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Abstract We investigate Dung’s semantics for assumption-based frameworks (ABFs)
that are induced by contrapositive logics. We show that unless the falsity proposi-
tional constant is part of the defeasible assumptions, the grounded semantics lacks
most of the nice properties it has in abstract argumentation frameworks (AAFs),
and that for simple definitions of the contrariness operator and the attacks relations,
preferential and stable semantics are reduced to naive semantics. We also show the
tight relations of this framework to reasoning with maximally consistent sets, and
consider some properties of the induced entailments, such as being cumulative or
preferential relations that are crash resistant.

1 Introduction

Assumption-Based Argumentation (ABA), thoroughly described in [4], was intro-
duced in the 1990s, as a computational framework to capture and generalize default
and defeasible reasoning. It was inspired by Dung’s semantics for abstract argumen-
tation and logic programming with its dialectical interpretation of the acceptability
of negation-as-failure assumptions based on “no-evidence-to-the-contrary”.

ABA systems are represented in different ways in the literature. A cornerstone
in all of them is a distinction between two types of assumptions for the argumen-
tation: the strict (non-revised) ones and the defeasible ones. Traditionally, the lat-
ter are usually expressed in terms of logic-programming-like rules of the form
A1∧ . . .∧An→ B (intuitively understood by ‘if all of A1, . . . ,An hold, then so does
B’). Here we do not confine ourselves to any specific syntactical forms of the (strict
or deafeasible) rules, but rather accept any propositional assertion. The logical foun-
dation for making arguments and counter-arguments in our setting may be based on
any logic respecting the contraposition rule, where the contrariness operator is of
the simple and most natural form – the contrary of a formula is its negation. The
outcome is what we call simple contrapositive assumption-based (argumentation)
frameworks (simple contrapositive ABFs, for short).
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In this work we investigate the main Dung-style semantics [9] of simple contra-
positive ABFs. Among others, we show that as in the case of abstract argumentation
frameworks (AAFs), these kinds of semantics for ABFs are tightly related to rea-
soning with maximal consistency [11]. Moreover, the entailment relations induced
by these semantics are preferential in the sense of Kraus, Lehmann, and Magidor
(KLM) [10], and satisfy some properties, like non-interference, showing their ade-
quacy to reasoning with inconsistent data. On the negative side we show that unless
the framework satisfies some conditions its grounded semantics may loose many
of its desirable properties and that at least for the standard form of attack and sim-
ple definitions of the contrariness operator, the main semantics reduce to the naive
semantics (a phenomenon that is known already for some specific AAF’s [1]).

2 Simple Contrapositive ABFs

We shall denote by L an arbitrary propositional language. Atomic formulas in L
are denoted by p,q,r, compound formulas are denoted by ψ,φ ,σ , and sets of for-
mulas in L are denoted by Γ , ∆ . The powerset of L is denoted by ℘(L ).

Definition 1. A (propositional) logic for a language L is a pair L= 〈L ,`〉, where
` is a (Tarskian) consequence relation for L , that is, a binary relation between sets
of formulas and formulas in L , satisfying the following conditions:

Reflexivity: if ψ ∈ Γ then Γ ` ψ .
Monotonicity: if Γ ` ψ and Γ ⊆ Γ ′, then Γ ′ ` ψ .
Transitivity: if Γ ` ψ and Γ ′,ψ ` φ then Γ ,Γ ′ ` φ .

The `-transitive closure of a set Γ of L -formulas is Cn`(Γ ) = {ψ | Γ ` ψ}.
When ` is clear from the context, we will sometimes just write Cn(Γ ).

Definition 2. We shall assume that the language L contains at least the following
connectives:

a `-negation ¬, satisfying: p 6` ¬p and ¬p 6` p (for every atomic p)
a `-conjunction ∧, satisfying: Γ ` ψ ∧φ iff Γ ` ψ and Γ ` φ

a `-disjunction ∨, satisfying: Γ ,φ ∨ψ ` σ iff Γ ,φ ` σ and Γ ,ψ ` σ

a `-implication ⊃, satisfying: Γ ,φ ` ψ iff Γ ` φ ⊃ ψ .
an `-falsity F, satisfying: F ` ψ for every formula ψ .

For a finite set of formulas Γ we denote by
∧

Γ (respectively, by
∨

Γ ), the con-
junction (respectively, the disjunction) of all the formulas in Γ . We shall say that Γ

is `-consistent if Γ 6` F.

Definition 3. A logic L= 〈L ,`〉 is explosive, if for L -formula ψ , the set {ψ,¬ψ}
is `-inconsistent.1 We say that L is contrapositive, if for every Γ and ψ it holds that
Γ ` ¬ψ iff either ψ = F, or for every φ ∈ Γ we have that Γ \{φ},ψ ` ¬φ .
1 That is, ψ,¬ψ ` F. In explosive logics every formula follows from inconsistent assertions.
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Example 1. Perhaps the most notable example of a logic which is both explosive
and contrapositive, is classical logic, CL. Intuitionistic logic, the central logic in
the family of constructive logics, and normal modal logics are other examples of a
well-known formalism having these properties.

We are now ready to define assumption-based argumentation frameworks (ABFs).
The next definition is a generalization of the definition from [4].

Definition 4. An assumption-based framework is a tuple ABF= 〈L,Γ ,Ab,∼〉where:

• L= 〈L ,`〉 is a propositional Tarskian logic
• Γ (the strict assumptions) and Ab (the candidate/defeasible assumptions) are

distinct (countable) sets of L -formulas, where the former is assumed to be `-
consistent and the latter is assumed to be nonempty.

• ∼ : Ab→℘(L ) is a contrariness operator, assigning a finite set of L -formulas
to every defeasible assumption in Ab, such that for every ψ ∈ Ab\{F} it holds
that ψ 6`

∧
∼ψ and

∧
∼ψ 6` ψ .

Note 1. Unlike the setting of [4], an ABF may be based on any Tarskian logic L.
Also, the strict as well as the candidate assumptions are formulas that may not be
just atomic. Concerning the contrariness operator, note that it is not a connective of
L , as it is restricted only to the candidate assumptions.

Defeasible assertions in an ABF may be attacked in the presence of a counter
defeasible information. This is described in the next definition.

Definition 5. Let ABF = 〈L,Γ ,Ab,∼〉 be an assumption-based framework, ∆ ,Θ ⊆
Ab, and ψ ∈Ab. We say that ∆ attacks ψ iff Γ ,∆ ` φ for some φ ∈∼ψ . Accordingly,
∆ attacks Θ if ∆ attacks some ψ ∈Θ .

The last definition gives rise to the following adaptation to ABFs of the usual
Dung-style semantics [9] for abstract argumentation frameworks.

Definition 6. ([4]) Let ABF = 〈L,Γ ,Ab,∼〉 be an assumption-based framework,
and let ∆ be a set of formulas. Below, maximum and minimum are taken with re-
spect to set inclusion. We say that:

• ∆ is closed (in ABF) if ∆ = Ab∩Cn`(Γ ∪∆).
• ∆ is conflict-free (in ABF) iff there is no ∆ ′ ⊆ ∆ that attacks some ψ ∈ ∆ .
• ∆ is naive (in ABF) iff it is closed and maximally conflict-free.
• ∆ defends (in ABF) a set ∆ ′ ⊆ Ab iff for every closed set Θ that attacks ∆ ′ there

is ∆ ′′ ⊆ ∆ that attacks Θ .
• ∆ is admissible (in ABF) iff it is closed, conflict-free, and defends every ∆ ′⊆∆ .
• ∆ is complete (in ABF) iff it is admissible and contains every ∆ ′ ⊆ Ab that it

defends.
• ∆ is grounded (in ABF) iff it is minimally complete.
• ∆ is preferred (in ABF) iff it is maximally admissible.
• ∆ is stable (in ABF) iff it is closed, conflict-free, and attacks every ψ ∈ Ab\∆ .
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Note 2. According to Definition 6, extensions of an ABF are required to be closed.
This is a standard requirement for ABFs (see, e.g., [4, 8, 13]), aimed at assuring the
closure postulate, thus we impose it here as well, although most of the other frame-
works for structured argumentation do not demand this condition. The investigation
of the ABFs without this requirement is left for future work.

The set of naive (respectively, preferred, stable) extensions of ABF is denoted
Naive(ABF) (respectively, Prf(ABF), Stb(ABF)). The singleton of the grounded
extension of ABF is denoted Grd(ABF). We shall denote Sem(ABF) any of the
above-mentioned sets. now, the entailment relations that are induced from an ABF
(with respect to a certain semantics) are now defined as follows:

Definition 7. Given an assumption-based framework ABF = 〈L,Γ ,Ab,∼〉 . For
Sem ∈ {Grd,Prf,Stb}, we denote:

• ABF |∼∩Semψ iff Γ ,∆ ` ψ for every ∆ ∈ Sem(ABF).
• ABF |∼∪Semψ iff Γ ,∆ ` ψ for some ∆ ∈ Sem(ABF).

Note 3. Unlike standard consequence relations (Definition 1), which are relations
between sets of formulas and formulas, the entailments in Definition 7 are relations
between ABFs and formulas. This will not cause any confusion in what follows.

In what follows we shall investigate the semantics and entailment relations in-
duced by the following common family of ABFs according to Definitions 6 and 7.

Definition 8. A simple contrapositive ABF is an assumption-based framework ABF=
〈L,Γ ,Ab,∼〉, where L is an explosive and contrapositive logic, and ∼ψ = {¬ψ}.

3 Preferential and Stable Semantics

We start by examining the preferred and the stable semantics of ABFs. First, we
show that in simple contrapositive ABFs stable and preferential semantics actually
coincide with naive semantics.

Proposition 1. Let ABF = 〈L,Γ ,Ab,∼〉 be a simple contrapositive ABF. Then ∆ ⊆
Ab is naive in ABF iff it is a stable extension of ABF, iff it is a preferred extension
of ABF.

Proof. We show that every naive ∆ ⊆ Ab is a stable extension of ABF, leaving the
other (simpler) cases to the reader.

Let ∆ ⊆ Ab be a naive extension of ABF and suppose for a contradiction that
it is not stable. Since ∆ is naive, it is closed, and since it is not stable, there is
some ψ ∈ Ab\∆ that is not attacked by ∆ , that is: Γ ,∆ 6` ¬ψ . Now, ψ 6∈ ∆ means
that either Γ ∪∆ ∪{ψ} is not conflict-free or ∆ ∪{ψ} is not closed and Cn(Γ ∪
∆ ∪{ψ})∩Ab is not conflict-free. In both cases, this means that Γ ,∆ ,ψ ` ¬φ for
some φ ∈ ∆ ∪ {ψ}. Suppose first that φ = ψ . Then Γ ,∆ ,ψ ` ¬ψ , and since L
is contrapositive, for every σ ∈ Γ ∪∆ , we have (Γ ∪∆) \ {σ},ψ ` ¬σ .2 Again,

2 Note that Γ ∪∆ is not empty, otherwise ψ `¬ψ , contradicting the condition on∼ in Definition 4.
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by contraposition this implies that Γ ,∆ ` ¬ψ , a contradiction to the assumption.
Suppose now that φ ∈ ∆ . Then again since L is contrapositive, Γ ,∆ ` ¬ψ , again a
contradiction to the assumption. ut

Next we show the relation to reasoning with maximal consistent subsets.

Definition 9. Let ABF = 〈L,Γ ,Ab,∼〉. A set ∆ ⊆ Ab is maximally consistent in
ABF, if (a) Γ ,∆ 6` F and (b) Γ ,∆ ′ ` F for every ∆ ( ∆ ′ ⊆ Ab. The set of the maxi-
mally consistent sets in ABF is denoted MCS(ABF).

Theorem 1. Let ABF = 〈L,Γ ,Ab,∼〉 be a simple contrapositive assumption-based
framework, and let ∆ ⊆ Ab. Then ∆ is a stable extension of ABF, iff it is a preferred
extension of ABF, iff it is naive in ABF, iff it is an element in MCS(ABF).

Proof. Follows from Proposition 1 and the next lemma.

Lemma 1. Let ABF = 〈L,Γ ,Ab,∼〉 be a simple contrapositive assumption-based
framework. Then ∆ ⊆ Ab is naive in ABF iff ∆ ∈MCS(ABF).

Proof. [⇒]: Suppose that ∆ ⊆Ab is naive. Then Γ ,∆ 6` F, otherwise for every ψ ∈∆

it holds that Γ ,∆ ` ¬ψ , and so ∆ cannot be conflict-free. To see the maximality
condition in Definition 9, suppose for a contradiction that there is some ∆ ( ∆ ′

such that Γ ,∆ ′ 6` F. Since ∆ is naive, either ∆ ′ is not conflict-free or ∆ ′ is not closed
and Cn(∆ ′∪Γ )∩Ab is not conflict-free. In both cases, Γ ,∆ ′ ` ¬φ for some φ ∈ ∆ ′,
contradiction to Γ ,∆ ′ 6` F (since L is explosive). Thus ∆ ∈MCS(ABF).
[⇐]: Suppose now that ∆ ∈MCS(ABF). Then ∆ is obviously conflict-free. Suppose
for a contradiction that there is a superset ∆ ( ∆ ′ that is still conflict-free. Since ∆

is a maximal consistent set in ABF, Γ ,∆ ′ ` F. But then Γ ,∆ ′ ` ¬φ for any φ ∈ ∆ ′,
thus ∆ ′ cannot be conflict-free. Suppose now ∆ is not closed, i.e. ∆ ∪Γ ` φ for
some φ ∈ Ab\∆ . Since ∆ ∈MCS(ABF), Γ ,∆ ,φ ` F and consequently, Γ ,∆ ` ¬φ .
But since Γ ,∆ ` φ , this contradicts Γ ,∆ 6` F (since L is explosive). ut

Note 4. The assumption that L is explosive is essential for Lemma 1 (and so also
for Theorem 1). To see this, consider a logic for which φ ,¬φ 6` F (e.g. Baten’s
CLuNs, Priest’s 3-valued LP, or Dunn-Belnap’s 4-valued logic). Then for ABF =
〈L, /0,{p,¬p},∼〉 we have that MCS(ABF) = {{p,¬p}}, yet {p} attacks {¬p} and
vice versa, i.e. the naive extensions are {p} and {¬p}.

Corollary 1. Let ABF= 〈L,Γ ,Ab,∼〉 be a simple contrapositive assumption-based
framework. Then:

• ABF |∼∩Prfψ iff ABF |∼∩Stbψ iff ∆ ` ψ for every ∆ ∈MCS(ABF).
• ABF |∼∪Prfψ iff ABF |∼∪Stbψ iff ∆ ` ψ for some ∆ ∈MCS(ABF).

The collapsing of the preferred and stable semantics to naive semantics in simple
contrapositive ABFs is not surprising. Similar results for specific AAFs are reported
in [1]. Yet, as shown in [3], when more expressive languages, and/or attack relations,
and/or entailment relations are involved, this phenomenon cease to hold.
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4 The Grounded Semantics

We now turn to the grounded semantics for simple contrapositive ABFs. We start
with the general case and then consider the case where F ∈ Ab.

4.1 Limitations of Grd(ABF)

The grounded extension in abstract argumentation frameworks (AAFs) has many
nice properties. For example, it is unique, always exists, and can be built up recur-
sively starting from the set of unattacked arguments. The latter property stems from
the following postulate, known as Dung’s fundamental lemma (in short, DFL):

DFL: If ∆ is admissible3 and defends ψ , then ∆ ∪{ψ} is also admissible.

In contrapositive ABFs (not even simple ones), none of the above properties of
grounded extensions is guaranteed. For instance, to see that the DFL fails (and so
the usual iterative process for constructing grounded extensions in AAFs may fail
for ABFs), consider the following example:

Example 2. Let L = CL, Γ = {p ⊃ ¬s, s ⊃ ¬r, p∧ r ⊃ t}, and Ab = {p,r,s, t}. A
fragment of the attack diagram (for singletons only) is shown in Figure 1.

{p}{s}{r} {t}

Fig. 1 An attack diagram for Example 2

Note that {p} is admissible and that {p} attacks {s}, which is the only attacker
of {r}, thus {p} defends {r}. However, {p,r} is not closed and therefore it is not
admissible (while {p,r, t} is admissible).

The next examples shows that Grd(ABF) 6=
⋂
MCS(ABF), thus an analogue of

Theorem 1 does not hold for the grounded semantics

Example 3. Let L = CL, Γ = /0, and Ab = {p,¬p,s}. A corresponding attack dia-
gram is shown in Figure 2. Note that the grounded set of assumptions is the emp-
tyset, since there are no unattacked arguments. However,

⋂
MCS(ABF) = {s}. The

intuitive reason for this behavior is the inconsistent set {p,¬p,s} contaminates the
argumentation framework, thus keeping s out of the grounded set of assumptions.

The last example also demonstrates the problems of the grounded semantics in
handling inconsistencies in ABA systems (cf. Item 4 above). Indeed, in the pres-
ence of an inconsistency the whole argumentation framework may be contaminated,
blocking any informative output, such as the innocent bystander s in Example 3.

3 Recall that in abstract argumentation frameworks this does not mean that ∆ is closed.
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{s}{p,¬p,s}

{p}

{¬p}

{p,s}

{¬p,s}

Fig. 2 An attack diagram for Example 3

Finally, we show that (unlike abstract argumentation) uniqueness is not guaran-
teed for grounded semantics.

Example 4. Let L be an explosive logic, Ab = {p,¬p,q} and Γ = {s,s ⊃ q}. Note
that the emptyset is not admissible, since it is not closed (indeed, Γ ` q). Also, {q}
is not admissible since {p,¬p} ` ¬q. The two minimal complete extensions in this
case are {p,q} and {¬p,q}, thus there is no unique grounded extension.

4.2 A More Plausible Case

Most of the shortcomings of the grounded semantics can be lifted by requiring that
F ∈ Ab. Let’s first look at how the addition of F to Ab would change Example 3.

Example 5 (Example 3 continued). Consider the same ABF as of Example 3, except
that now F is added to Ab. Note that {p,¬p} ` F and consequently {p,¬p} is not
closed, whereas {p,¬p,s,F} is. Furthermore, /0 ` ¬F and consequently we have the
(relevant part of the) attack diagram, shown in Figure 3. Now the grounded set of
assumptions is {s} (cf. Example 3).

/0 {s}{p,¬p,s}

{p}

{¬p}

{p,s}

{¬p,s}

Fig. 3 An attack diagram for Example 5

Next we show that, despite of the failure of the DFL, when F ∈ Ab we can still
get the grounded extension by the well-known iterative construction.

Definition 10. Let ABF = 〈L,Γ ,Ab,∼〉 be an assumption-based framework.

• G0(ABF) consists of all φ ∈ Ab such that no ∆ ⊆ Ab attacks φ .



8 Jesse Heyninck and Ofer Arieli

• Gi+1(ABF) consists of the union Gi(ABF) and all the assumptions that are de-
fended by Gi(ABF).

• G (ABF) =
⋃

i>0 Gi(ABF).

When ABF is clear from the context we will just write G0, Gi and G .

Theorem 2. If ABF is a simple contrapositive ABF and F ∈ Ab, Grd(ABF) = {G }.

For the proof of Theorem 2 we first need a few lemmas.

Lemma 2. If ABF is a simple contrapositive ABF, then G1(ABF) is conflict-free.

Proof. If G1 = /0 then it is conflict-free by definition. Suppose for a contradiction
that Γ ,G1 ` ¬φ for some φ ∈ G1. Then G1 attacks G1 and thus G0 attacks some δ ∈
Cn(G1∪Γ )∩Ab, i.e. Γ ,G0 ` ¬δ . Since L is contrapositive, Γ ,(G0 \{ψ}),δ ` ¬ψ

for any ψ ∈ G0. But this contradicts G0 containing only unattacked assumptions. ut

Lemma 3. If ABF is a simple contrapositive ABF, then G2(ABF) = G1(ABF).

Proof (Sketch). By Definition 10, G1(ABF) ⊆ G2(ABF). To see that G2(ABF) ⊆
G1(ABF), we have to show that every assumption that is defended by G1 is also
defended by G0. This follows from the fact that if G1 attacks a closed set Θ (i.e.,
Θ =Cn(Γ ∪Θ)∩Ab), G0 also attacks Θ . ut

Corollary 2. If ABF= 〈L ,Γ ,Ab,∼〉 is a simple contrapositive ABF, then G (ABF)=
G0(ABF)∪G1(ABF) = G1(ABF).

Proof. Follows immediately from Lemma 3. ut

Now we can show Theorem 2.

Proof (Sketch). It is clear from the construction of G that it is unique and that φ ∈ G
iff φ is defended by G (thus it is complete). It can be verified that G is closed, thus it
remains to show that G is minimal among the complete sets of ABF. If G is empty
we are done. Otherwise, suppose for a contradiction that there is some complete
∆ ( G , and let φ ∈ G \∆ . If φ ∈ G0, then φ has no attackers and consequently φ

is (vacuously) defended by ∆ , in which case ∆ cannot be complete. Thus φ 6∈ G0
and G0 ⊆ ∆ . Suppose now that φ ∈ G1. Then ∆ defends φ since G0 ⊆ ∆ . Again,
this contradicts the completeness of ∆ . Thus, G1 ⊆ ∆ . By Corollary 2, G = G1 and
consequently, G ⊆ ∆ , contradicting the assumption that ∆ ( G . ut

The following is the counterpart, for the grounded semantics, of Theorem 1.

Theorem 3. Let ABF = 〈L,Γ ,Ab,∼〉 be a simple contrapositive assumption-based
framework in which F ∈ Ab. Then Grd(ABF) =

⋂
MCS(ABF).

Proof. By Theorem 2 it suffices to show that G (ABF) =
⋂
MCS(ABF).
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To see that G (ABF)⊆
⋂
MCS(ABF), let φ ∈ G and Θ ∈MCS(ABF). By The-

orem 1, Θ is stable, and so G ⊆Θ .4 Thus, φ ∈Θ .
To see that

⋂
MCS(ABF) ⊆ G (ABF), suppose for a contradiction that there is

φ ∈
⋂
MCS(ABF) yet φ 6∈ G . By Lemma 3, this means that some Θ =Cn(Γ ∪Θ)∩

Ab attacks φ but G0 does not attack Θ . Since φ ∈
⋂
MCS(ABF), Θ 6∈MCS(ABF).

Suppose first that Θ ∪Γ ` F. Then F ∈Θ and consequently, G0 attacks Θ , which
is a contradiction. Suppose then that Θ ( Θ ′ for some Θ ′ ∈ MCS(ABF). In this
case, by monotonicity Θ ′∪Γ ` ¬φ , thus φ 6∈Θ ′, contradicting the assumption that
φ ∈

⋂
MCS(ABF). ut

5 Other Properties of |∼∩Sem and |∼∪Sem

In this section we consider some further properties of the entailment relations in-
troduced in Definition 7 induced from simple contrapositive ABFs. Below, when
ABF |∼ψ for some ABF = 〈L,Γ ,Ab,∼〉, we shall just write Γ ,Ab |∼ψ .5

5.1 Relations to the Base Logic

First, we note the following relations between |∼ and the consequence relation ` of
the base logic:

Proposition 2. If Γ ∪Ab is `-consistent then for every relation |∼ in Definition 7 it
holds that Γ ,Ab |∼ψ iff Γ ,Ab ` ψ .

Proof. When Γ ∪Ab is `-consistent, Grd(ABF) =Prf(ABF) = Stb(ABF) = {Ab},
so the claim immediately follows from Definition 7. ut

Proposition 3. For every relation |∼ in Definition 7 it holds that:

• If Γ ,Ab |∼ψ then Γ ,Ab ` ψ .
• If ` ψ then Γ ,Ab |∼ψ for every Γ and Ab.

Proof. For the first item, note that if Γ ,Ab |∼ψ then there is at least one subset
∆ ⊆ Ab for which Γ ,∆ ` ψ . By the monotonicity of `, then, Γ ,Ab ` ψ . For the
second item note that if ` ψ , then for every ∆ ⊆ Ab it holds that Γ ,∆ ` ψ , thus
Γ ,Ab |∼ψ . ut
4 Indeed, suppose otherwise, Then there is φ ∈ G \Θ , and since Θ is stable, it attacks φ . Since
φ ∈ G , by Lemma 3, G0 attacks Θ (note that G = G1 by Corollary 2). Since obviously G0 ⊆Θ , this
contradicts the fact that Θ is conflict-free.
5 Note that this writing is somewhat ambiguous, since, e.g. when Γ ,Ab,ψ are the premises, ψ may
be either a strict or a defeasible assumption. This wil not cause problems in what follows.
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5.2 Cumulativity and Preferentiality

Next we consider preferentiality in the sense of Kraus, Lehmann, and Magidor [10]
(Below, unless otherwise stated, when we write |∼ we actually mean |∼?

Sem for every
? ∈ {∩,∪} and Sem ∈ {Naive,Grd,Prf,Stb}).

Definition 11. A relation |∼ between ABFs and formulas (like those in Definition 7)
is called cumulative, if the following conditions are satisfied:

• Cautious Reflexivity (CR): For every `-consistent ψ it holds that ψ |∼ψ

• Cautious Monotonicity (CM): If Γ ,Ab |∼φ and Γ ,Ab |∼ψ then Γ ,Ab,φ |∼ψ

• Cautious Cut (CC): If Γ ,Ab |∼φ and Γ ,Ab,φ |∼ψ then Γ ,Ab |∼ψ .
• Left Logical Equivalence (LLE): If φ ` ψ and ψ ` φ then Γ ,Ab,φ |∼ ρ iff

Γ ,Ab,ψ |∼ρ .
• Right Weakening (RW): If φ ` ψ and Γ ,Ab |∼φ then Γ ,Ab |∼ψ .

A cumulative relation is called preferential, if it satisfies the following condition:

• Distribution (OR): If Γ ,Ab,φ |∼ρ and Γ ,Ab,ψ |∼ρ then Γ ,Ab,φ ∨ψ |∼ρ .

Proposition 4. Let ABF = 〈L ,Γ ,Ab,∼〉 be a simple contrapositive ABF. Then
|∼∩Sem is preferential for Sem ∈ {Naive,Prf,Stb}. If F∈Ab, then |∼∩Grd is also pref-
erential.

Proof. CR holds by Proposition 2 and the reflexivity of ` (thus ψ `ψ). We show CC
for |∼∩Sem where Sem ∈ {Naive,Prf,Stb}, based on Theorem 1 (Using Theorem 3,
similar proofs hold also for |∼∩Grd in case that F ∈ Ab). The rest is left to the reader.

Suppose that Γ ,Ab |∼∩Sem φ , by Theorem 1, (∗) ∆ ` φ for every ∆ ∈MCS(ABF).
Let ABF′= 〈L ,Γ ,Ab∪{φ},∼〉. Thus, MCS(ABF′)= {∆∪{φ} |∆ ∈MCS(ABF)},
and since Γ ,Ab,φ |∼∩Sem ψ , by Theorem 1, we have that (∗∗) ∆ ,φ ` ψ for ev-
ery ∆ ∈MCS(ABF). Thus, by cut on (∗) and (∗∗) we have that ∆ ` ψ for every
∆ ∈MCS(ABF), and by Theorem 1 again, Γ ,Ab |∼ψ . ut

Unlike |∼∩Sem, the credulous entailments |∼∪Sem are not preferential, since they do
not satisfy the postulate OR. This is shown in the next example.

Example 6. Let L = CL, Γ = /0, and Ab = {r ∧ (q ⊃ p),¬r ∧ (¬q ⊃ p)}. Then
Ab,q |∼ p and Ab,¬q |∼ p but Ab,q∨¬q 6 |∼ p for every entailment of the form |∼∪Sem
where Sem ∈ {Naive,Prf,Stb}.

As the next proposition shows, the entailments |∼∪Sem are still cumulative.

Proposition 5. Let ABF = 〈L ,Γ ,Ab,∼〉 be a simple contrapositive ABF. Then
|∼∪Sem is cumulative for Sem ∈ {Naive,Prf,Stb}.6

Proof. Similar to that of Proposition 4. ut
6 Note that, by Theorem 2, if F∈Ab then |∼∪Grd = |∼

∩
Grd, and so, by Theorem 4, |∼∪Grd is preferential.
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5.3 Non-Interference

The following is an adaptation to ABFs of the property of non-interference, intro-
duced in [5]. It assures a proper handling of contradictory arguments.

Definition 12. Given a logic L= 〈L ,`〉, let Γi (i= 1,2) be two sets of L -formulas,
and let ABFi = 〈L,Γi,Abi,∼i〉 (i = 1,2) be two ABFs based on L.

• We denote by Atoms(Γi) (i = 1,2) the set of all atoms occurring in Γi.
• We say that Γ1 and Γ2 are syntactically disjoint if Atoms(Γ1)∩Atoms(Γ2) = /0.
• ABF1 and ABF2 are syntactically disjoint if so are Γ1∪Ab1 and Γ2∪Ab2.
• We denote: ABF1∪ABF2 = 〈L,Γ1∪Γ2,Ab1∪Ab2,∼1 ∪ ∼2〉.

An entailment |∼ satisfies non-interference, if for every two syntactically disjoint
frameworks ABF1 = 〈L,Γ1,Ab1,∼1〉 and ABF2 = 〈L,Γ2,Ab2,∼2〉 where Γ1∪Γ2 is
consistent, it holds that: ABF1 |∼ψ iff ABF1 ∪ABF2 |∼ψ for every L -formula ψ

s.t. Atoms(ψ)⊆ Atoms(Γ1∪Ab1).

Theorem 4. For Sem∈{Naive,Prf,Stb}, both |∼∪Sem and |∼∩Sem satisfy non-interference
with respect to simple contrapositive assumption-based frameworks.

Proof. By Theorem 1 and the fact that if ABF1 and ABF2 are syntactically disjoint,
then MCS(ABF1∪ABF2) = {∆1∪∆2 | ∆1 ∈MCS(ABF1),∆2 ∈MCS(ABF2)}. ut

Non-interference is not satisfied w.r.t. |∼Grd (= |∼∩Grd = |∼
∪
Grd).

Example 7. Consider the syntactically disjoint ABF1 = 〈CL, /0,{s},¬〉 and ABF2 =
〈CL, /0,{p,¬p},¬〉. Clearly, ABF1 |∼Grd s, but by Example 3, ABF1∪ABF2 6|∼Grd s.

Again, the addition of F to Ab guarantees non-interference for |∼Grd.

Theorem 5. |∼Grd satisfies non-interference for any simple contrapositive ABF in
which F ∈ Ab.

Proof. Similar to that of Theorem 4, using Theorem 3 instead of Theorem 1. ut

6 Conclusion, In View of Related Work

We investigated the main Dung-style semantics of assumption-based argumentation
frameworks based on contrapositive logics. Different perspectives are considered:
• We have shown that some of the problems of Dung’s semantics for structured
argumentation frameworks that are reported in [1] are carried on to ABA systems.
Moreover, we delineated a class of problems in the application of the grounded se-
mantics and specified conditions under which these problems can be avoided. Simi-
lar problems have been discussed in [7], but to the best of our knowledge this paper
is the first one where a solution to these kinds of problems is suggested.
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• Some rationality postulates are considered. The closure and consistency postulates
have also been studied for ABA systems in [12], but this paper is the first investiga-
tion of the property of crash-resistance in assumption-based argumentation.
• The relation between Dung’s semantics for ABA systems and other general pat-
terns of non-monotonic reasoning are investigated. In particular, we study the con-
nections to approaches based on maximal consistency and the KLM cumulative and
preferential entailments. While the relations between Dung-style semantics and rea-
soning with maximal consistency have been investigated before in, e.g., [2, 3, 6, 14],
none of these works have considered assumption-based argumentation.

Future work includes, among others, the incorporation of more expressing lan-
guages involving preferences among arguments, and the introduction of other kinds
of contrariness operators and further forms of attacks.
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8. Kristijonas Čyras and Francesca Toni. Non-monotonic inference properties for assumption-
based argumentation. In Proc. TAFA’15, pages 92–111. Springer, 2015.

9. Phan Minh Dung. On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artificial Intelligence, 77:321–358, 1995.

10. Sarit Kraus, Daniel Lehmann, and Menachem Magidor. Nonmonotonic reasoning, preferential
models and cumulative logics. Artificial Intelligence, 44(1):167–207, 1990.

11. Nicholas Rescher and Ruth Manor. On inference from inconsistent premisses. Theory Decis,
1(2):179–217, 1970.

12. Francesca Toni. Assumption-based argumentation for closed and consistent defeasible rea-
soning. In Proc. Ann.l Conf. of the Japanese Society for AI, pages 390–402. Springer, 2007.

13. Francesca Toni. Assumption-based argumentation for epistemic and practical reasoning. Com-
putable Models of the Law, Languages, Dialogues, Games, Ontologies, 4884:185–202, 2008.

14. Srdjan Vesic. Identifying the class of maxi-consistent operators in argumentation. Journal of
Artificial Intelligence Research, 47:71–93, 2013.


