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Abstract

We recall some of the better known approaches to non-classical logics, with an emphasis on the contributions
of Arnon Avron to the subject and in relation to the papers in this volume.

1 Motivation and Scope
Classical logic is by all means the most extensively studied and applied logic in Mathematics, Philosophy, Engi-
neering, Computer Science, Economy and other areas. Yet, its original motivation was to capture mathematical
reasoning, which is monotonic in nature, and does not aim at handling incomplete, imprecise and/or inconsistent
information. Indeed, a major shortcoming of classical logic is that any conclusion whatsoever may be inferred
from a classically inconsistent set of premises, thus a single contradiction ‘pollutes’ the whole set of premises.
Moreover, situations involving, e.g., inductive definitions, reasoning over time, representations of norms and obli-
gations, fuzzy concepts, and so forth, are not always well captured by ‘pure’ classical logic.

Nowadays there is an increasing quest for alternative, non-classical formalisms, stimulated by various practi-
cal considerations. Reasoning about time, resources, or programs; reasoning with uncertainty or inconsistency;
commonsense reasoning — all these gave rise to a plethora of different formalisms: temporal, constructive, sub-
structural, non-monotonic, paraconsistent and many more. Many of them have become active fields of research
with numerous applications.

In [19], Avron indicates that “there is no limit to the number of logics that logicians (and non-logicians) can
produce”, and identifies three ‘ingredients’ that a ‘natural’ logics should have:

• ‘natural’ primitives, which intuitively correspond to concepts informally used outside the realm of formal
logic, such as implication, negation, conjunction, and necessity,

• a simple, illuminating semantics, and

• a ‘nice’ proof system making it easy to find proofs in the corresponding logic.

Indeed, working on the intersection between semantics and proof theory, and investigating families of intuitively
motivated (non-classical) formalisms that have ‘nice’ and meaningful proof-theoretical and semantical characteri-
zations, is a main theme in Avron’s seminal contributions, to which this volume of the OCL series is devoted.

Practically, it is of-course impossible to cover even a small fragment of the non-classical disciplines that have
been introduced over the years. (Some introductory books on the subject are, e.g., [40, 67, 69, 70].) We chose
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to concentrate here on some fields and approaches in which Avron has made significant contributions at different
times of his research career, such as: paraconsistent logics, substructural logics, or logics that are based on many-
valued semantics, either algebraic or non-deterministic.1 In the following sections we recall the subareas of the
disciplines that are relevant to the contributions in this volume, and briefly summarize the topics discussed in the
related chapters.

2 Paraconsistency and Nondeterminism
One of the key principles of classical logic is that of explosion, ‘ex contradictione sequitur quodlibet’, allowing
the inference of any proposition from a single pair of contradicting statements. It has been repeatedly attacked on
various philosophical grounds, as well as because of practical reasons: in its presence every inconsistent theory
or knowledge-base is totally trivial. Paraconsistent logics are alternatives to classical logic which do not have this
drawback.

While the roots of paraconsistent thinking may be traced back already to Aristotelian logic, it is commonly
agreed that the foundations of paraconsistent reasoning in modern times where laid at the beginning of the twentieth
century by the Russian logician Vasiliev [71] and the Polish philosopher Łukasiewicz [63]. Other paraconsistent
systems where later introduced independently by the pioneering works of Jaśkowski [62], Nelson [66], Anderson
and Belnap [1], and da Costa [52]. In recent years paraconsistent reasoning is a very active research topic with
many applications. Some collections of papers on this subject and further references can be found, e.g., in [39, 43,
44, 48].

Nowadays, Avron is one of the most influential and leading figures in the study of paraconsistent logics, having
a variety of works on different aspects and approaches to inconsistent information. In a number of papers (e.g., [8,
20]), he has given syntactic and semantic characterizations of what should be regarded a “negation operator”, and
has defined in a clear and precise way what properties are expected from a logic for reasoning with inconsistency
(called ‘ideal’ in [8]). These and other issues are presented in a comprehensive textbook on paraconsistent logics
that Avron co-authored (see [29]).

Definitions of negation operators and the study of their properties and characterizations in different contexts
have been a subject for long-standing debates and works in the last decades. We recall, for instance, the collection
of papers on this subject in [60]. The paper of Dov Gabbay in this volume, titled ‘What is negation in a system
2020?’, is concerned with these very issues. In the paper, Gabbay recalls his 1986 publication on the concept of
negation (see [59]) and expands it according to the developments and findings in recent years.

Desirable properties of paraconsistent logics, and in particular the notions of their maximality, are reexam-
ined for degree-preserving Gödel logics in the paper of Marcelo Coniglio, Francesc Esteva, Joan Gispert and Lluis
Godo, titled ‘Degree-preserving Gödel logics with an involution: intermediate logics and (ideal) paraconsistency’.
The authors introduce the notion of saturated paraconsistency (which relaxes the condition of ideal paraconsistency
by not requiring maximality with respect to classical propositional logic), and fully characterize the saturated para-
consistent logics between the degree-preserving finite-valued extensions of Gödel’s fuzzy logic with an involutive
negation and classical logic. They also identify a large family of saturated paraconsistent logics in the family of
intermediate logics for degree-preserving finite-valued Łukasiewicz logics.

One of the most prominent approaches to paraconsistent reasoning, originally developed by da Costa’s Brazil-
ian School, encompass a large family of paraconsistent logics known now as Logics of Formal Inconsistency (LFIs).
These logics are based on the idea of internalizing the notion of (in)consistency at the object language level. The
efforts of a very active group of Brazilian logicians on this family of logics are summarized in [49], as well as a

1Some other contributions of Avron, which are not related to the theme of this volume, are not covered here. This includes his research on
the foundations of mathematics, especially predicative mathematics (e.g., [22, 24, 30]), logical frameworks (e.g., [32, 23]), as well as purely
mathematical results (like [13, 31]).
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in more recent book [47]. The paper ‘Credal calculi, evidence, and consistency’, by Walter Carnielli and Juliana
Bueno-Soler, study credal calculi, which are possibility and necessity measures, based on LFIs. These can be used
as belief and plausibility measures supporting artificial reasoning that not only automatically practices suspension
of judgment, but also respects the beliefs of agents, even when they are contradictory (and so acting as a belief
revision procedure).

A significant contribution to the study and understanding of LFIs was obtained by Avron’s ideas on generalizing
the notion of a multi-valued matrix. In [36] he introduced a natural generalization of the class of standard multi-
valued matrices, called non-deterministic matrices (Nmatrices), which (among others) provide in a modular way
simple, useful, and finite semantics for LFIs (as well as for many important logics lacking finite semantics that
is based on ordinary, deterministic matrices). This also guides a systematic process in defining analytic Gentzen-
type proof systems for LFIs (see [33, 34]). The paper ‘On axioms and rexpansions’ by Carlos Caleiro and Sérgio
Marcelino is directly related to the line of research on non-deterministic semantics. In particular, the authors study
the general problem of strengthening the logic of a given (partial) (non-deterministic) matrix with a set of axioms,
using the idea of rexpansion, a notion introduced by Avron and Zohar in [38].

3 Relevance Logics
Relevance logics, introduced by Anderson and Belnap in [1], aim to capture the common view that in valid infer-
ences the assumptions should be relevant to the conclusion. As such, relevant logics are non-explosive and so they
may be viewed as a kind of paraconsistent logics. We refer the readers to [2, 3, 26, 29, 45, 54, 64, 68] for some
extensive books and surveys on the subject. Avron has contributed to the study on relevance logics throughout his
academic career. Examples of recent contributions are [25, 26, 28]. His most important footprints in this study are
his investigations of the semi-relevant logic RM, and the introduction of the relevant logics RMI [14], RMIm (or
RMI ¬→) [10], and SRMIm [18].

• The logic RMI is a relevant version of the logic RM (see below), in which the implication→ and the additive
conjunction ∧ both have the variable sharing property. Its semantics is based on the idea that propositions
may be divided into “domains of relevance”, with a “relevance relation” R defined on the collection of
these domains. Classical logic is valid within each domain, while the propositions ϕ → ψ and ϕ ∧ψ are
necessarily false if the domains of ϕ and ψ are not related by R.

• The logic RMIm is the purely intensional (or “multiplicative”) fragment of RMI, and has particularly nice
properties. In particular, it has the Scroggs property [2, 28], an ordinary cut-free Gentzen-type formulation,
and is sound and weakly complete with respect to a very simple infinite matrix called Aω .

• The logic SRMIm is the extension of RMIm with its admissible rule ϕ⊗ψ/ϕ , where ⊗ is the multiplicative
“conjunction”. Avron showed that unlike RMIm, the logic SRMIm is strongly sound and complete with
respect to Aω , and he provided for it too a corresponding cut-free Gentzen-type formulation.

In the more general context of the study of substructural logics, it is worth mentioning the influential work of
Avron in [12], where he has pinpointed the relation between relevance logic and linear logic.

In this volume, relevant reasoning is considered from several perspectives, some of them are related to the
contributions of Avron to the subject.

• In ‘R-mingle has nice properties, and so does Arnon Avron’, Michael Dunn provides a nice overview on
the relevant logic RM, introduced by him and McCall. As noted in [54], RM is “by far the best understood
of the Anderson-Belnap style systems”. Indeed, RM has sound and complete Hilbert- and Gentzen-type
proof systems and a clear semantics in terms of Sugihara matrices. Moreover, RM has some other desirable
characteristics, such as being decidable, paraconsistent, and it satisfies the Scroggs’ property. In his paper,
Dunn describes the history of RM, including the system of Ohnishi and Matsumoto, as well as his own
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experience with a problem concerning entailment (the logic E) as an intersection of a pair of logics that led
to the invention of RM. In the process, a series of results about RM are mentioned, also in relation to the
extensive study of RM by Avron.

• In his paper, ‘Relevance domains and the philosophy of science’, Edwin Mares applies a variant of Avron’s
logic RMI to model what the philosopher of science Nancy Cartwright has called the ‘dappled world’. In this
world, scientific theories represent restricted aspects and regions of the universe. Mares characterizes such
theories by Avron’s algebraic structures that are used for giving semantics to RMI, and shows, among others,
how the paraconsistent nature of RMI can be used for dealing with inconsistencies within and between the
scientific theories.

• The paper of Almudena Colacito, Nikolaos Galatos and George Metcalfe, titled ‘Theorems of alternatives for
substructural logics’, consists of a generalization of an early result by Avron about the logic RM. It shows
that Avron’s theorem belongs to a family of results that may be understood as “theorems of alternatives”
for substructural logics. It is shown that a variety of logics admit such a theorem, and the relation with
interpolation and density is discussed.

4 Bilattice-Valued Logics
In [41, 42], Belnap introduced a framework for collecting and processing information coming from different
sources. His formalism is based on Dunn’s four-valued algebraic structure [53], in which the elements are si-
multaneously arranged in two lattice orders. This structure may be viewed as a particular case of Ginsberg’s
bilattices [61], which have been shown particularly useful for providing fixpoint semantics to logic programs [55,
56, 57], and for fuzzy [51] and paraconsistent [4, 5, 6] reasoning (see also the survey in [58]).

In [5], Avron has shown that the Dunn-Belnap four-valued logic is a characteristic logic among bilattice-based
logics, and related these logics to nonmonotonic and preferential reasoning [7]. He also made an important contri-
bution to the algebraic study of bilattices by investigating the structure of a family of bilattices, called interlaced
bilattices (see [17]).

This volume contains two contributions that are related to bilattice-based reasoning. One, by Melvin Fit-
ting (titled ‘The strict/tolerant idea and bilattices’), presents a general theory of strict/tolerant versus classical
counterparts for non-distributive (as well as distributive) De Morgan logics. The algorithm for constructing the
strict/tolerant logic makes use of bilattice products, which provide interlaced logical bilattices with negation and
conflation. In process, Fitting gives an overview of the essentials of the bilattice theory.

In the other contribution, ‘Connexive variants of modal logics over FDE’, Sergei Odintsov, Daniel Skurt and
Heinrich Wansing relate connexive logics [72], modalities, and bilattice-valued semantics, through a series of
(paraconsistent and decidable) logics, to which they provide sound and complete tableau calculi. To some of the
systems algebraizability in the sense of Blok and Pigozzi is also established.

5 Modal Logics
The incorporation in the language of modal operators is a well established and common method for non-classical
reasoning that has many successful applications (see, e.g., [46] and [50] for some introductory manuscripts to the
subject). The main contributions of Avron to this area are threefold:

• Avron’s first contribution was his paper in [9]. Among other things, in this paper he introduced sequent
calculi for the modal provability logics GL and Grz, and proved cut-elimination for both.2 He further showed

2In the case of Grz he was the first to do so.
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that contrary to what was believed and even published before, the natural first-order extension of the sequent
calculus for GL does not admit cut-elimination. This was the first negative result in this area.

• The second contribution of Avron has been due to his generalization of Gentzen’s sequents, known as ‘hy-
persequents’ [11, 16]. A hypersequent is a finite set (or sequence) of sequents, which may be regarded as
their disjunction. The original motivation for introducing these structures was to provide cut-free Gentzen-
type systems for some relevance logics. However, Avron soon discovered that it is useful for other families
of logics too. Thus, beginning with his paper in [15], hypersequents provide a major framework for the
proof theory of fuzzy logics (see [65]). In the context of modal logics, the incorporation of hypersequents
allowed him to provide a cut-free calculus for S5 (to which an ordinary cut-free sequent calculus is not
known; See [16, 35]).

• Avron’s third contribution to this area is related to his work on paraconsistent reasoning, and it is concerned
with establishing its connections to two famous modal logics, B and S5 (see [37] and [29, Chapter 9]). In
particular, it was shown that the minimal paraconsistent logic which satisfies the replacement property, (i.e.,
equivalence of two formulas implies their congruence) is equivalent to the well-known Browerian modal
logic B. Interestingly, B is a very robust paraconsistent logic, in the sense that almost any axiom which has
been used in the context of LFIs (see Section 2) is either already a theorem of B, or its addition to it leads to
a logic which is no longer paraconsistent. There is only one exceptional axiom, the addition of which leads
to another famous modal logic: S5 (the modal logic which is induced by the class of Kripke frames in which
the accessibility relation is an equivalence relation).

Modal logics are discussed in this volume with respect to different frameworks. We have already mentioned in
the previous section the paper of Odintsov, Skurt, and Wansing that studies various connexive modal logics. Modal
notions are also central in the paper of Carnielli and Bueno-Soler, which is mentioned in Section 2. In another
paper on the subject, titled ‘Interpretations of weak positive modal logics’, Katalin Bimbó examines relational
semantics for two positive (negation-free) modal logics: one contains conjunction but not disjunction, and the
other contains disjunction but not conjunction. Both of these logics have implication, fusion and fission, and they
make room for the development of sequent calculi in which the two basic modal connectives may be introduced
independently (but can be defined from each other in the presence of a suitable negation). The two logics are
inspired by related works in the context of relevance and linear logics.

6 Other Forms of Non-Classical Reasoning
This volume contains some chapters that are related to further applications of non-classical logics, which are not
covered in the previous sections. They are summarized below.

In his paper ‘Consequence relations with real truth-values’, Daniele Mundici draws inspiration from Avron’s
paper in [27], where he investigates a general notion of implication that does not assume the availability of any
proof system and thus does not depend on the notion of a ‘use’ of a formula in a given proof system. This notion
typically occurs in relevance logics, suggesting a generalized semi-implication, which leads to a weak form of the
classical-intuitionistic deduction theorem. Mundici builds on these ideas using a similar approach in the context
of a [0,1]-valued Łukasiewicz logic, also revising the Bolzano-Tarski paradigm of ‘semantic consequence’. It
is shown that the Łukasiewicz axiom guarantees the continuity and the piecewise linearity of the implication
operation, a desirable fault-tolerance property of any real-valued logic.

Avron has also contributed to the mechanization of mathematics. One of the main tools he has suggested for
this (e.g., in [21, 30]) is the use of ancestral logic (an extension of first-order logic with an operation for transitive
closure) in order to overcome the insufficiency of first-order logic in dealing with some notions and constructions
in mathematics. Together with Liron Cohen, Avron has considered and applied two versions of ancestral logic:
classical and intuitionistic. In her paper ‘Geometric rules in infinitary logic’, Sara Negri takes a different approach.
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Instead of using transitive closure, she concentrates on the theories which are based on the vary large and central
class of what are called geometric axioms. On the other hand, she allows the use in the language and in proofs
of infinitary disjunctions. Again, her system has two versions: classical and intuitionistic. As an application, she
presents a simple proof, in which the axioms of choice is not used, of the infinitary Barr’s theorem. This theorem
connects classical derivability of geometric implications with their intuitionistic derivability.

7 Conclusion
The content of this volume is very diverse, representing the state of the art of the logical study on reasoning with
non-classical logics in different contexts and for different purposes. As we have already noted previously, it is
not possible to have a complete coverage of the area in one volume. In fact, this volume does not even pretend
to provide an exhaustive reference of all the contributions of Avron to the subject. Having said this, we believe
that the chapters of this book, written by world-wide leading experts in the area, cover many of the active research
subjects in contemporary (non-classical) logic, and faithfully reflect the diversity and mathematical depth of Arnon
Avron’s work.
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