
Dynamic Derivations for Sequent-Based
Logical Argumentation

Ofer ARIELI a and Christian STRASSER b

a School of Computer Science, The Academic College of Tel-Aviv, Israel
b Department of Philosophy and Moral Sciences, Ghent University, Belgium

Abstract. We introduce a general approach for representing and reasoning with
argumentation-based systems. In our framework arguments are represented by
Gentzen-style sequents, attacks (conflicts) between arguments are represented by
sequent elimination rules, and deductions are made by dynamic proof systems. This
framework accommodates different languages and logics in which arguments may
be represented, supports a variety of attack relations, and tolerates dynamic changes
in the argumentation setting by revising derivations of assertions in light of new
information.

Keywords. logical argumentation, sequent calculi, dynamic derivations

1. Introduction

The goal of this paper is to provide a proof theoretical investigation of logical argumen-
tation. Our starting point is that an argument is a pair of a finite set of formulas (Γ, the
support set) and a formula (ψ , the conclusion), expressed in an arbitrary propositional
language, such that the latter follows, according to some underlying logic, from the for-
mer. This abstract approach gives rise to Gerhard Gentzen’s well-known notion of a se-
quent [9], extensively used in the context of proof theory. Accordingly, an argument is
associated with a sequent of the form Γ⇒ψ and logical argumentation boils down to the
exposition of formalized methods for reasoning with these syntactical objects.

In this paper we follow the approach recently taken in [1] that provides a formalized
method of constructing arguments by corresponding sequent calculi and expressing at-
tack relations among them in terms of sequent elimination rules. This approach is largely
extended in this paper. The primary contribution of the present work is the introduction
of a novel automated machinery for reasoning with sequent-based arguments. This in-
duces a generic method of drawing conclusions from such arguments, which is tolerant
to different logics, languages, and attack rules. For this, we borrow the notion of dynamic
proofs, used in the context of adaptive logics [2,18], which are intended for explicating
actual reasoning in an argumentation framework. Generally, the fact that an argument can
be challenged (and possibly withdrawn) by a counter-argument is reflected in dynamic
proofs by the ability to consider certain formulas as not derived at a certain stage of the
proof, even if they were considered derived in earlier stages of the proof. We believe that
this kind of deductive reasoning scheme is particularly useful for logical argumentation,
which is non-monotonic and conflict-prone in nature.

2. Sequent-Based Logical Argumentation

Logical argumentation (sometimes called deductive argumentation) is a logic-based ap-
proach for formalizing argumentation, disagreements, and entailment relations for draw-
ing conclusions from argumentation-based settings [3,11,14,17].

Definition 1 [7] An argumentation framework is a pair AF = ⟨Args,Attack⟩, where
Args is an enumerable set of elements, called arguments, and Attack is a relation on
Args×Args whose instances are called attacks.

In this paper we follow the sequent-based approach introduced in [1], extending the
Besnard-Hunter approach to logical argumentation [3,4]. In particular, unlike [3,4] the
underlying language may not be the standard propositional one and the underlying logic
may not be classical logic.

In what follows, we shall denote by L an arbitrary propositional language. Given
such a language, we fix a corresponding logic (sometimes called the base logic or the
core logic), defined as follows.

Definition 2 A (propositional) logic for a language L is a pair L= ⟨L ,⊢⟩, where ⊢ is a
(Tarskian) consequence relation for L , that is, a binary relation between sets of formulas
and formulas in L , satisfying the following conditions:

Reflexivity: if ψ ∈ Γ then Γ ⊢ ψ
Monotonicity: if Γ ⊢ ψ and Γ ⊆ Γ′, then Γ′ ⊢ ψ
Transitivity: if Γ ⊢ ψ and Γ′,ψ ⊢ ϕ then Γ,Γ′ ⊢ ϕ

In the sequel, we assume that L contains the following connectives:

• A unary connective ¬ which is a ⊢-negation: for every atomic formula p of L it
holds that p ̸⊢ ¬p and ¬p ̸⊢ p,

• A binary connective ∧ which is ⊢-conjunctive: for every set of formulas Γ and
formulas ψ,ϕ it holds that Γ ⊢ ψ ∧ϕ iff Γ ⊢ ψ and Γ ⊢ ϕ .

When Γ is finite, we shall denote by
∧

Γ the conjunction of all the formulas in Γ.

2.1. Arguments As Sequents

In [1] it is argued that what really matters for an argument is that (i) its consequent
would logically follow, according to the underlying logic, from the support set, and that
(ii) there would be an effective way of constructing and identifying it. This gives rise to
the representation of arguments by Gentzen-style sequents, as defined next.

Definition 3 Let L be a propositional language. An L -sequent (a sequent, for short) is
an expression of the form Γ ⇒ ∆, where Γ and ∆ are finite sets of L - formulas, and ⇒ is
a symbol that does not appear in L . In what follows we shall denote Prem(Γ ⇒ ∆) = Γ
and Cons(Γ ⇒ ∆) = ∆.

Proof systems that operate on sequents are called sequent calculi [9]. A crucial prop-
erty shared by all the logics considered in this paper is that they have a sound and com-
plete sequent calculus, that is, a sequent-based proof system C, such that Γ ⊢ ψ iff the
sequent Γ ⇒ ψ is provable in C.

Definition 4 Let L= ⟨L ,⊢⟩ be a propositional logic with a corresponding sequent cal-
culus C, and let Σ be a set of formulas in L . An L-argument based on Σ is an L-sequent
of the form Γ ⇒ ψ , where Γ ⊆ Σ, that is provable in C. The set of all the L-arguments
that are based on Σ is denoted ArgL(Σ).

Clearly, we have the following:

Proposition 5 Let L= ⟨L ,⊢⟩ be a propositional logic and let Σ be a set of formulas in
L . Then Γ ⇒ ψ ∈ ArgL(Σ) for some Γ ⊆ Σ iff Σ ⊢ ψ .

2.2. Attacks As Elimination Rules

Different attack relations have been considered in the literature for logical argumentation
frameworks (see, e.g., [3,10,11]). In our case, attack relations are represented by sequent
elimination rules, or attack rules, which allow to exclude arguments (i.e., sequents) in
the presence of counter arguments, as shown in Figure 1. 1

Defeat: [Def]
Γ1 ⇒ ψ1 ψ1 ⇒¬

∧
Γ2 Γ2 ⇒ ψ2

Γ2 ̸⇒ ψ2

Compact Defeat: [C-Def]
Γ1 ⇒¬

∧
Γ2 Γ2 ⇒ ψ2

Γ2 ̸⇒ ψ2

Direct Defeat: [D-Def]
Γ1 ⇒ ψ1 ψ1 ⇒¬ϕ Γ2,ϕ ⇒ ψ2

Γ2,ϕ ̸⇒ ψ2

Compact Direct Defeat: [CD-Def]
Γ1 ⇒¬ϕ Γ2,ϕ ⇒ ψ2

Γ2,ϕ ̸⇒ ψ2

Undercut: [Ucut]
Γ1 ⇒ ψ1 ψ1 ⇒¬

∧
Γ2 ¬

∧
Γ2 ⇒ ψ1 Γ2,Γ′

2 ⇒ ψ2

Γ2,Γ′
2 ̸⇒ ψ2

Compact Undercut: [C-Ucut]
Γ1 ⇒¬

∧
Γ′

2 Γ2,Γ′
2 ⇒ ψ2

Γ2,Γ′
2 ̸⇒ ψ2

Direct Undercut: [D-Ucut]
Γ1 ⇒ ψ1 ψ1 ⇒¬γ2 ¬γ2 ⇒ ψ1 Γ2,γ2 ⇒ ψ2

Γ2,γ2 ̸⇒ ψ2

Canonical Undercut: [C-Ucut]
Γ1 ⇒ ψ1 ψ1 ⇒¬

∧
Γ2 ¬

∧
Γ2 ⇒ ψ1 Γ2 ⇒ ψ2

Γ2 ̸⇒ ψ2

Rebuttal: [Reb]
Γ1 ⇒ ψ1 ψ1 ⇒¬ψ2 ¬ψ2 ⇒ ψ1 Γ2 ⇒ ψ2

Γ2 ̸⇒ ψ2

Compact Rebuttal: [C-Reb]
Γ1 ⇒¬ψ2 Γ2 ⇒ ψ2

Γ2 ̸⇒ ψ2

Defeating Rebuttal: [D-Reb]
Γ1 ⇒ ψ1 ψ1 ⇒¬ψ2 Γ2 ⇒ ψ2

Γ2 ̸⇒ ψ2

Figure 1. Sequent elimination rules

1Note that the compact version of Direct Undercut is the same as Compact Direct Defeat, the compact
version of Canonical Undercut is the same as Compact Defeat, and the compact version of Defeating Rebuttal
is the same as Compact Rebuttal.

Note that the conditions of each rule consist of three ingredients: the attacking argu-
ment (the leftmost sequent in the condition list of the rule), the attacked argument (the
rightmost sequent in the list) and the condition for the attack (expressed by the middle
sequent or sequents in the condition list).2 Conclusions of sequent elimination rules are
the discharging of the attacked argument. We denote by Γ ̸⇒ψ the elimination (or, the
discharging) of the argument Γ⇒ψ . Alternatively, s denotes the discharging of s.

Definition 6 Let ArgL(Σ) be a set of L-arguments, C a sequent calculus for L, and R

an elimination rule of the form Γ1⇒∆1... Γn⇒∆n
Γn ̸⇒∆n

. We say that s1∈ArgL(Σ) R-attacks s2∈
ArgL(Σ), if there is a substitution θ such that s1 = θ(Γ1)⇒ θ(∆1), s2 = θ(Γn)⇒ θ(∆n),
and for each 1 < i < n, θ(Γi)⇒ θ(∆i) is provable in C.

The previous definitions yield a Dung-style argumentation framework [7]:

Definition 7 A logical argumentation framework for a set of formulas Σ, based on a
logic L and the rules in AttackRules, is the pair AFL(Σ) = ⟨ArgL(Σ),Attack⟩, where
(s1,s2) ∈ Attack iff there is R ∈ AttackRules such that s1 R-attacks s2.

In what follows, somewhat abusing the notations, we shall sometimes identify Attack
with AttackRules.

3. Argumentation by Dynamic Derivations

The uniform representation of rules for constructing arguments and for eliminating them
implies that argument derivations may be performed by the same sequent manipulation
systems. In our framework this is done by dynamic proof systems, which were developed
and used in the context of adaptive logics (see [2] and the section on related work below).

Notation 8 A (proof) tuple is a quadruple ⟨i,s,J,C⟩, where i (the tuple’s index) is a
natural number, s (the tuple’s sequent) is either a sequent or an eliminated sequent, J (the
tuple’s justification) is a string, and C (the tuple’s condition) is a set of sequents.

In what follows tuples denote proof steps in dynamic derivations. Tuple’s condi-
tions are used to keep track of the assumptions along the derivation. This facilitates the
modeling of attacks in the dynamic derivations as defined next.

Definition 9 Let AFL(Σ) = ⟨ArgL(Σ),Attack⟩ be a logical argumentation framework
based on a logic L = ⟨L ,⊢⟩, and let C be a sound and complete sequent calculus for
L. A dynamic AFL(Σ)-derivation based on C (an AFC

L (Σ)-derivation, for short) is a
sequence of tuples ⟨i,s,J,C⟩ (also called derivation steps or proof steps), where a valid
tuple is a tuple of one of the following forms:

• Suppose that R is an inference rule in C of the form

Γ1 ⇒ ∆1 . . . Γn ⇒ ∆n

Γ ⇒ ∆
2The only exceptions are the compact rules, in which there are only two conditions representing the attacking

sequent and the attacked sequent.

and that θ is an L -substitution such that for every 1 ≤ k ≤ n there is a valid tuple
⟨ik,sk,Jk,Ck⟩ in which sk is the sequent θ(Γk)⇒ θ(∆k).

Then ⟨l,θ(Γ)⇒ θ(∆),J,C⟩ is a valid tuple for l >max(i1, . . . , in), J=“R; i1, . . . , in”,
and C= C1 ∪ . . .∪Cn ∪{θ(Γ)⇒ θ(∆)}.3

• Suppose that R is a sequent elimination rule in Attack, which is of the form

Γ1 ⇒ ∆1 . . . Γn ⇒ ∆n

Γn ̸⇒ ∆n

and that θ is an L -substitution such that for every 1 ≤ k ≤ n there is a valid tuple
⟨ik,sk,Jk,Ck⟩ in which sk is the sequent θ(Γk)⇒ θ(∆k), and s1,sn ∈ ArgL(Σ).

Then ⟨l,θ(Γn) ̸⇒ θ(∆n),J,C⟩ is a valid tuple for l > max(i1, . . . , in), J =
“R; i1, . . . , in”, and C= {s ∈ C1 | Prem(s)⊆ Prem(s1)}.

Note 10 Sequent elimination rules are restricted to attacking and attacked Σ-based ar-
guments only, to prevent situations in which, e.g., ¬p ⇒ ¬p attacks p ⇒ p although
Σ = {p}. This restriction is not imposed on sequent construction rules, whose role is to
introduce L-valid sequents (thus, e.g., when L is classical logic, the argument ⇒ r∨¬r is
producible also for r ̸∈ Atoms(Σ). This is due to the fact that r ⇒ r is derivable although
it is not a Σ-based argument).

Another difference in the applications of these rules is that the condition set of a
tuple with a ‘positive’ (non-eliminated) sequent contains all the condition sequents in the
applied rule. In contrast, the condition set of a tuple with an eliminated sequent consists
only of the sequents that (i) appear in the condition set of the attacker, and (ii) share
premises with the attacker.

As usual in dynamic proof systems, marks are attached to tuples with conditions that
are considered unsafe.

Definition 11 Let ⟨T1,T2, . . . ,Tn⟩ be an AFC
L (Σ)-derivation.

• A tuple Ti = ⟨i,si,Ji,Ci⟩ is marked (as unsafe) by a tuple Tj = ⟨ j,s j,J j,C j⟩, if
j > i, s j ∈ Ci, and Prem(s j)⊆ Prem(si).4

• A marked tuple Ti = ⟨i,si,Ji,Ci⟩ is unmarked iff for every tuple Tk = ⟨k,sk,Jk,Ck⟩
by which Ti is marked there is a tuple Tj = ⟨ j,s j,J j,C j⟩, such that k < j and
s j ∈ Ck.

Intuitively, a marking of a tuple is caused by an attack on its sequent or on a sequent
in its set of conditions. An unmarking is done when the tuple’s argument is defended (that
is, when its attackers are counter-attacked). Note that a sequent may be the argument of
different tuples with different indices and possibly different conditions and justifications.
This means that the same argument may get marked in the context of some tuples but
not in the context of other tuples in the same proof. In what follows, when saying that
an argument is marked we shall actually refer to its marked tuple, whenever that tuple is
clear from the context.

3Here, axioms are treated as inference rules without conditions, i.e., they are rules of the form Γ⇒∆ .
4Recall that s denotes the discharging of s.

Definition 12 A marking AFC
L (Σ)-derivation is an AFC

L (Σ)-derivation of the form
D = ⟨T1,T2, . . . ,Tn⟩, where:

1. After each production of a valid tuple Ti, marking and unmarking with respect to
Ti is done on the sequence ⟨T1,T2, . . . ,Ti−1⟩ according to Definition 11.

2. Tuples of the form ⟨i,s,J,C⟩, obtained by an application of an attack rule R, may
be added to the derivation unless there is a tuple Tk = ⟨k,⇒¬

∧
Ω,Jk,Ck⟩ such that

k < i and Ω ⊆
∪
{Prem(s′) | s′ ∈ C}.

The condition in the application of sequent eliminating rules (Item 2 above) is called
ISM (Inconsistent Supports Maintenance). It simply blocks the introduction of elimina-
tion tuples that are based on premises that have already been shown to be inconsistent.

The outcomes of a marking AFC
L (Σ)-derivation are defined next.

Definition 13 A sequent s is finally derived in a marking AFC
L (Σ)-derivation D if

T (s) = ⟨i,s,J,C⟩ is an unmarked tuple in D , and D cannot be extended to a marking
AFC

L (Σ)-derivation in which T (s) is marked.5

Proposition 14 If a sequent is finally derived in D then it is finally derived in any exten-
sion of D .

Proof. Suppose that s is finally derived in D but it is not finally derived in some extension
D ′ of D . This means that there is some extension D ′′ of D ′ in which s is marked. Since
D ′′ is also an extension of D , we get a contradiction to the final derivability of s in D . 2

Definition 15 Let L= ⟨L ,⊢⟩ be a logic, C a sound and complete sequent calculus for L,
Σ a set of formulas in L , and AFL(Σ) = ⟨ArgL(Σ),Attack⟩ a corresponding argumenta-
tion framework. We denote by Σ |∼C,Attack ψ that there is a marking AFC

L (Σ)-derivation
based on C and Attack, in which Γ ⇒ ψ is finally derived, for some Γ ⊆ Σ. When C and
Attack are clear from the context we shall sometimes abbreviate |∼C,Attack by |∼.

4. Examples and Discussion

In this section we use some simple examples for demonstrating dynamic derivations
and for presenting entailment relations that are induced by logical argumentation frame-
works, as described in the previous section.

4.1. Argumentation Based On Classical Logic

Some logical argumentation frameworks considered in the literature are based on clas-
sical logic (see, e.g., [4]). In our case, the corresponding logical argumentation frame-
works are of the form AF CL(Σ), where CL = ⟨L ,⊢cl⟩ is classical logic and L is a
propositional language with the standard interpretations for its connectives. The sound
and complete sequent calculi used in this case is usually Gentzen’s LK, given in Figure 2.

5A marking AFC
L (Σ)-derivation D ′ extends a marking AFC

L (Σ)-derivation D if, viewed as AFC
L (Σ)-

derivations (without markings), D is a prefix of D ′.

Axioms: ψ ⇒ ψ

Structural Rules:

Weakening:
Γ ⇒ ∆

Γ,Γ′ ⇒ ∆,∆′

Cut:
Γ1 ⇒ ∆1,ψ Γ2,ψ ⇒ ∆2

Γ1,Γ2 ⇒ ∆1,∆2

Logical Rules:

[∧⇒]
Γ,ψ,φ ⇒ ∆

Γ,ψ ∧φ ⇒ ∆
[⇒∧]

Γ ⇒ ∆,ψ Γ ⇒ ∆,φ
Γ ⇒ ∆,ψ ∧φ

[∨⇒]
Γ,ψ ⇒ ∆ Γ,φ ⇒ ∆

Γ,ψ ∨φ ⇒ ∆
[⇒∨]

Γ ⇒ ∆,ψ,φ
Γ ⇒ ∆,ψ ∨φ

[⊃⇒]
Γ ⇒ ψ,∆ Γ,φ ⇒ ∆

Γ,ψ ⊃ φ ⇒ ∆
[⇒⊃]

Γ,ψ ⇒ φ,∆
Γ ⇒ ψ ⊃ φ,∆

[¬⇒]
Γ ⇒ ∆,ψ

Γ,¬ψ ⇒ ∆
[⇒¬]

Γ,ψ ⇒ ∆
Γ ⇒ ∆,¬ψ

Figure 2. The proof system LK

Example 16 Consider a logical argumentation for Σ1 = {p,¬p,q}, in which Undercut
is its single attack rule. Figure 3 shows a marking derivation with respect to this frame-
work. In this figure, asterisks indicate marked tuples and the brackets indicate at which
stages the markings are active. To improve readability, we omit the tuple signs in all the
derivations in this section. Also, to shorten the derivations a bit, applications of Weaken-
ing are sometime omitted, and in the applications of elimination rules we refer only to
the attacking and the attacked sequents, omitting the other sequents.6

1 p ⇒ p Axiom {p ⇒ p} ⋆ [3]

2 ¬p ⇒¬p Axiom {¬p ⇒¬p} ⋆ [4]

3 p ̸⇒ p Undercut;2,1 {¬p ⇒¬p}

4 ¬p ̸⇒ ¬p Undercut;1,2 {p ⇒ p}

. . .

i ⇒¬(p∧¬p) (. . .) {. . .}

i+1 q ⇒ q Axiom {q ⇒ q}

Figure 3. A marking derivation for Example 16

6Thus, for instance, for applying Undercut in Line 3 of the proof in Figure 3, we implicitly rely on the fact
that both p ⇒¬¬p and ¬¬p ⇒ p are derivable in LK.

The following notes are in order here:

• At Step 3 of the proof, Tuple 1 is marked by Tuple 3. Then, at Step 4 of the proof,
Tuple 4 unmarks Tuple 1 and marks Tuple 2 instead. As a consequence, in every
extension of the proof above either Tuple 1 or Tuple 2 will be marked. Whenever
one extends the proof to unmark one of these tuples, the proof can be further
extended to unmark the other tuple. Hence, neither p ⇒ p nor ¬p ⇒¬p is finally
derivable, which implies that Σ1 |̸∼ p and Σ1 |̸∼¬p. This is intuitively explained by
the fact that the information about p (and about ¬p) is not classically consistent,
thus it is not reliable, and so it is not derivable.

• Tuple i+1, whose sequent is q ⇒ q, cannot be marked by p,¬p ⇒¬q (although
the latter is derivable in LK), since Tuple i, whose sequent is ⇒¬(p∧¬p) ‘de-
fends’ q⇒ q. Indeed, in this case Undercut is not applicable due to Condition ISM
in Definition 12. Other potential attacks on q ⇒ q are blocked by restricting the
attacking sequents to Σ-arguments. It follows, then, that q ⇒ q is finally derived
in the proof above, and so Σ1 |∼ q. This is intuitively explained by the fact that
there are no indications that q is related to the inconsistency in Σ1.

Example 17 Consider the set Σ2 = {p,q,¬(p∧ q)}. This time, none of the formulas in
Σ2 is derivable, since in CL each pair of assertions in Σ2 attack the third one by Undercut
(see Tuples 5, i+1, and j+1 in the derivation of Figure 4). Again, we denote by asterisks
the tuples that are marked at some stage of the derivation (For instance, Tuple 3 is marked
between Stage 5 and Stage i. At Stage i+1 it is unmarked because one of the conditions
of its attacker, Tuple 4, is marked).

1 p ⇒ p Axiom {p ⇒ p} ⋆

2 q ⇒ q Axiom {q ⇒ q} ⋆

3 ¬(p∧q)⇒¬(p∧q) Axiom {¬(p∧q)⇒¬(p∧q)} ⋆

4 p,q ⇒ (p∧q) [⇒∧];1,2 {p ⇒ p, q ⇒ q, p,q ⇒ p∧q} ⋆

5 ¬(p∧q) ̸⇒ ¬(p∧q) Undercut;4,3 {p ⇒ p, q ⇒ q, p,q ⇒ p∧q}

. . .

i p,¬(p∧q)⇒¬q (. . .);1,3 {p ⇒ p, ¬(p∧q)⇒¬(p∧q), . . .} ⋆

i+1 q ̸⇒ q Undercut; i,2 {. . .}

. . .

j q,¬(p∧q)⇒¬p (. . .);2,3 {q ⇒ q, ¬(p∧q)⇒¬(p∧q), . . .}

j+1 p ̸⇒ p Undercut; j,1 {. . .}

Figure 4. A marking derivation for Example 17

4.2. Logical Argumentation Based On LP

It is interesting to see how the entailments of Definition 15 behave with respect to base
logics other than classical logic. Below, we demonstrate one such case, where the base

logic is Priest’s 3-valued logic LP [16]. This logic is based on the language of {∧,∨,¬}
where ∧, ∨, and ¬ are, respectively, Kleene’s 3-valued conjunction, disjunction and nega-
tion whose interpretations are given by the minimum, maximum, and the order reversing
functions (respectively) on the lattice F < I < T . Intuitively, the truth values T and F
correspond to the classical values of truth and falsity. The designated elements in this
case (those that represent true assertions) are T and I. A sound and complete proof sys-
tems for LP is obtained by adding to LK the axiom schemata ⇒ p,¬p and replacing the
negation rules [¬⇒] and [⇒¬] by the logical rules of Figure 5.

[¬¬⇒]
Γ,ϕ ⇒ ∆

Γ,¬¬ϕ ⇒ ∆
[⇒¬¬]

Γ ⇒ ∆,ϕ
Γ ⇒ ∆,¬¬ϕ

[¬∧⇒]
Γ,¬ϕ ⇒ ∆ Γ,¬ψ ⇒ ∆

Γ,¬(ϕ ∧ψ)⇒ ∆
[⇒¬∧]

Γ ⇒ ∆,¬ϕ ,¬ψ
Γ ⇒ ∆,¬(ϕ ∧ψ)

[¬∨⇒]
Γ,¬ϕ ,¬ψ ⇒ ∆

Γ,¬(ϕ ∨ψ)⇒ ∆
[⇒¬∨]

Γ ⇒ ∆,¬ϕ Γ ⇒ ∆,¬ψ
Γ ⇒ ∆,¬(ϕ ∨ψ)

Figure 5. Negation rules for LP

Example 18 Let’s reconsider the set of assertions Σ1 = {p,¬p,q}, this time when LP
is the underlying base logic. The marking derivation in Figure 3 is valid in this case as
well (for an argumentation framework with Undercut as a sole attack rule), and so, again,
q ⇒ q is finally derived, while neither p ⇒ p nor ¬p ⇒ ¬p are finally derivable. Note
that this time it is not necessary to include the sequent ⇒¬(p∧¬p) in the proof, since
p,¬p ⇒ q is not derivable in LP, and so q ⇒ q is not attackable by any Σ1-argument.

Example 19 Let us reconsider Σ2 = {p,q,¬(p∧ q)}. This time, whatever attack rules
are used, the consequences would be different than those that are obtained when CL is
the base logic. Indeed, in LP sequents of the form p,¬(p∧q)⇒¬q are not derivable, and
so proof steps like those described by Tuple i or Tuple j in Figure 4 are not producible.
Thus, e.g., in a logical argumentation framework based on LP and Undercut, p ⇒ p and
q ⇒ q are finally derived, while ¬(p∧ q)⇒ ¬(p∧ q) is not. The derivation of the first
five steps in Figure 4 demonstrates this.

5. Some Properties of |∼

We now consider some basic properties of entailments of the form |∼. Below, we fix a
logical argumentation framework AFL(Σ) = ⟨ArgL(Σ),Attack⟩ for a set of L -formulas
Σ, based on a logic L= ⟨L ,⊢⟩ with a sound and complete sequent calculus C, and where
Attack is the set of attacks obtained by the sequent elimination rules in AttackRules.

We start by relating |∼ and ⊢. As the following proposition shows, the latter may be
expressed by the former (thus the base consequence relations are obtained by our setting
as a particular degenerated case).7

7Due to short of space proofs for propositions in this section are omitted.

Proposition 20 If AttackRules= /0 then |∼ and ⊢ coincide.

Another case where |∼ and ⊢ correlate is the following:

Proposition 21 If Σ is conflict free with respect to AFL(Σ) (that is, there are no s,s′ ∈
ArgL(Σ) such that (s,s′) ∈ Attack) then Σ |∼ψ iff Σ ⊢ ψ .

In the general case, we have:

Proposition 22 If Σ |∼ψ then Σ ⊢ ψ .

Proposition 21 implies, in particular, that |∼ is cautiously reflexive: for every formula
ψ such that ψ ̸⊢ ¬ψ it holds that ψ |∼ψ .8 Yet, as (all) the examples in the previous
section show, |∼ may not be reflexive. These examples also show that in general |∼ is
not monotonic either. For instance, when C= LK and AttackRules consists of any of the
attack rules considered in the examples above, we have that p |∼ p while p,¬p ̸|∼ p.

Proposition 23 Let L= ⟨L ,⊢⟩ be a propositional logic and let |∼ be an entailment re-
lation induced by an argumentation framework that is based on L. If ⊢ is paraconsistent9

then so is |∼.

The next proposition shows the “proof invariance” of final derivability.

Proposition 24 Let AFL(Σ) be a logical argumentation framework, C a sequent calcu-
lus for L, and |∼ the entailment induced by them. If Σ |∼φ then every marking AFC

L (Σ)-
derivation D can be extended to a marking AFC

L (Σ)-derivation D ′ such that a tuple
with Γ ⇒ φ (where Γ ⊆ Σ) is finally derived in D ′.

Next, we characterize |∼C,Attack-entailments in which Attack contains the rules Un-
dercut or Rebuttal. We start with Undercut. When C= LK, it holds that Σ |∼LK,Ucut φ iff
φ follows in CL from the intersection of the maximal classically consistent subsets of
Σ.10 For the general case we make two assumptions. One is that the base logic satisfies (a
variation of) the law of excluded middle (Definition 25). The other assumption is about
the consistency preservation of C: proofs in C may not use sequents with inconsistent
premises unless this is essential for the proof (Definition 26).

Definition 25 A logic L= ⟨L ,⊢⟩ is called complete, if ⊢ ¬(ψ ∧¬ψ) for every formula
ψ in L .

Clearly, both of CL and LP (as well as any other truth functional 3-valued logic with
a designated middle element I, for which ¬I = I) are complete.

Definition 26 A calculus C for L = ⟨L ,⊢⟩ is called normal, if it contains the axiom
ψ ⇒ ψ and it is consistency preserving: for every set ∆ of formulas in L such that
0¬

∧
∆′ for all ∆′ ⊆ ∆, the following holds: If ∆ ⊢ ψ then there is a C-proof of ∆⇒ψ

where {Γ1 ⇒ ∆1, . . . ,Γn ⇒ ∆n} is the set of all used sequents in the proof, and ̸⊢¬
∧

Θ
for all Θ ⊆ ∆∪

∪n
i=1 Γi ∪{ψ}.

8Note that the condition is indeed required here. For instance, in an argumentation framework based on CL
and Undercut it holds that p∧¬p ̸|∼ p∧¬p.

9That is, for different atoms p,q it holds that p,¬p ̸⊢ q.
10We shall show this is the full version of the paper.

Proposition 27 Let AFL(Σ) be a logical argumentation framework for a set Σ of for-
mulas in L , based on a complete logic L= ⟨L ,⊢⟩ with a normal, sound and complete
calculus C, and where Undercut is an attack rule. If Σ |∼C,Attack φ then there is a C-proof
of Γ⇒φ for some Γ ⊆ Σ, where {Γ1 ⇒ ∆1, . . . ,Γn ⇒ ∆n} is the set of all used sequents
in the proof (including Γ ⇒ φ), and there is no ∆ ⊆ Σ for which

• ̸⊢ ¬
∧

∆′ for all ∆′ ⊆ ∆, and
• ∆ ⊢ ¬

∧
Γ′

i for some Γ′
i ⊆ Γi (1 ≤ i ≤ n), where Γi ⊆ Σ.

The converse of Proposition 27 holds for logics that are not complete and whose
sequent calculus is not necessarily normal, but this time we assume that Undercut is the
sole attack rule and that Σ is finite.

Proposition 28 Let AFL(Σ) be a logical argumentation framework for a finite set Σ of
formulas in L , based on a logic L= ⟨L ,⊢⟩ with a sound and complete calculus C, and
where Undercut is the attack rule. It holds that Σ |∼C,Ucut φ whenever there is a proof in
C of Γ⇒φ for some Γ ⊆ Σ, where {Γ1 ⇒ ∆1, . . . ,Γn ⇒ ∆n} is the set of all used sequents
in the proof (including Γ ⇒ φ), and there is no ∆ ⊆ Σ for which

• 0 ¬
∧

∆′ for all ∆′ ⊆ ∆, and
• ∆ ⊢ ¬

∧
Γ′

i for some Γ′
i ⊆ Γi (1 ≤ i ≤ n), where Γi ⊆ Σ.

By Proposition 27 and 28 we have a characterization of entailments based on com-
plete logics and Undercut.

Corollary 29 Let AFL(Σ) be a logical argumentation framework for a finite set Σ of
formulas in L , based on a complete logic L = ⟨L ,⊢⟩ with a normal, sound and com-
plete calculus C, and where Undercut is the attack rule. Then Σ |∼C,Ucut φ if and only if
there is a proof in C of Γ ⇒ φ for some Γ ⊆ Σ, where {Γ1 ⇒ ∆1, . . . ,Γn ⇒ ∆n} is the set
of all used sequents in the proof, and there is no ∆ ⊆ Σ for which

• 0 ¬
∧

∆′ for all ∆′ ⊆ ∆, and
• ∆ ⊢ ¬

∧
Γ′

i for some Γ′
i ⊆ Γi (1 ≤ i ≤ n), where Γi ⊆ Σ.

Let us turn to logical frameworks with Rebuttal. It is possible to show propositions
that are dual to 27 and 28, where Undercut is replaced by Rebuttal, and the condition

• There is no ∆ ⊆ Σ for which ∆ ⊢ ¬
∧

Γ′
i for some Γ′

i ⊆ Γi (1 ≤ i ≤ n) where Γi ⊆ Σ,

is replaced by the condition

• There is no ∆ ⊆ Σ for which ∆ ⊢ ¬ψi for some 1 ≤ i ≤ n where Γi ⊆ Σ and
∆i = {ψi}.

Thus, we have a characterization of entailments based on complete logics and Rebuttal:

Proposition 30 Let AFL(Σ) be a logical argumentation framework for a finite set Σ
of formulas in L , based on a complete logic L = ⟨L ,⊢⟩ with a normal, sound and
complete calculus C, and where Rebuttal is the attack rule. Then Σ |∼C,Reb φ if and only
if there is a proof in C of Γ ⇒ φ for some subset Γ ⊆ Σ, where {Γ1 ⇒ ∆1, . . . ,Γn ⇒ ∆n}
is the set of all used sequents in the proof, and there is no subset ∆ ⊆ Σ for which

• 0 ¬
∧

∆′ for all ∆′ ⊆ ∆, and
• ∆ ⊢ ¬ψi for some 1 ≤ i ≤ n where Γi ⊆ Σ and ∆i = {ψi}.

6. Conclusion and Related Work

Many different approaches to logical argumentation have been introduced in the liter-
ature. This includes formalisms that are based on classical logic [3,4], defeasible rea-
soning [11,12,17] abstract argumentation and the ASPIC+ framework [15], assumption-
based argumentation [8], default logic [13], situation calculus [5], and so forth.

Due to space limitation a detailed comparison to these and other approaches is de-
layed to an extended version of this paper. It should be mentioned, however, that like
ASPIC+ our approach provides a very flexible environment for logical argumentation,
as it leaves open the choices of the underlying language, the core logic, and the adequate
calculus. This flexibility carries on to the representation of arguments that avoids the
minimality and consistency constraints posed on the premises of arguments in [3].

The connection between dynamic derivations and Dung-style argumentation seman-
tics [7] has to be investigated. We refer to [19] for some results in this direction, concern-
ing deontic logics. Of a special interest are status assignments as in [6,12]. Such assign-
ments may be related to different statuses of sequents in dynamic derivations, such as
finally derived tuples, finally defeated tuples, and tuples whose markings are fluctuating.

References

[1] O. Arieli. A sequent-based representation of logical argumentation. In Proc. 14th Int. Workshop on
Computational Logic in Multi-Agent Systems (CLIMA XIV), LNCS 8143, pages 69–85. Springer, 2013.

[2] D. Batens. A universal logic approach to adaptive logics. Logica Universalis, 1:221–242, 2007.
[3] Ph. Besnard and A. Hunter. A logic-based theory of deductive arguments. Artificial Intelligence, 128(1–

2):203–235, 2001.
[4] Ph. Besnard and A. Hunter. Argumentation based on classical logic. In I. Rahwan and G. R. Simary,

editors, Argumentation in Artificial Intelligence, pages 133–152. Springer, 2009.
[5] G. Brewka. Dynamic argument systems: A formal model of argumentation processes based on situation

calculus. J. Logic and Computation, 11(2):257–282, 2001.
[6] M. Caminada and D. Gabbay. A logical account of formal argumentation. Studia Logica, 93(2):109–

145, 2009.
[7] P. M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning,

logic programming and n-person games. Artificial Intelligence, 77:321–357, 1995.
[8] P. M. Dung, R. Kowalski, and F. Toni. Dialectic proof procedures for assumption-based, admissible

argumentation. Artificial Intelligence, 170(2):114–159, 2006.
[9] G. Gentzen. Investigations into logical deduction, 1934. In German. An English translation appears in

‘The Collected Works of Gerhard Gentzen’, edited by M. E. Szabo, North-Holland, 1969.
[10] N. Gorogiannis and A. Hunter. Instantiating abstract argumentation with classical logic arguments:

Postulates and properties. Artificial Intelligence, 175(9–10):1479–1497, 2011.
[11] J. Pollock. How to reason defeasibly. Artificial Intelligence, 57(1):1–42, 1992.
[12] J. Pollock. Cognitive Carpentry. Bradford/MIT Press, 1995.
[13] H. Prakken. An argumentation framework in default logic. Ann. Math. and AI, 9(1–2):93–132, 1993.
[14] H. Prakken. Two approaches to the formalisation of defeasible deontic reasoning. Studia Logica,

57(1):73–90, 1996.
[15] H. Prakken. An abstract framework for argumentation with structured arguments. Argument and Com-

putation, 1(2):93–124, 2010.
[16] G. Priest. Reasoning about truth. Artificial Intelligence, 39:231–244, 1989.
[17] G. R Simari and R. P. Loui. A mathematical treatment of defeasible reasoning and its implementation.

Artificial Intelligence, 53(2–3):125–157, 1992.
[18] C. Straßer. Adaptive Logic and Defeasible Reasoning. Applications in Argumentation, Normative Rea-

soning and Default Reasoning, volume 38 of Trends in Logic. Springer, 2014.
[19] C. Straßer and O. Arieli. Sequent-based argumentation for normative reasoning. In Proc. 12th Int. Conf.

on Deontic Logic and Normative Systems (DEON’2014), LNAI 8554, pages 224–240. Springer, 2014.

