
Paraonsistent Semantis for Extended Logi ProgramsOfer ArieliDepartment of Computer Siene, The Aademi College of Tel-AvivAntokolsky 4, P.O.Box 16131, Tel-Aviv 61161, Israel.oarieli�mta.a.ilAbstrat We introdue a delarative semantisfor extended logi programs, and demonstrate itsusefulness for reasoning with unertainty. We showthat this is a robust formalism that overomes somedrawbaks of related �xpoint semantis for inom-plete or inonsistent logi programs.Keywords: logi programing, �xpoint semantis,paraonsisteny, multiple-valued logis.1 IntrodutionIt is well-known that the restrited syntati-al struture of standard logi programs1 limitstheir expressive power. This means, in parti-ular, that it is not possible to properly rep-resent unertain information (e.g., ontradi-tions or partial knowledge) by suh programs.The standard way of dealing with this prob-lem (in the ontext of logi programing) is toonsider extended logi programs, in whih twokinds of negation operators may appear in thelause bodies, and one of them may also appearin the lause heads. It is usual to intuitivelyrefer to one of these operators (denoted hereby :) as representing expliit negative infor-mation. The other negation operator (denotedhere by not) is intuitively related to a more im-pliit negative data, and it is often assoiatedwith a \negation-as-failure" (to prove or verifythe orresponding assertion on the basis of theavailable information).1I.e., set of lauses of the form p l1; : : : ; ln wherep is an atomi formula and l1; : : : ; ln is a onjuntion ofliterals.

Example 1 Let p; q; r be atomi formulae,and let t be a propositional onstant that rep-resents true assertions. Consider the followingextended logi program:P = fq  t; p t; p r; :p not :qgIntuitively, P may be understood suh thatboth p and q are known to be true, p is de-�ned in terms of r (where no information isavailable about r), and :p holds provided thatthe negation of q annot be shown. In this in-terpretation, P learly laks any informationabout r, and it ontains inonsistent informa-tion regarding p. Thus, a plausible formal-ism for reasoning with P should not assumeanything about r, and (unlike lassial logi)should not give P a trivial semantis. Thatis, despite the ontraditions in P, not everyformula may be inferred from it.2Example 1 shows that an adequate formal-ism for giving semantis to extended logi pro-grams must be paraonsistent [11℄, that is, in-onsistent information should not entail ev-ery onlusion.3 The next example shows thatthe underlying formalism should also be non-monotoni (i.e., apable of hanging the set ofonlusions aording to new data).Example 2 Consider again the logi programP of Example 1, and suppose now that a newdatum arrives, whih indiates that if p holdsthen :q must hold as well. The new programis therefore P 0 = P [ f:q  pg. Now, the2For instane, it is quite obvious that none of :q, r,or :r should follow from P.3See [9℄ for a survey on paraonsistent systems.



information regarding p beomes onsistent (asthe ondition for onluding :p does not holdanymore), while the data regarding q turns tobe inonsistent (and the data regarding r re-mains inomplete). A non-monotoni formal-ism should adapt itself to the new situation. Inpartiular, while the query :p should sueedw.r.t. P, it should fail w.r.t. P 0.In this paper we introdue a paraonsis-tent and non-monotoni delarative semantisfor extended logi programs. For this we useBelnap's four-valued struture [6, 7℄, whih ispartiularly useful for our purpose, sine inaddition to the \standard" lassial values italso ontains two other values for designatingthe two kinds of unertainty mentioned above,namely: partial information and ontraditorydata. We show that the outome is a �xpointsemantis for extended logi programs that isapable of pinpointing the inomplete and in-onsistent parts of the data, while the remain-ing information may be regarded as lassiallyonsistent. 42 Four-valued semantisAs we have noted above, our formalism is basedon four-valued semantis. Reasoning with fourtruth values may be traed bak to the 1950's[8, 16℄. Here we use Belnap's four-valued al-gebrai struture FOUR, introdued in [6, 7℄.This struture onsists of four elements: twoelements (t; f) that orrespond to the lassialtruth values, an element (?) that intuitivelyrepresents lak of information, and an element(>) that may intuitively be understood as rep-resenting ontraditions. These elements aresimultaneously arranged in two partial orders.In one of them (denoted here by �t), f is theminimal element, t is the maximal one, and?;> are two intermediate values that are in-omparable. This partial order may be intu-itively understood as representing di�erenesin the amount of truth of eah element. We de-note by ^ and _ the meet and join operations4Due to a lak of spae proofs are omitted here. Fullproofs appear in [1℄.

w.r.t �t. In the other partial order (denotedhere by �k), ? is the minimal element, > isthe maximal one, and t; f are two intermediatevalues. This partial order intuitively representsdi�erenes in the amount of knowledge (or in-formation) that eah element exhibits. We de-note by 
 and � the meet and join operationsw.r.t �k. A negation operator : on FOUR re-verses the �t-order and preserves the�k-order,thus :t=f , :f= t, :?=?, and :>=>.A double-Hasse diagram of FOUR is shownin Figure 1.6�k

-�tu?
uf u tu>������������������

������
Figure 1: FOURThe various semanti notions are de�ned onFOUR as natural generalizations of similarlassial ones: a valuation � is a funtion thatassigns a truth value in FOUR to eah atomiformula. In what follows we shall sometimeswrite � = fp : x; q : yg instead of �(p) = x,�(q) = y. Any valuation is extended to om-plex formulae in the obvious way. The set ofthe four-valued valuations is denoted by V 4.The set of the designated truth values inFOUR (i.e., those elements in FOUR thatrepresent true assertions) is D=ft;>g. A val-uation � satis�es a formula  i� �( ) 2 D.A valuation that assigns a designated value toevery formula in a theory P is a model of P.The set of all the models of P is denoted bymod(P). The syntatial form of the formulaein P is the following:



De�nition 3 In what follows p; q; r denoteatomi formulae, l; l1; l2; : : : denote literals (i.e.,atomi formulae that may be preeded by :),and e; e1; e2; : : : denote extended literals (i.e.literals that may be preeded by not). Theomplement of a literal l is denoted by l. An ex-tended lause is a formula l e1; : : : ; en wheren� 0. A (possibly in�nite) set P of extendedlauses is alled an extended logi program.5 Alause (respetively, a set of lauses) withoutthe operator not is alled a general lause (re-spetively, a general logi program).Let P be a general logi program. Themeaning of onjuntions (;) and negations (:)is determined, respetively, by the �t-meetand the negation operator on FOUR.6 Thisorresponds to the natural extensions for themultiple-valued ase of the 2-valued interpre-tations of these onnetives. However, thisshould not be the ase with impliation: asobserved in [5, 15℄, in the ontext of multiple-valued semantis the material impliation doesnot properly represent entailment. We there-fore onsider an alternative de�nition for theimpliation onnetive (see [1, 2℄ for a justi�-ation of this de�nition):De�nition 4 [2, 4℄ Let x; y2FOUR. De�ne:x y = x if y2D, and x y = t otherwise.We onlude this setion by de�ning twouseful order relations on the models of a pro-gram P.De�nition 5 A valuation �1 2 mod(P) is k-smaller than another valuation �2 2 mod(P)if for every atomi formula p, �1(p) �k �2(p).�2mod(P) is a k-minimal model of P if thereis no other model of P that is k-smaller than�.De�nition 6 [2, 3℄ A valuation �1 2 mod(P)is more onsistent than another valuation �2 25Some formalisms also allow the appearane of im-pliit negations in the lause heads of extended logiprograms; see e.g. [12℄ for a disussion on possible waysto understand default negation in the lause heads.6We shall disuss the meaning of the negation asfailure operator not in what follows.

mod(P) if fp j �1(p) =>g � fp j �2(p) =>g.� 2 mod(P) is a most onsistent model of Pif there is no other model of P that is moreonsistent than �.3 Paraonsistent �xpoint se-mantisWe are now ready to introdue our �xpointsemantis for logi programs. First, we treatgeneral logi programs (i.e., programs withoutnegation-as-failure), and then we onsider ex-tended logi programs.3.1 General logi programsDe�nition 7 Given a general logi programP, de�ne for every i�1 and every literal l,�P0 (l) = ?.valPi (l) = 8><>: t if there is a l Body 2 Ps.t. �Pi�1(Body) 2 D, 7? otherwise.�Pi (l) = valPi (l)� :valPi (l).For a limit ordinal � we de�nevalP� (l) = max�kfvalP� (l) j �<�g,�P� (l) = valP� (l)� :valP� (l).For a propositional onstant x2ft; f; ; ug thatis respetively assoiated with an element x2ft; f;>;?g in FOUR, we de�ne�Pi (x) = valPi (x) = x (i = 0; 1; : : :).Note that �Pi behaves as expeted w.r.t.negation: sine :(x � y) = :x � :y for ev-ery x; y 2 FOUR, we have that:�Pi (l) = :(valPi (l)� :valPi (l)) == :valPi (l)� valPi (l) = �Pi (l).Proposition 8 Let P be a general logi pro-gram. Then the sequene �P0 ; �P1 ; : : : is �k-monotoni in V4.7Note that �Pj (Body) = Vli2L(Body) �Pj (li), thus�Pj (Body) 2 D i� 8li2L(Body) �Pj (li)2D.



By Knaster-Tarski theorem [23℄, it followsfrom Proposition 8 that the sequene f�Pi g hasa �k-least �xpoint. Denote this �xpoint by �P .An indued onsequene relation j�� may nowbe de�ned as follows: P j��  i� �P( ) 2 D(Thus, a formula  follows from a logi pro-gram P, if �P( ) is designated).Proposition 9 Let P be a general logi pro-gram. Then �P is the k-minimal four-valuedmodel of P. Moreover, it is at least as on-sistent as any other model of P, and the on-sequene relation j�� that is indued by it isnon-monotoni and paraonsistent.Corollary 10 Let P be a general logi pro-gram. Then:a) �P is the k-least model of P,b) �P is a most onsistent model of P,) �P is the k-minimal element among themost onsistent models of P.Corollary 10 implies that �P minimizes theamount of knowledge that is pre-supposed, i.e.it does not assume anything that is not re-ally known. The same orollary also showsthat �P is a most onsistent model of P. Assuh, it minimizes the amount of inonsistentbelief in the set of lauses. This is in aor-dane with the intuition that while one has todeal with onits in a nontrivial way, ontra-ditory data orresponds to inadequate infor-mation about the real world, and therefore itshould be minimized.83.2 Extended logi programsIn this setion we extend the �xpoint semantisfor general logi programs, onsidered in theprevious setion, to extended logi programs.So now, in addition to the expliit negation :,the negation-as-failure operator (not) may alsoappear in the lauses bodies.One way of understanding not in the four-valued setting is the following: If we don'tknow anything about p, i.e. we annot proveeither p or :p, then we annot say anything8See also [3℄.

about not p as well. Otherwise, if p has a des-ignated value in the intended semantis (i.e., pis provable), then not p does not hold, and if pdoes not have a designated value (i.e., it is notprovable), then not p holds. It follows, then,that not t = f , not > = f , not f = t, andnot ? = ?.In what follows we use a transformation,similar to that of the well-founded semantis[25℄, for reduing extended logi programs togeneral logi programs. Then we use the for-malism of the previous setion for giving se-mantis to the general logi programs that areobtained.De�nition 11 Let � be a four-valued valua-tion. The set S� that is assoiated with � isthe smallest set of literals that satis�es the fol-lowing onditions: 9if �(l) = t then l 2 S� ,if �(l) = f then l2S� ,if �(l) = > then fl; lg � S� .De�nition 12 Let P be an extended programand let S be a set of literals. The redution ofP w.r.t. S is the general logi program P #S,obtained from P as follows:1. Eah lause that has a ondition of theform not l, where l2S, is deleted from P.2. Every ourrene of not l, where l 2 S,is eliminated from the (bodies of the) re-maining lauses.103. Every ourrene of not l in the remain-ing lauses is replaed by the propositionalonstant u.Now we are ready to de�ne our �xpoint se-mantis for extended logi programs. Reallthat �P denotes the �xpoint semantis for ageneral logi program P.9Suh sets are sometimes alled answer sets (for �).We shall not use this terminology here, sine inonsis-tent answer sets ontain every literal, and this is notthe ase here.10If a lause body beomes empty by this transfor-mation, it is treated as onsisting of the propositionalonstant t.



De�nition 13 A valuation �2 V 4 is an ade-quate solution for an extended logi programP, if it oinides with the �xpoint semantis ofthe general logi program obtained by redu-ing P w.r.t. the set that is assoiated with �.In other words, � is an adequate solution forP i� the following equation holds:� = �P#S�Note 14 If the only negation operator thatappears in P is :, then P is a general logiprogram, and so its unique adequate solution is�P . It follows, in partiular, that the notion ofadequate solutions of extended logi programsis a generalization of the �xpoint semantis forgeneral logi programs.Proposition 15 Any adequate solution for Pis a model of P, and the onsequene rela-tion that is indued by it is non-monotoni andparaonsistent.As it is shown in Example 17 below, an ex-tended logi program may have more than oneadequate solution, and so one may use di�erentpreferene riteria for hoosing the best solu-tions among the adequate ones. In the aseof general logi programs we have hosen �k-minimization as the riterion for preferring the\best" model among the �xpoint valuations.This was justi�ed by the fat that general logiprograms may ontain ontraditory data, andso we want to minimize the redundant informa-tion as muh as possible. In the present ase werather use the opposite methodology: sine thenegation-as-failure operator orresponds to in-omplete information, we are dealing here witha lak of data, so this time we should try to re-strit the e�et of the negation-as-failure oper-ator only to those ases in whih indeed thereis not enough data available. It follows, there-fore, that now we should seek for a maximalknowledge (among the adequate solutions). 1111Informally, we use here a \min/max strategy":knowledge minimization of the ontraditory ompo-nents of the program, and knowledge maximization ofits inomplete omponents.

De�nition 16 � is a most adequate model ofP if it is a �k-maximal adequate solution forP. 12Example 17 Below we onsider our seman-tis for some inonsistent and/or inompletelogi programs.1. P = f:p not pg.Intuitively, P represents a losed word as-sumption (CWA, [22℄) regarding p: In theabsene of any evidene for p, assume that:p holds. P has two adequate solutions�1=fp :?g and �2=fp :fg. But �2>k�1,so �2 is the most adequate model of P.2. P = fp not p; q tg.The most adequate model here is fp :?; q :tg. This indeed seems to be the only rea-sonable interpretation in this ase, sineit distinguishes between the meaningfuldata in P (fq  tg), and the meaning-less data (fp not pg). Note also thatthe most adequate solution here oinideswith the well-founded model [25℄ (for stan-dard logi programs) of P. Two-valuedsemantis, suh as Gelfond-Lifshitz sta-ble model semantis [14℄, do not provideany model for P.3. (Examples 1 and 2, revisited)P = fq t; p t; p r; :p not :qg.The most adequate model here is fp :>; q : t; r :?g. It reets our expetationthat no information about r is available,and sine :q does not follow from P, theknowledge about p is ontraditory. Notethat aording to the semantis given in[15, 19℄, P does not have any model, sineit is not lassially onsistent.P 0 = P [ f:q pg.As noted in Example 2 above, the new in-formation that is added to P should ausea omplete revision in the reasoner's beliefabout p and q. The most adequate modelof P 0, fp : t; q :>; r :?g, indeed reetsthe expeted result of suh a revision.12Note that by Proposition 15, � is indeed a modelof P.



4 Conluding remarksOne of the main drawbaks of some related �x-point semantis (suh as those introdued in[15℄ and [19℄) is that they beome trivial inthe presene of ontraditions, and so these for-malisms are not paraonsistent. We do believethat sine inonsistent knowledge an and maybe represented in extended logi programs, aplausible semantis for suh programs shouldbe able to draw meaningful onlusions (andrejet others) despite the inonsisteny. The�xpoint semantis onsidered here has suh a-pabilities: it pinpoints the inonsistent and theinomplete parts of the data, and regards therest of the information as lassially onsistent.Another major di�erene between the se-mantis introdued here and some other se-mantis for extended logi programs (e.g, [13,15, 17, 21℄) onerns with the way negativedata is related to its positive ounterpart.While the formalisms of [13, 15, 17, 21℄ treatp and :p as two di�erent atomi formulae, wepreserve the relation between an atomi for-mula and its negated atom. To see the impor-tane of this, onsider the following program(also onsidered in [5, Example 3.3.6℄ and [19,Example 1℄):P = fp not q; q  not p; :p tgAording to the approahes that treat :p as(a strange way of writing) an atomi formula,the well-founded semantis would assign here tto :p, ? to p, and ? to q. So even though P islassially onsistent, the distintion between pand :p auses a ounter-intuitive result here:sine there is no way to refute p without re-lating it to :p, it is not possible to onludeq. In ontrast, our semantis reets the intu-itive expetations in this ase, and the uniqueadequate solution for P is fp :f; q : tg.For another example, onsider the followinglogi program [19, Example 6℄:P = fr  not q; q  not p; p not p;:q tgIf :q is onsidered as an atomi formula, thisprogram has a single extended stable model,

in whih :q is true and all the other atomiformulae (p; q; r) are unknown. This seems tobe a ounter-intuitive result, sine in this aseone expets that r would follow from P. Theunique adequate solution for P (and so its mostadequate model) is fp :?; q :f; r : tg. Aord-ing to this semantis r indeed follows from P,as expeted.13Finally, we note that our approah may beinorporated with other tehniques for improv-ing the way knowledge is represented in the un-derlying program. For instane, by using themethodology proposed by Pereira et al. in [20℄,it is possible to represent preferenes amongdi�erent program rules by assoiating a dif-ferent 'label' to eah program rule, and thenadding these labels as new onditions to thebodies of the rules. This enables an easy wayto represent a hierarhy of rules in the lan-guage itself. For instane, the fat that un-der the onditions spei�ed in Body one shouldapply a rule labeled by l1 instead of a rule la-beled by l2, is enoded by a preferene rule like:l2  Body; l1.The same paper also suggests a method forexeption handling that may also be enodedin our framework. For instane, a rule likefly(x) bird(x)that states that every bird an y, may be re-plaed by more autious rules, suh asfly(x) bird(x); not abnormal bird(x),abnormal bird(x) bird(x);:fly(x),whih imply that ying ability is only a defaultproperty of birds.Referenes[1℄ O.Arieli. Paraonsistent Semantis for Ex-tended Logi Programs. Tehnial Report No.CW299, Department of Computer Siene,University of Leuven, 2000.13Indeed, our results in the last two examples arein aordane with those of [19℄, and follow the sameintuition.
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