
Reasoning with Modularly PointwisePreferential RelationsOfer ArieliDepartment of Computer Science, K.U.LeuvenCelestijnenlaan 200A, B-3001 Heverlee, Belgium.email: arieli@cs.kuleuven.ac.beAbstractWe introduce a family of preferential consequence relations, de�ned bya simple and natural many-valued semantics. These relations share manydesirable properties for common-sense reasoning, such as paraconsistency(da-Costa, [8]), plausibility (Lehmann, [12]), adaptivity (Batens, [4, 5]), andrationality (Lehmann and Magidor, [13]).1 IntroductionPreferential reasoning [21] is a well-known formalism for making inferences, basedon the idea that in order to draw conclusions from a given theory one should notconsider all the models of that theory, but only a subset of preferred models . Thissubset is usually determined according to some preference criterion, speci�ed bya second-order formula (as in circumscription [16]), or by some (partial) orderthat is de�ned on the valuation space [1, 2, 17, 18]. This approach is particu-larly useful for providing semantics to general patterns of nonmonotonic reasoning[3, 11, 13, 14, 15].In this paper we consider a family of preferential consequence relations, de�nedby a general and natural semantics. The common property shared by all theserelations is that their underlying preference criteria are based on modular par-tial orders . We show that this property enables a \robust" construction of con-sequence relations, in the sense that such relations may be plausibility logics [12]with adaptive capabilities [4, 5]. Moreover, many paraconsistent [8] consequencerelations that are de�nable within our framework are the same as classical logicw.r.t. consistent theories. This allows us to consider formalisms that draw clas-sical conclusions from consistent theories, and make non-trivial conclusions frominconsistent ones.
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2 PreliminariesDe�nition 1 A partial order < on a set S is called modular if y < x2 for everyx1; x2; y2S s.t. x1 6<x2, x2 6<x1, and y<x1.Proposition 2 [13] Let < be a partial order on S. The following conditions areequivalent:a) < is modular.b) If x1<x2 then either y<x2 or x1<y for every x1; x2; y2S.c) There is a totally ordered set S0 with a strict order� and a function g :S ! S0s.t. x1<x2 i� g(x1)�g(x2).De�nition 3 Let � be an arbitrary propositional language. A preferential struc-ture for � is a quadruple P=(L;D;O;�), where L is a complete bounded lattice,D�L is a prime �lter in L that contains the designated elements of L,1 O is a setof operations on L that correspond to the connectives in �, and � is a well-foundedmodular order on L.In what follows we shall denote the maximal element of L by t and the minimalone by f . We shall assume that the set O contains a meet and a join operationsthat correspond, respectively, to the conjunction (^) and the disjunction (_) in�, and an involution operation that corresponds to the negation operator (:) in �.The semantical notions that correspond to the multiple-valued case are naturalgeneralizations of the classical ones: A (multiple-valued) valuation � is a functionthat assigns an element of L to each atomic formula. Extension to complex formu-lae is done in the standard way. A valuation � is a model of a set � of assertionsif �( )2D for every  2�. The set of all the valuations into L is denoted by VL,and the set of all the models of � is denoted by mod(�).De�nition 4 Let �1; �22VL, and let < be a modular order on L . Denote:a) �1��2 if for every atom p �2(p) 6<�1(p).b) �1��2 if �1��2 and there is an atom p0 s.t. �1(p0)<�2(p0).2De�nition 5 Let P be a preferential structure, and let � be a set of formulae ina language �. A valuation M 2mod(�) is a P-preferential model of � if there isno other valuation M 0 2mod(�) s.t. M 0 �M . The set of all the P-preferentialmodels of � is denoted by !(�;P).De�nition 6 Let P=(L;D;O;�) be a preferential structure. A set � of formulaeP-preferentially entails a set � of formulae (notation: � j=L;D� �) if every M 2!(�;P) is a model of some formula in �.31I.e., those elements that represent true assertions.2Note that � is a pre-order and � is a strict order (i.e., irreexive and transitive).3In what follows will we say that j=L;D� is induced by P.



3 Preferential consequence relationsMany well-known formalisms correspond to De�nition 6. In this section we con-sider some of them.Suppose �rst that P is a preferential structure with a degenerated preferen-tial order. I.e., all the elements in L are �-incomparable. In this case � P-preferentially entails � if every model of � is a model of some formula in �. Incase that L is a two-valued lattice the consequence relation that is obtained isthat of classical logic. Kleene three-valued logic [10] obtains by taking a three-valued lattice L= ft; f;?g, where ? is the middle element, and D= ftg. Belnapfour-valued logic [6, 7] obtains by taking a four-valued lattice L= ft; f;>;?g, inwhich ? and > are two intermediate incomparable elements, and D=ft;>g. Forarbitrary preferential structures with degenerated preferential orders, we have:Proposition 7 [3] A relation j=L;D� , induced by a preferential structure with adegenerated preferential order, is a consequence relation in the sense of Tarski [23]and Scott [20]. I.e., it satis�es the following conditions:reexivity: if � \� 6=; then � j=L;D� �.monotonicity: if � j=L;D� � and ���0, ���0, then �0 j=L;D� �0.cut: if �1 j=L;D�  ;�1 and �2;  j=L;D� �2 then �1;�2 j=L;D� �1;�2.In the general case, when the pointwise preferential order is not degenerated,j=L;D� is usually non-monotonic (see Section 4.1). Below are some formalisms thatare obtained in this case:� Reiter's closed-world assumption [19]: Obtains by using a two-valued lattice anda pointwise preferential order that is the same as the partial order of the lattice un-der consideration (which is clearly modular). The preferential models of a theoryin this case are those that minimize the amount of the t-assignments. In case of�rst-order languages the preferential models of a theory are its minimal Herbrandmodels.� The logic LPm of Priest [17, 18]: This logic is based on a three-valued latticeL= ft; f;>g with a middle element >, and D= ft;>g. Here :>=>2D, and so> is intuitively understood as representing contradictions. The preferred modelsin this case are those that are minimally inconsistent, i.e.: those that assign >only to some minimal set of atomic formulae. The modular preferential order maytherefore be de�ned here by: f <> and t<>.� The four-valued logic j=4k: The preferred models in this case are those that areminimal with respect to the \knowledge order" �k of Belnap's four-valued in-formation lattice A4 [6, 7]. In this (modularly) preferential order ? is the minimalelement, t and f are two intermediate elements that are �k-incomparable, and >is the maximal element.� The logics j=4I1 and j=4I2 [1, 2]: Again, these logics are based on Belnap's four-valued lattice [6, 7]. The preferential order for j=4I1 obtains by taking > as the



only maximal element (and all the other truth values are �-incomparable). Thepreferential order for j=4I2 obtains by taking > and ? as �-greater than t and f(see [2] for a justi�cation of these choices).� The logic RI of Kifer and Lozinskii [9]: This is an annotated logic [22]. Thepreferred models of RI minimize the assignments w.r.t. a certain set ��L. Thus,the preferential order in this case obtains by considering every element in � asstrictly �-greater than every element in Ln�.4 Useful properties of j=L;D�4.1 Non-monotonicity and plausibilityIn Proposition 7 we have shown that j=L;D� is monotonic in cases that the pref-erential order under consideration is degenerated. In the general case, however,relations of the form j=L;D� are non-monotonic.4 In such cases it is usual to requireweaker conditions, such as those introduced by Kraus, Lehmann, and Magidor inthe context of preferential logics [11, 14, 15], or those of Lehmann's plausibilitylogics [12].De�nition 8 [12] A binary relation j� between sets of formulae is called a plaus-ibility logic if the following properties are satis�ed:Inclusion: �;  j� .Right Monotonicity: If � j��, then � j� ;�.Cautious Left Monotonicity: If � j� and � j��, then �;  j��.Cautious Cut: If �;  j�� and � j� ;�, then � j��.De�nition 9 A preferential structure P is called stoppered [15] 5 if for every set offormulae � and every M 2mod(�), either M 2 !(�;P), or there is an M 02 !(�;P)s.t. M 0�M .Proposition 10 Let P=(L;D;O;�) be a stoppered preferential structure. Thenj=L;D� is a plausibility logic.Proof: Inclusion and Right Monotonicity immediately follow from the de�nitionof j=L;D� . For Cautious Left Monotonicity, assume that � j=L;D�  , and � j=L;D� �.Let M be some P-preferential model of �[f g. In particular, M is a model of�. Moreover, it must be a P-preferential model of � as well, since otherwise, bystopperdness, there would have been an N 2 !(�;P) s.t. N�M . Since � j=L;D�  ,thisN would have been a model of �[f g that is strictly�-smaller thanM . HenceM 62 !(� [ f g;P), with a contradiction to the choice of M . Thus, M 2 !(�;P).Now, since � j=L;D� �, M is a model of some �2�. Hence �;  j=L;D� �.It remains to show Cautious Cut. For this, let M be a P-preferential model of�. Suppose, for a contradiction, that �;  j=L;D� � and � j=L;D�  ;�, but M(�) 62D4For instance, all the logics considered after Proposition 7 are nonmonotonic.5In [11] the same property is called smoothness.



for every � 2�. Since � j=L;D�  ;�, necessarily M( )2D, and so M is a modelof � [ f g. Moreover, M must be a P-preferential model of � [ f g, since anyother model of this set that is strictly �-smaller than M must be in particular amodel of �, which is �-smaller than M (and this contradicts the choice of M).Now, �;  j=L;D� �, therefore M(�)2D for some �2�, a contradiction. 2Corollary 11 If L is �nite, then j=L;D� is a plausibility logic w.r.t. �nite sets ofpremises.Proof: Follows from Proposition 10, since the conditions of the corollary yieldstopperdness. 2In the next proposition (the proof of which will be given elsewhere) it is shownthat consequence relations of the form j=L;D� may also be considered as a gen-eralization to the multiple-valued case of the 2-valued patterns of nonmonotonicreasoning, considered in [11].Proposition 12 If L is a two valued lattice, and the language � is the classicalpropositional one, then the single-assumption-single-conclusion fragment of j=L;D�is a preferential logic in the sense of Kraus, Lehmann, and Magidor [11].4.2 Paraconsistency and classicalityA desirable property of formalisms for managing inconsistent information is thatthey will be able to draw classical conclusions from (classically) consistent theories,and will not \explode" the set of conclusions when the theory becomes inconsist-ent. Corollary 16 shows that many consequence relations that are induced bypreferential structures have this property.De�nition 13 A modular order � on L is called classical if t and f are the only(incomparable) �-minimal elements.In what follows we denote by j=2 the classical consequence relation.Proposition 14 Let P=(L;D;O;�) be a pointwise preferential structure, where� is a classical modular order on L. For every classically consistent theory �, andfor every formula  , we have that � j=2 i� � j=L;D�  .Proof: Immediately follows from the fact that if � is a classical modular orderand � is a classically consistent theory, then !(�;P) coincides with the set of theclassical models of �. 2Proposition 15 If there is an element x 2 L s.t. x;:x 2 D and there is a �-minimal element y s.t. either y 62D or :y 62D, then j=L;D� is paraconsistent.Proof: Consider, for instance, �= fp;:pg. Although � is classically inconsistent,not every conclusion follows from it. In fact, for every atom q 6=p we have � 6j=L;D� q.To see that, consider a valuationM , for whichM(p)=x andM(q)=y for y 62D. 2By Propositions 14 and 15 we have the following result:



Corollary 16 Let P = (L;D;O;�) be a pointwise preferential structure, wherethere is an x2L s.t. x;:x2D, and � is a classical modular order on L for whichthere is a �-minimal element y s.t. either y 62D or :y 62D. Then j=L;D� is the sameas the classical consequence relation w.r.t. consistent theories, and is not trivialw.r.t. inconsistent theories.The consequence relation of LPm and the consequence relation j=4I2 , consideredin Section 3, are examples of formalisms that have the property speci�ed in thelast corollary.4.3 RationalityIn [13] Lehmann and Magidor consider some properties that a \rational" non-monotonic consequence relation should satisfy. One property that is considered asparticularly important assures that a reasoner will not have to retract any previousconclusion when learning about a new fact that has no inuence on the existing setof premises.6 Consequence relations that satisfy this property are called rational .Next we show that the relations that are induced by preferential structures areindeed \rational".Notation 17 Denote by A(�) the set of the atomic formulae that appear in someformula of �.Proposition 18 If � j=L;D� � and A(� [�) \ A(�)=;, then �;� j=L;D� �.Proof: Suppose otherwise that �;� 6j=L;D� �. Then there is a modelM 2 !(�[�;P)such that for every � 2 �, M(�) 62 D. Let m be some �-minimal element in L.Consider the following valuation:N(p) = ( M(p) if p2A(� [�)m otherwiseClearly, N is a model of � and for every � 2�, N(�) 62 D. Since � j=L;D� �, Ncannot be a P-preferential model of �, and so there is a model N 0 of � s.t. N 0�N .By the de�nition of N , there is some p0 2 A(� [ �) such that N 0(p0) < N(p0).Now, consider the following valuation:M 0(p) = ( N 0(p) if p2A(� [�)M(p) otherwiseClearly, M 0�M , and since M 0 is the same as N 0 on A(�), M 0 is also a model of�. Moreover, using the facts that A(� [�) \ A(�)=; and that M is a model of�, it follows that M 0 is also a model of �. Hence M 0 is a model of � [ �, whichis strictly �-smaller than M , but this is a contradiction to the choice of M . 26E.g., using the example considered in [11], the fact that a certain bird is red should not a�ectour knowledge about its ying abilities.



4.4 AdaptivityConsider the set �1=fp;:p;:p_qg. A plausible inference mechanism should notapply the Disjunctive Syllogism here to p and :p_q for concluding that q followsfrom �1. The reason for this is that :p holds in �1 and so :p _ q is true evenin cases that q is false. On the other hand, in the case of �2= fp;:p; r;:r _ qg,applying the Disjunctive Syllogism to r and :r_q may be justi�ed by the fact thatthe subset of formulae to which the Disjunctive Syllogism is applied should notbe a�ected by the inconsistency in �2, therefore inference rules that are classicallyvalid can be applied to it.The ability to handle theories with contradictions in a nontrivial way, but pre-suppose a consistency of all sentences `unless and until proven otherwise', is calledadaptivity [4, 5]. Consequence relations with this property adapt to the speci�cinconsistencies that occur in the theories.The following proposition shows that preferential relations that are based onclassical modular orders are adaptive: If a given theory can be split up to aconsistent and an inconsistent parts, then every assertion that is not related tothe inconsistent part, and which classically follows from the consistent part, mustpreferentially follow from of the whole theory.Proposition 19 Let (L;D;O;�) be a pointwise preferential structure, where �is a classical modular order on L. Let �=�0 [ �00 s.t. �' is classically consistentand A(�0) \ A(�00) = ;. For every set � s.t. A(�) \ A(�00) = ;, if �0 j=2 � then� j=L;D� �.Proof: Suppose that �0 j=2 �. By Proposition 14, �0 j=L;D� �. But we have herethat A(�0 [�) \A(�00)=;, thus, by Proposition 18, � j=L;D� �. 25 ConclusionWe have considered a uniform way of de�ning di�erent consequence relations forcommonsense reasoning. It is shown that the consequence relations that are ob-tained in this way have several useful properties that are important for applicationsof logic in AI, where uncertainty, inconsistency, and nonmonotonicity have a cent-ral role. Such cases are considered, e.g., in [2, 9, 13, 19]. Further applications willbe considered in a future work.AcknowledgementThis work is supported by the visiting postdoctoral fellowship FWO { Flanders.
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