crucially depend on A being /0-normal:

Example 3 We consider classical logic with the premises S = {p∧¬p,s} and with a
more radical form of Rebuttal that does not follow the restriction that only arguments
with non-empty support may be attacked. Although 〈p∧¬p,¬s〉 is ConUcut-attacked
by 〈 /0,¬(p∧¬p)〉, the latter is Rebut-attacked by 〈p∧¬p, p∧¬p〉 (given our more rad-
ical form of Rebuttal). Thus, e.g., the grounded extension will be empty in the presence
of Rebuttal, even in the presence of ConUcut. However, after filtering out inconsistent
arguments, it is easy to see that 〈s,s〉 will be an argument in the grounded extension.

Corollary 2 Let AF (S) and AF ?(S) be as in Proposition 1. Then AF (S) |∼◦Sem ψ iff
AF ?(S) |∼◦Sem ψ for every ◦ ∈ {∪,∩,e} and Sem ∈ {Adm,Cmp,Grd,Stb,Prf}.8

4. Enforcement of Minimal Support

We now turn to the other condition in Definition 1 – subset minimality of the arguments’
supports. Our main result is given in Proposition 2. First, some definitions and lemmas.

Definition 9 Given an argumentation framework AF (S) = 〈ArgL(S),Attack(A )〉, a
support ordering for AF (S) is a preorder9 � on the finite subsets of S.10

Definition 10 Given a framework AF (S) = 〈ArgL(S),Attack(A )〉, a support ordering
� for AF (S), a set E ⊆ ArgL(S), and an argument A ∈ ArgL(S). We denote:

• min�(E ) = {A ∈ E | @B ∈ E s.t. Conc(B) = Conc(A) and Supp(B)≺ Supp(A)},
• Amin

� = min�({B ∈ ArgL(Supp(A)) | Conc(A) = Conc(B)}), 11

• E min
� =

⋃
{Amin
� | A ∈ E }.

8Here we abuse a bit the notations of Definition 6 to emphasize the relations between the frameworks.
9I.e., a reflexive and transitive order.
10We denote by≺ the strict version of�, that is: if� is a preorder on some domain D , then for all d,d′ ∈D ,

d ≺ d′ iff d � d′ and d′ 6� d.
11To simplify the notation,we write Amin

� instead of Amin
L,�.
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Thus, min�(E ) filters-out from E all the arguments whose support is not minimal
among the arguments in E , and E min

� removes from the arguments in E all the redundant
formulas in their supports.

Example 4 Let L = CL (classical logic), � = ⊆, and E = {p,q ⇒ p ∨ q}. Then
min�(E ) = E and E min

� = {p⇒ p∨q, q⇒ p∨q}. Also, for E ′ = E ∪{p⇒ p∨q}, we
have that min�(E ′) = {p⇒ p∨q} and (E ′)min

� = E min
� .

Example 5 Obviously, the subset relation ⊆ is the most natural support ordering in our
context. However, there are other candidates to be a support ordering �, among which
are the following:

• For ∆,Γ ∈℘fin(S) we define ∆�` Γ iff Γ `
∧

∆.
• Suppose that S is stratified into a partition 〈S1, . . . ,Sn〉, where intuitively formulas

in Si are considered more reliable than formulas in S j when i > j.12 We let � be
the lexicographic ordering, i.e., for ∆ = 〈∆1, . . . ,∆n〉 and Γ = 〈Γ1, . . . ,Γm〉 (with
∆i,Γi ∈℘fin(Si) for each 1≤ i≤max{n,m}), we define: ∆�lex Γ iff either ∆ = Γ,
or there is an 1≤ k ≤min{n,m} such that ∆i = Γi for all i < k and ∆k ( Γk.

Note 3 In all the cases of the last example it holds that if A,B ∈ Arg(S) have the same
conclusion and Supp(A)≺ Supp(B), it makes sense to consider B argumentatively more
vulnerable, since its support gives more points of attack: Either it contains more formulas
(� = ⊆), or because its support contains stronger logical commitments (� = �`), or
because its support contains stronger logical commitments relative to their reliability
(� = �lex). In that sense, the demand of �-minimal support from arguments means
minimal argumentative vulnerability.

Definition 11 A set of attack rules A is called �-normal, if for every R ∈ A the fol-
lowing conditions hold:

1. If A R-attacks B and Supp(A′) � Supp(A) and Conc(A) = Conc(A′), then A′ R-
attacks B.

2. If A R-attacks B and Supp(B) � Supp(B′) and Conc(B) = Conc(B′), then A R-
attacks B′.

Note 4 The two conditions in Definition 11 resemble rules R1 and R2 (respectively) in [1,
Definition 12], except that [1] refers only to the supports of the attacking and the at-
tacked arguments, and uses only the subset relation. Also, in R1 of [1] the condition on
the supports are reversed (that is, R1 refers to attacking super-arguments and R2 refers
to attacked super-arguments). In our case the two conditions assure, respectively, that
attacks are closed under �-stronger attacking rules and �-weaker attacked rules.13

The proofs of the next lemmas are omitted due to lack of space.

12See [8].
13An argument A is a super-argument of B, if Supp(B)⊆ Supp(A). If Supp(B)� Supp(A) and Conc(B) =

Conc(A), we say that B is stronger than A (or that A is weaker than B).
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Lemma 1 Given a logical argumentation framework AF (S) = 〈ArgL(S),Attack(A )〉
and a support ordering � for AF (S) such that A satisfies Item 2 of Definition 11. If
E ∈ Cmp(AF (S)) then E min

� = min�(E ).

Let FAF (S) : ℘(ArgL(S)) →℘(ArgL(S)) be a function that relates every E ⊆
ArgL(S) with the set of arguments that are defended by E in AF (S). Again, when the
context disambiguates we will skip the subscript. The next lemma is easily verified.

Lemma 2 Given a logical argumentation framework AF (S) = 〈ArgL(S),Attack(A )〉,
a support ordering � for AF (S) for which A is �-normal, and a set E ⊆ ArgL(S), it
holds that:

1. F(E )⊆ F(E min
� ),

2. if E min
� ⊆ E then F(E ) = F(E min

� ), and
3. if E ∈ Cmp(AF (S)) then F(E ) = F(E min

� ) = E .

Lemma 3 Let AF (S) = 〈ArgL(S),Attack(A )〉 be a logical argumentation framework
and � a support ordering for AF (S). Suppose that A satisfies Item 2 of Definition 11.
If E ⊆ ArgL(S) defends A ∈ ArgL(S) then E defends any B ∈ Amin

� .

The next proposition relates the extensions of a logical argumentation framework
(with �-normal set of attack rules) and the extensions of the corresponding framework,
in which the arguments’ supports are minimized.

Proposition 2 Let AF (S) = 〈ArgL(S),Attack(A )〉 be a logical argumentation frame-
work for S,� a support ordering for AF (S), and A a�-normal set of attack rules. We
denote:

Attackmin
� (A ) = Attack(A )∩

(
min�(ArgL(S))×min�(ArgL(S))

)
,

AF min
� (S) = 〈min�(ArgL(S)),Attackmin

� (A )〉.

For every Sem ∈ {Cmp,Grd,Stb,Prf} we have: E ′ ∈ Sem(AF min
� (S)) iff there is

E ∈ Sem(AF (S)) such that E ′ = E min
� , iff there is E ∈ Sem(AF (S)) such that

E ′ = min�(E ). Moreover, the extensions E in the second and the third conditions are
the same for every E ′, namely E = FAF (S)(E

′).

Proof. Suppose that E ′ ∈ Cmp(AF min
� (S)), and let E = FAF (S)(E

′) be the set of all
arguments in ArgL(S) that are defended by E ′ in AF (S). We first show that E ′ ⊆ E .
Suppose that some A∈ArgL(S) attacks B∈ E ′. By the�-normality of A , any A′ ∈ Amin

�
attacks B. Thus, there is a C ∈ E ′ that attacks A′ and by the �-normality of A it also
attacks A. Thus, E ′ defends every B ∈ E ′ and thus E ′ ⊆ E . By Lemma 3, E ′ = E min

� . By
Item 2 of Lemma 2, FAF (S)(E ) = FAF (S)(E

′) = E .
We still have to show that E is conflict-free. Assume for a contradiction that there

are A,B ∈ E for which A attacks B. Thus, any A′ ∈ Amin
� attacks B by the �-normality

of A . However, since E ′ defends B there is a C ∈ E ′ that attacks A′. Since A′ ∈ E ′, this
contradicts the conflict-freeness of E ′.

Thus, E ∈ Cmp(AF (S)). By Lemma 1, E min
� = min�(E ) = E ′.
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Suppose now that E ∈ Cmp(AF (S)). Consider E ′ = min�(E ). By Lemma 1, E ′ =
E min
� . Hence, E ′ ⊆ (ArgL(S))

min
� . Clearly, E ′ is conflict-free since E is conflict-free.

By (Item 3 of) Lemma 2, F(E ) = F(E ′) = E ′, and so F(E ′)min
� = E ′min

� = E ′. Thus,
E ′ ∈ Cmp(AF min

� (S)).
Since the grounded (respectively, preferred) semantics concerns⊆-minimal (respec-

tively, ⊆-maximal) complete extensions, the proof immediately generalizes for these se-
mantics. The proof for the stable semantics is left to the reader. 2

By Proposition 2 we get the following corollaries:

Corollary 3 Let AF (S) = 〈ArgL(S),Attack(A )〉 be a logical argumentation frame-
work for S, induced by a logic L, � a support ordering for AF (S), and A a
set of �-normal attack rules. Let also AF min

� (S) = 〈min�(ArgL(S)),Attackmin
� (A )〉

be a logical argumentation framework as defined in Proposition 2. Then for ev-
ery Sem ∈ {Cmp,Grd,Stb,Prf} it holds that Sem(AF min

� (S)) consists of the Sem-
extensions in Sem(AF (S)), restricted to the elements in (ArgL(S))

min
� , namely:

E min
� ∈ Sem(AF min

� (S)) iff there is an extension E ∈ Sem(AF (S)) and E min
� =

E ∩ (ArgL(S))min
� .

Like the case of consistency preservation (cf. Corollary 2), we have:

Corollary 4 Let AF (S), and AF min
� (S) be as in Proposition 2. Then for every

◦ ∈ {∪,∩,e} and Sem ∈ {Cmp,Grd,Stb,Prf} it holds that AF (S) |∼◦Sem ψ iff
AF min

� (S) |∼◦Sem ψ .14

5. Attack Rules, Revisited

The previous sections show that the handling of inconsistency and minimality in logical
argumentation frameworks may be shifted from arguments to the attack rules. Apart
of the obvious advantage of a considerable simplification in the construction and the
identification of valid arguments (and so, e.g., proof systems may be incorporated for
building arguments from simpler arguments, or for searching for counterarguments given
a certain argument; See [3]), we believe that representing these consideration is more
appropriate in the rule-based level (Indeed, in real-life arguments are not always based
on minimal evidence, avoiding inconsistency sometimes means lose of information, etc).

The use of attack rules for maintaining inconsistency and conflicts among arguments
should be taken with care, though, especially when non-classical logics are used as the
base logic of the framework. In this section we consider some cases in point.

A. Consistency Undercut Corollary 1 indicates that, among others, ConUcut may re-
place the support consistency requirement. However, in some base logics the use of
ConUcut may not be appropriate or even meaningful. This may happen mainly due to
the following reasons:

14Again, here we abuse a bit the notations in Definition 6 to emphasize how the argumentation frameworks
are related.
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• Problems with the attacking arguments: Consider, for instance, Kleene’s 3-valued
logic with the connectives ¬,∧,∨ (and their usual 3-valued interpretations). This
logic has no valid tautological arguments, because in Kleene’s logic no formula
follows from the emptyset. This means that Consistency Undercut is not applicable
in such a logic.

• Problems with the attacked arguments: For instance, in Priest’s 3-valued logic
LP [17,18] with the connectives ¬,∧,∨ every set is satisfiable, thus, again. the use
of Consistency Undercut is questionable.

Dunn-Belnap’s four-valued logic of first-degree entailment (FDE), combining Kleene’s
logic and LP, suffers from both problems, namely it does not have tautological arguments
and every set is satisfiable. However, if the language of ¬,∧,∨ is extended with a proper
implication connective (⊃, see [2]), both tautological and contradictory (unsatisfiable)
arguments may be introduced, in which case it makes sense to incorporate consistency
undercut.

B. [Direct, Full] Defeat It may happen that certain attack rules need to be adjusted to
specific base logics. We demonstrate this with the logics of formal (in)consistency (LFIs),
mentioned in Note 2, and the [direct, full] defeat attack rules (see Table 1). According to
these rules, the argument 〈{¬ψ},¬ψ〉 should attack 〈{ψ},ψ〉. However, for frameworks
that are based on LFIs such an attack is more problematic, unless ψ is known to be
consistent (i.e., ◦ψ can be inferred).

In the presence of a propositional constant F for falsity, a reformulation of the attack
condition of [Full] Defeat could be that ψ1,S2 ` F, as indicated in Table 215

Rule Name Acronym Attacking Attacked Attack Condition

Inconsistency Defeat IncDef 〈S1,ψ1〉 〈S2 ∪S′2,ψ2〉 ψ1,S2 ` F

Inconsistency Full Defeat IncFullDef 〈S1,ψ1〉 〈S2,ψ2〉 ψ1,S2 ` F

Inconsistency Direct Defeat IncDirDef 〈S1,ψ1〉 〈{ϕ}∪S′2,ψ2〉 ψ1,ϕ ` F

Table 2. Attacks by defeat, revisited (again, we assume that supports of the attacked arguments are nonempty).

Note that the revised conditions in the rules of Table 2 avoid the use of conjunction
and are suitable for LFI as well: While according to LFI 〈{¬ψ},¬ψ〉 should not attack
〈{ψ},ψ〉 (although ¬ψ ` ¬ψ), the argument 〈{¬ψ},¬ψ〉 can be used for attacking,
by inconsistency [full] defeat, the argument 〈{◦ψ,ψ},ψ〉, and the latter attack is per-
fectly justifiable in the context of any LFI, since the attacked argument is based on the
assumption that not only its conclusion ψ holds, but it is also consistent.

One may think of several variations the rules in Table 2, following different intu-
itions. Below are some options:

Intuition 1: Attack based on a consistency assumption of the attacker.
In this case, e.g., 〈{◦p, p}, p〉 should attack 〈¬p,¬p〉, but not vice versa.

15In logics with a conjunction and where the usual contraposition law holds, or when the negation is defined
by ¬φ = φ ⊃ F for a deductive implication ⊃, this reformulation is even equivalent to the original one.
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Intuition 2: Attack based on a consistency conclusion of the attacker.
According to this intuition, 〈{◦p, p},◦p∧ p〉 attacks 〈¬p,¬p〉, but not vice versa.
Here, 〈{◦p, p}, p〉 should not attack 〈¬p,¬p〉.

Intuition 3: Attack based on a consistency assumption of the attacked argument.
This time 〈¬p,¬p〉 attacks 〈{◦p, p}, p〉, but not vice versa.

The intuitions above may be captured by extending the conditions of the rules of
Table 2. For instance, variations of inconsistency full defeat may be the following:

Variation for Intuition 1: 〈S1,ψ1〉 attacks 〈S2,ψ2〉 iff ψ1,S2 ` F and S1 ` ◦
∧
S1.

Variation for Intuition 2: 〈S1,ψ1〉 attacks 〈S2,ψ2〉 iff ψ1,S2 ` F and ψ1 ` ◦ψ1.
Variation for Intuition 3: 〈S1,ψ1〉 attacks 〈S2,ψ2〉 iff ψ1,S2 ` F and S2 ` ◦

∧
S2.

The additional condition in each case above just expresses the consistency assumption
of the corresponding intuition. In these conditions ◦ψ is intuitively read by ‘ψ is `-
consistent’. In LFI, ◦ is a primitive connective, while in other logics it may serve as a
defined connective (e.g., ¬(ψ ∧¬ψ)).

Note 5 (should minimality be enforced?) The examples in this section provide another
reason to avoid the minimality requirement in Definition 1: For instance, the support set
of A = 〈{ψ,◦ψ},ψ〉 is not minimal, as indeed ◦ψ is not necessary for the conclusion of
the argument, but it is necessary for enabling the above attack variation for Intuition 1,
of A on B = 〈{¬ψ},¬ψ〉 (thus refuting the latter).16

C. [Direct, Full] Undercut and [Defeating] Rebuttal When the conditions in terms
of negation are traded by consistency requirements, undercut rules coincide with the
corresponding defeat rules. Regarding the rebuttal rules, conditions in the spirit of the
previous section could be that the conclusions of the attacking and the attacked arguments
are mutually inconsistent, that is: ψ1,ψ2 ` F. Again, variations of the rules may involve
extra conditions, expressing e.g. further consistency assumptions.

6. Conclusion and Further Work

We have shown that logical argumentation frameworks need not be artificially restricted
to arguments with minimal supports and that inconsistent arguments may not be filtered
out, even in cases that the underlying logic is not trivialized in the presence of inconsis-
tency. Moreover, we have considered some cases in which the attack rules are not faith-
ful to the consistent and/or minimized support assumption, and some reformulations in
terms of related conditions are introduced.

The interplay between the nature of the underlying logic and the formulation of the
attack rules has already been considered in the literature (see, e,.g., [11] and [19]). The
rewriting of the attack rules in Section 5 imply that attacks may reflect considerations
that are not encoded by the pure logical consequences depicted by the arguments. For
instance, the reason for the attack according to Intuition 1 in Section 5 is not sufficiently

16According to this attack rule 〈{¬ψ},¬ψ〉 is also attacked by 〈{ψ,◦ψ},ψ ∧◦ψ〉, which meets the min-
imality criterion, but the latter assumes the availability of a conjunction, while 〈{ψ,◦ψ},ψ〉 holds only by
reflexivity and monotonicity.
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explicated by the conclusion of the attacking argument, since the consistency constraint
is not contained in it. Thus, a logical condition only in terms of entailments by the latter
(as expressed by the defeat rules) won’t be enough in this case. This brings up a new
bunch of questions, such as if (and how) it is possible to reformulate specific attack rules
to preserve basic properties, such as support minimization, without violating the intended
argumentation semantics. This remains a topic for future work.
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