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Abstract

Bilattices, which have been shown to be very useful in logic programming, are used here for recovering
consistent data from an inconsistent knowledge-base. Our method is conservative in the sense that it
considers the contradictory data as useless; and regards all the remaining information unaffected. This
kind of approach is nonmonotonic and paraconsistent in nature.

1 Introduction

One of the most significant drawbacks of the classical calculus is its inability to deduce nontrivial results
in the presence of an inconsistency. The warranty of drawing any conclusion whatsoever just because of
the existence of a contradiction, is certainly unrealistic. Nevertheless, the classical calculus is still a very
convenient framework to work with; adding new mechanisms or connectives to it generally cause a consid-
erable growth in the computational complexity needed to maintain the resulting system. The purpose of
this work, then, is to propose means that would allow drawing conclusions from systems that are based on
classical logic, although the information might become temporarily inconsistent.

The scenario we think of is the following: Suppose that a given first-order classical knowledge-base has
become inconsistent. For the reason stated above, any attempt to deduce meaningful inferences from this
“polluted” knowledge-base is useless. Qur approach solves this “dead-end” by temporarily expanding the
semantics to be multi-valued, and this without changing the knowledge-base syntacticly.

How do we practically recover consistent data from an inconsistent knowledge-base without changing it?
The first step, as we have implied, is to switch into a special multi-valued framework. For this, we use a spe-
cial algebraic structures called bilattices. Bilattices were first proposed by Ginsberg (see [Gi88]) as a basis
for a general framework for many applications. This notion was further developed by Fitting ([Fi90a, Fi94]),
who showed that bilattices are most suitable for logic programming ([Fi89, Fi90b, Fi91, Fi93]). In bilat-
tices the elements (which are also referred to as “truth values”) are simultaneously arranged in two partial
orders: one, <;, may intuitively be understood as a measure of the degree of truth that each element repre-
sents; the other, <y, describes (again, intuitively) differences in the amount of knowledge (or information)
that each element exhibits on the assertions that it is supposed to represent.

The next step is to develop a mechanism that enables paraconsistent inferences. For this, we use an
epistemic entailment proposed in [KL92] as the consequence relation of the logic !. This relation can be
viewed as a kind of a “closed word assumption”, since it considers only the “most consistent” models

!See [AA94c] for a detailed discussion on the advantages of the present logic with respect to the logic of [KL92] in particular,
and to annotated logics [Su90a, Su90b, KS92] in general.



(mems) of a given set of assertions. As was shown in [AA94a, AA94b], this relation enjoys some appealing
features, such as being non-monotonic, paraconsistent ([dC74]), and a “plausibility logic” ([Le92]).

By using [=con we are able to: a) discover easily the “core” of the inconsistency in K'B, and b) construct
consistent subsets of the knowledge-base (called “support sets”), which are useful means to override the
contradictions when focusing the attention on certain (recoverable) formulae. These support sets are the
candidates to be the “recovered” knowledge-base. The common feature shared by each support set is
that it considers some contradictory information as useless, and regards all the remaining information not
depending on it as unaffected. This kind of approach is called in [Wa94] conservative (skeptical), and it
apparently has not yet been studied in the literature (refer also to [Wa94, p.107]).

2 Preliminary definitions and notations

In this section we briefly review the notions that will be significant in what follows. For a more detailed
presentation of the following notions, refer to [AA94b].

2.1 Bilattices

Definition 2.1 [Gi88] A bilattice is a structure B = (B, <y, <y, ) such that B is a non empty set con-
taining at least two elements; (B, <;), (B, <j) are complete lattices; and — is a unary operation on B s.t.:
(a) if a<;b then =a>;-b, (b) if a<;b then —a <y b, (¢) ~—a=a.

Notation 2.2 Following Fitting, we shall use A and V for the meet and join which correspond to <y, and
®, @ for the meet and join under <. He suggested to intuitively understand @ and @ as representing the
“consensus” and “accept all” operations, respectively 2. f and t will denote, respectively, the least and the
greatest element w.r.t. <;, while L and T — the least and the greatest element w.r.t. <;. While ¢t and f
may have their usual intuitive meaning, 1 and T could be thought of as representing no information and
inconsistent knowledge, respectively. Obviously, f,¢, L and T are all different (see lemma 2.3).

Lemma 2.3 [Gi88] Let B = (B, <, <j, ) be a bilattice, and suppose that a,be€ B.
a) ~(anb) = —aV=b; —(aVb)=-aA=b; —(a®b) = -a®-b; —(a®b) = -ad-b.
b) -f=t; ~t=f;, —-L=1; -T=T.

Definition 2.4 [AA94a] Let B = (B, <;, <k, ) be a bilattice.

a) A bifilter is a nonempty set FC B, s.t: (i) aAbeF iff ac F and be F, (ii) a@be F iff ac€ F and be F.
b) A bifilter F is prime, if it also satisfies: (i) avbe Fiff ac F or be F, (ii) a®be F iff ac F or be F.

Given a bilattice B, it may contain many bifilters. The elements of a bifilter are taken to be designated
truth values of B; i.e, they represent formulae that are considered true.

Definition 2.5 Given a bilattice B = (B, <;, <j,—). Two natural candidates for being the set of the
designated values of B are Di(B)={be B | b >y t} and Dy(B)={beB | b>, T}.

Lemma 2.6 Let B=(B, <;, <k, ) be a bilattice. For every b€ B, {b,—-b} CD(B)iff b=T.
Proof: {b,-b} CDy(B)iff b>, T and =b>; T iff 6>, T and b<,-T=T iff b=T. O

Definition 2.7 [AA94a] A logical bilattice is a pair (B, F ), where B is a bilattice, and F is a prime bifilter.

Example 2.8 Belnap’s FOUR, Ginsberg’s DEFAULT, and NINE (figure 1) are all logical bilattices with
F=Di(-)=Dy(-). In case of FOUR and DEFAULT there is no other bifilter. NINE induces also another
logical bilattice, in which F=Dy,(NINE)U {of,dT,dt}.

2These operators would not play a central role in what follows, since we will be most interested in the “classical” operators
A and V. However, our method allows the usage of these operators without any further effort, so we shall refer to then as well.
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Figure 1: FOUR, NINE, and DEFAULT

2.2 The logic

Definition 2.9 Let B be an arbitrary bilattice. The language BL(B) (Bilattice-based Language over B)
is the standard propositional language over {A,V,—, ®, @} enriched with a propositional constant for each
element in B. In what follows we shall fix B, so we shall shorten BL(B) to BL.

Definition 2.10 Let KB be a set of formulae above BL.
a) A(KB) denotes the set of the atomic formulae that appear in some formula of KB.
b) L(KB) denotes the set of the literals that appear in some formula of KB.

Definition 2.11

a) A wvaluation v is a function that assigns a truth value from B to each atomic formula, and map every
constant to its corresponding value in B. Any valuation is extended to complex formulas in the standard
way. We shall sometimes denote ©:b€v (or v = {1:b,...}) instead of v(¢) = b.

b) Given (B, F), we will say that v satisfies ¢ (vIEv), iff v(¢p) €F.

c) A valuation that satisfies every formula in a given set of formulas, KB, is said to be a model of KB.
The set of the models of K'B will be denoted mod(KB).

The next notion describes the truth values of B that represent inconsistent beliefs:

Definition 2.12 [AA94a] Let (B, F) be a logical bilattice. A subset Z of B is an inconsistency set, if it
has the following properties: (a) be Ziff ~b € Z, (b) be FNZiff b€ F and b€ F 3.

Example 2.13 7, = {b | b € F A =b € F} is the minimal inconsistency set in every logical bilattice.
Zy={b | b=-b} is inconsistency set in FOUR, DEFAULT, and NINE with F=D(-) *.

In the following discussion we fix some logical bilattice (B,F) as well as an inconsistency set 7 of it.
l€ L(KB) will denote an arbitrary literal, [ — its complementary, and p, ¢ € A(KB) — atomic formulae.

Notation 2.14 Given a valuation M on KB. Denote: Incyf(KB)={pe A(KB) | M(p)€Z}.

®Note that by (b) of definition 2.12, always T €7 and tgZ. Hence, by (a), f&7.

*Note that L ¢Z;, while L €Z,. Indeed, one of the major considerations when choosing an inconsistency set, is whether
to include L in 7 or not. Although in every bilattice =L =_1 (see lemma 2.3), L intuitively reflects no knowledge whatsoever
about the assertion it represents; in particular one might not take such assertions as inconsistent.



Definition 2.15 Let M, N be two models of a finite set of formulae, KB.

a) M is more consistent than N (M >, N), iff Incp(KB)C Inen(KB).

b) M is a most consistent model of KB (mcm, in short), if there is no other model of K'B which is more
consistent than M. The set of all the mcms of KB will be denoted by con(KB).

c) M is smaller than N (with respect to <j), M <y N, if for any p€ A(KB), M(p)<r N(p), and there is
g€ A(KB) s.t M(q) <k N(q).

d) M is a minimal model of KB, if there in no other model of KB which is smaller than M. The set of
all the minimal models of KB will be denoted by min(KB).

Definition 2.16 Let KB be a finite sets of formulae and ¢ — a formula. Let 5 be any set of valuations.
We denote KB |=g1) if each model of KB which is in 9, is also a model of .

Some particularly interesting instances of definition 2.16 are the following: (1) KB |:mod(KB) 1 if every
model of KB is a model of ¢ (abbreviation: KB ), (2) KB . (xp) ¢ if every mem of KB is a model
of ¢ (abbreviation: KB |=con 1), and (3) KB =, (xpy ¥ if every minimal model of KB is a model of ¢
(abbreviation: KB =i, ¥).

Example 2.17 Let KB ={s, —s, 1, 11 — —re, 79 —d} and B= FOUR with F ={t, T}. The models
of KB are listed in figure 2 below. It follows that con(KB) = {M;, My, M5} provided that L ¢ 7, while
if L eZ, con(KB)={M;y, Ms}. Also, min(KB)={My, Mg}, thus KB |=.,, —r2, while KB [£ —ry and
KB |7£mm —rg.

Model No. | s | 71 | 79 d Model No. | s | 71 | 72 d
M, Tt |f I M, TIT L t

Moy T 7 f i Mo T T | L T
Ms T 7 f f My LM | T | T i t, T
My T 7 f T Mis L Mg | T | T | f | Lt fT
My 1 Mg T 7 T L6, T || Mz LMy | T | T | T | L,t, [T

Figure 2: The models of KB

2.3 The knowledge-bases
Definition 2.18 A formula ¢ over Bl is an extended clause, if ¥ is a literal, or b = ¢ V @, where ¢ and

o are extended clauses, or v = ¢ G @, where ¢ and ¢ are extended clauses.
Definition 2.19 A formula v is said to be normalized, if it has no subformula of the form ¢V, A,
¢@¢7 ¢®¢7 or _|_'§b.

Lemma 2.20 For every formula 1 there is an equivalent normalized formula ' such that for every valu-

ation v, v(y) e F iff v(¥') e F.

From now on, unless otherwise stated, the knowledge-bases that we shall consider are finite sets of
normalized extended-clauses. As the next proposition shows, presenting the formulae in an (normalized)
extended clause form does not reduce the generality:

Proposition 2.21 For every formula i over B there is a set 5 of normalized extended clauses such that
for every valuation M, M |+ iff M = 5.

Proof: By an induction on the structure of the negation normal form of . O

Lemma 2.22 Let ¢ be an extended clause over BL, [; (i = 1...n) — its literals, and v — a valuation on
A(1p). Then v =1 iff there is 1<i<n s.t. v 1.

Proof: By an induction on the structure of ¢. O



3 Classification of the atomic formulae

The first step to recover inconsistent situations is to identify the atomic formulae that are involved in the
conflicts. In order to do so, we divide the atomic formulae that appear in the clauses of the knowledge-base
into four subsets as follows:

Definition 3.1 Let KB be a set of formulae, and [ € L(KB).

a) If KBlconl and KB l=c.,1, then [ is said to be spoiled.

b) If KB=con ! and KB f..,1, then [ is said to be recoverable.
c) If KBconl and KBl .1, then [ is said to be damaged. ®

Example 3.2 In example 2.17, s is spoiled, ry and —ry are recoverable, and d is damaged.

3.1 The spoiled literals

We treat first those literals that form, as their name suggests, the “core” of the inconsistency in KB. As
the following theorem suggests, those literals are very easy to detect:

Theorem 3.3 Let KB be a knowledge-base, and I € L(KB). The following conditions are equivalent:

(a) [ is a spoiled literal of KB. (b) M(l) € Z N F for every model M of KB. (¢) M'(l) € Z N F for every
mem M’ of KB. (d) {l,i} C KB.

Proof: The only nontrivial transition in the sequence (a) — (¢) — (d) — (b) — (a)is (¢) — (d): Suppose
that for every mem M’ of KB, M'(l)€Z N F. Since KB is finite, then for every model of KB there is an
mcm of KB which is more consistent or equal to it. Hence [ is assigned some inconsistent truth value in
every model of KB. Assume that [ € {p,—~p} for some p€ A(KB), and consider the following valuations:
v ={q:T | q€ A(KB), q¢# p} U{p:t}, vi={q:T | ¢€ A(KB), q # p} U{p:f}. Since v is not a model
of KB (because p has a consistent value under v;), -p € KB (otherwise, every formula ¢ € KB contains a
literal I’ s.t. v, (I')€F, and so v; =1 by lemma 2.22). Similarly, since vy is not a model of KB, pe KB. O

Corollary 3.4 If F=D,(B) then every model of KB assigns T to every spoiled literal.
Proof: Immediate from (d) of theorem 3.3, since {b, b} €D(B) iff b=T (see lemma 2.6). O

3.2 The recoverable literals and their support sets

The recoverable literals are those that may be viewed as the “robust” part of a given inconsistent knowledge-
base, since all the mcms “agree” on their validity. As we shall see, each recoverable literal [ can be associated
with a consistent subset, which preserves the information about /.

Definition 3.5 Let KB be a finite set of normalized extended clause in BL.

a) A model M of KB is consistent if it assigns a consistent value to every atom that appears in A(KB).
b) KB is consistent if it has a consistent model.

c) A subset KB'C KB is consistent in KB if KB’ is a consistent set, and (at least) one of its consistent
models is expandable to a (not necessarily consistent) model of K'B.

Example 3.6 KB’ = {¢q} is a consistent set, which is not consistent in KB = {¢, ~q}, since there is no
consistent model of KB’ that is expandable to a model of KB.

Definition 3.7 A set of normalized extended clauses SS() is a support set of [ (or: SS(1) supports 1), if
SS(1) satisfies the following conditions: (a) SS(I) C KB ; SS(I) is not empty, (b) S5(/) is consistent in KB,
(c) SS(I)Eeon! and SS(1) Feonl-

®As noted before, these notions (but not the context) are taken from [KL92].




Definition 3.8 If S5(I) supports [, and there is no support set S5'({) s.t. S5({)C SS'({), then SS(I) is said
to be a mazimal support set of I, or recovered subset of KB. A knowledge-base that has a recovered subset
is called recoverable.

Example 3.9 Consider again the example given in 2.17 and 3.2: KB ={s, —s, ry, 74 — —ry, ro —d}.
Here KB is a recoverable knowledge-base, since S = {ry, r — —ry, ro —d} is a maximal support set of
both r; and —ry. Note that S does not support d, since S'[Eco, d.

Theorem 3.10 Every recoverable literal has a support set.

Outline of proof: Without loss of generality, suppose that {=p, where p€ A(KB) is recoverable. Let M
be an mem of KB, s.t. M(p)€F\Z. Suppose that {ry,7s,...,r,} are the members of A(KB)\ Incy(KB).
Define: SS'(p)={1 € KB | A(v)C{r;}7,}. This 55/(p) is a support set for p. O

Theorem 3.11 If [ is a recoverable literal in KB, then no subset of KB supports |.

Proof: Without a loss of generality, suppose that {=p, and assume that S5’(p) is a support set for —p.
S5'(p) has a consistent model, M’, which is expandable to a model M of KB. M preserves the valuations
of M" on A(SS(p)), so in particular M(q)=M'(q)¢Z for every g€ A(SY(p)). Let N be an mcm of KB s.t.
N > 0n M (such an N exists since KB is finite). Since N >.,, M then still N(q)¢Z for every g€ A(SY(p)).
Also, N is an mcm of KB and p is a recoverable atom of KB, hence N(p)€ F. Let N’ be the reduction
of N to 55'(p). Since N’ is identical to N on A(S9(p)), and since N is a model of KB, then: (a) N’ is a
model of 55'(p), (b) N'(¢q)¢Z for every g€ A(SS'(p)), and (c) N'(p) € F. Form (a) and (b), then, N’ is a
consistent model of 55(p), and so from (c), N'(-p)€F. Thus S (p) FEcon —p; @ contradiction. O

Proposition 3.12 Let [ be a literal s.t. KB|=.,, (. [ is recoverable iff it has a support set.

Proof: The “only if” part was proved in theorem 3.10. For the “if” direction note that since [ has a
support set, it cannot be spoiled. [ cannot be damaged either, since KB |=.,, [. This is also the reason
why [ cannot be recoverable. The only possibility left, then, is that [ is recoverable. O

Corollary 3.13 Every literal [ such that {/} C KB and {/} ¢ KB is recoverable ©.
Proof: It is easy to see that if {/} ¢ KB then SS(I)={l} is a support set of [ (not necessarily maximal).
Since S9(!)[=1 and = is monotonic, then KB=1 as well, and so KB =, [. By 3.12, [ is recoverable. O

Another refinment of proposition 3.12 is the following: For KB’ C KB denote by con(KB)| KB’ the
reductions of the mems of KB to the language of KB’. Then:

Proposition 3.14 [ is a recoverable literal iff it has a support set S(1) s.t. SS(I) Fcon(xB)|s502) {-
Proof: If [ is recoverable, then by theorem 3.10 it must have a support set SS(7). Also, since [ is recoverable,
it is assigned a designated truth value by every mem. These values are kept when reducing the mcms to
the language of SS(1), hence SS(I) Feon(xB)|ss@) {- For the converse, it is easy to verify that  cannot be
either spoiled or damaged, and that / cannot be recoverable. O

When a recoverable literal has several support sets it seems reasonable to prefer those that are maximal
(w.r.t. containment relation). We next consider such sets:

Definition 3.15 Let [ be a recoverable literal in KB, and M — an mem of KB such that M(l)e F\ Z.
The support set of [ that is associated with M is: SSar(l1) = {¢ € KB | A(¥)) N Incp(KB)=0} 7.

®The converse of corollary 3.13 is, of course, not true. Consider, e.g. KB ={pV-p, p— ¢, —p— gq}: ¢ is recoverable
although {¢} ¢ KB. Moreover, this knowledge-base contains a recoverable literal although there is no {€ L(KB) s.t. {I{}C KB.
"This is indeed a support set of I. See the proof of theorem 3.10.



Proposition 3.16 Every maximal support sets of a recoverable literal [ is associated with some mem M
of KB s.t. M(l)¢ZT.

Proof: Suppose that 55'(]) is an arbitrary support set of [. Let N’ be a consistent model of S5’(1), and
N — its expansion to the whole K'B. Consider any mcm M that satisfies N <., M. Since A(S5'(1)) C
A(KB)\ Incn(KB) C A(KB)\ Incyf(KB), then each formula ¢ € S9°(1) consists only of literals that are
assigned consistent truth values under M. Hence SS'(1)C S5 (1). O

Corollary 3.17 A knowledge-base is recoverable iff it has a recoverable literal.

Proof: By definition 3.8, a recoverable knowledge-base KB must have a maximal support set, and by
proposition 3.16, such a set is of the form 59x;({), where [ is a recoverable literal of KB. The converse
direction: let [ be a recoverable literal of KB. We have shown that there is an mem M of KB such that
SSa (1) is a support set of [. By the proof of proposition 3.16 this support set is contained in some maximal
support set of [, and so KB is a recoverable. O

3.3 The damaged literals

The last class of literals according to the |=.,,-categorization consists of those literals that a consistent
truth value cannot be reliably attached to them (at least, not according to the most consistent models of
the knowledge-base). The following theorem strengthens this intuition:

Theorem 3.18 [ is damaged iff there exist mems My and My s.t. My(1) = f and My(l) = t.

Proof: “If”: follows directly from the definition of damaged literals. For the converse, suppose that p is
the atomic part of [. Since [ is damaged iff p is damaged, it suffices to prove the claim for p. Now, p is
damaged, thus there are mems Ny and Ng s.t. Ni(p)€F and No(—p)€F. Suppose that M is a valuation
that assigns f to p and is equal to Ny for all the other members of A(KB). Similarly, suppose that M,
assigns ¢ to p and is equal to Ny otherwise. Since Ny and N; are mcms of KB, so are My and M,. O

We conclude this subsection with some observations related to damaged literals:

o The existence of a support set for a damaged literal is not assured. For instance, the damaged literal
d of example 3.9 is a member of a support set (.9). Still, no support set of KB supports d.

e Even if there are support sets for a damaged literal, there can be other subsets that support its
negation: For example, in KB ={p, -pVgq, r, =rV-q} where B=FOUR, ¢ is damaged. It has a
support set: SS(q)={p, “pVq}, but there is a support set for ~q as well: SS(-¢)={r, -rV-q}.

e Consider KB ={pVq, -pV-q}. Here both p and ¢ are damaged although KB is a consistent set.
Intuitively, this is so because there is not enough data in KB about either p or ¢. In particular, a
literal can be damaged not just because of “over” information, but because of a lack of data as well.
In both cases, however, its truth value cannot be recovered safely.

4 The minimal mcms of KB

In this section we show that if one is interested only in recovering an inconsistent knowledge-base (that is,
discovering the spoiled, damaged, and recoverable literals of KB, as well as the support sets of the latters),
then it is sufficient to consider only the <j-minimal models of the most consistent models (minimal mcms,
in short). The set of the minimal mcms of K'B will be denoted by Q(KB), or just Q.

Abstractly, we can view the construction of 2 as a composition of the two consequence relations “j=.,,’
and “I=,,;,”. First, we confine ourselves to the mems of KB by using |=.,,,, then we minimize the valuations
that we have got by using |=,.;,. This process is a special case of what is called “stratification” in [BS88].

i



Lemma 4.1 Let KB be a finite set of normalized extended clauses. For every mem M of KB there is an
NeQ(KB)st. N<pM and Ineny(KB)=Incpy(KB).

Proof: Let M e mem(KB) and N € Q(AB)s.t. N <, M. Suppose also that Incn(KB)+# Incpr(KB). Since
M, N € mems(KB), there are ¢1, ¢ € A(KB) s.t. ¢1 € Ineny(KB)\Incy(KB) and ¢z € Inep(KB)\Inen(KB).
Assume that N(¢;) € F. Since N(q1) € Z then N(-¢y) € F as well. Thus M(q1) > N(¢1) € F and
M(=q1) >k N(=q1) € F,s0 M(q1) €Z — a contradiction. Hence N(¢y)¢ F. Similarly, N(—-¢;) ¢ F. Now,
consider the valuation N’ that assigns ¢ to ¢1, and is equal to N on every other p€ A(KB). It is easy to verify
that for v»€ KB, N'(¢p) € F whenever N ()€ F, thus N’ € mod(KB). But Incy(KB)=Incy/(KB) U {q},
therefore N'>.,, N, and so N ¢ mem(KB). In particular N ¢ Q(KB) — a contradiction. O

Proposition 4.2 Let KB be a finite set of extended clauses in BL. Then:

a) [ is spoiled literal in KB iff for every model M € Q(KB), M(l)eF and M(])€F.

b) [ is recoverable iff for every M € Q(KB), M(l)eF, and there is N € Q(KB) s.t. N(I)e F\I.

c) [ is damaged literal in KB iff there are My, My € Q(KB) s.t. My({)€F and My({) € .F.

Proof: We show only part (b); the proofs of the other parts are similar. Suppose that for every M € Q,
M(l)e F. Since F is upwards closed w.r.t. <j, this is true for every mem M’, hence KB |=,., [. Since
there is an N € Q s.t. N(I)e F\ Z, then N(I)¢ F, and so KB [£onl, thus [ is recoverable. The other
direction: since [ is recoverable, it is assigned a designated truth value in every mem of KB, in particular
it is designated in every minimal mcm. Also, there must be an mem N s.t. N({)€ F \ Z (otherwise [ is
spoiled). By lemma 4.1 there is an N'€Q s.t. N'(I)¢7 as well. Therefore N'(I)e F\Z. O

Another result is a characterization of the maximal support sets in terms of minimal mems (cf. 3.16):

Proposition 4.3 Every maximal support set of a recoverable literal [ is associated with some minimal
mem MeQ s.t. M(1)€T.

Proof: Follows easily from proposition 3.16 and lemma 4.1. O

5 Extensions to first-order logic

It is possible to directly expand the present discussion to any first-order knowledge-bases provided that:
(a) there are no quantifiers within the clauses; each extended clause that contains variables is considered as
universally quantified, and (b) no function symbols are allowed. Consequently, a knowledge-base containing
non-grounded formula, 1, will be viewed as representing the corresponding set of ground formulae formed
by substituting each variable that appears in ¥ with every possible member of the Herbrand universe, U.
Since we have not allowed the appearance of function symbols, and since we deal with finite knowledge-
bases, U must be finite as well. Formally: KBY = {p(v) | 1» € KB, p: var(y)) — U} where p is a ground
substitution from the variables of every i € KB to the individuals of Herbrand universe U.

6 Examples and discussion

In what follows we consider two benchmark problems which are given in [Li88]. The illustrations are
considered in B= FOUR with Z={T}. As it is shown below, our system manages to keep the results very
close to those suggested in [Li88].

Consider the following block world knowledge-base:
KB1 = {heavy(A), heavy(B), ~on_table(A), -red(B), heavy(z) — on_table(x), heavy(x) — red(x)}

The minimal mcms of KB1 are given in figure 3 8. Their associated support sets are listed below:

8 KB1 has 16 mcms. We omit the other 12, which are not <g-minimal.



mem | heavy(A) | heavy(B) | red(A) | red(B) | on_table(A) | on_table(B)
Mla t t t T T t
M1b t T t f T L
Mle T t L T f t
M1d T T L f f L

Figure 3: The minimal mcms of KB1

KBla = {heavy(A), heavy(B), heavy(A) — red(A), heavy(B) — on_the_table(B)}
KB1b = {heavy(A), —-red(B), heavy(A) — red(A)}

KBle = {-on_the_table(A), heavy(B), heavy(B) — on_the_table(B)}

KB1d = {-on_the_table(A), —red(B)} ®

KBla seems to be the preferable support sets according to many criteria: It is the largest set, it supports
more literals than any other support set, and it contains maximal information in the sense of [Lo94] 1°.
KBla implies that on_the_table(B) and red(A). These are also the conclusions in [Li88, problem A3].

For another example of the block world, consider the following knowledge-base:
KB2 = {heavy(A), heavy(B), heavy(C), heavy(z) — on_table(z), —~on_table(A)V —on_table(B)}
Note that the last assertion in K B2 states that there is an unknown exception in the information. The
mcms of K B2 are given in figure 4.

mem | heavy(A) | heavy(B) | heavy(C) | on_table(A) | on_table(B) | on_table(C')
M2a T 1 1 7 1 1
M2b t T t t f t
M2e t t t T t t
M2d t t t t T t

Figure 4: The (minimal) mcms of KB2

Hence, heavy(X ) for X =A, B,C and on_table(C') are all recoverable, while on_table(A) and on_table(B)
are damaged. The support sets of KB2 are listed bellow:

{heavy(B), heavy(C'), heavy(B) — on_table(B), heavy(C) — on_table(C'), —on_table( A)V-on_table(B)}
{heavy(A), heavy(C), heavy(A) — on_table(A), heavy(C) — on_table(C), ~on_table( A)V —on_table(B)}
{heavy(A), heavy(B), heavy(C), heavy(B) — on_table(B), heavy(C') — on_table(C)}
{heavy(A), heavy(B), heavy(C), heavy(A) — on_table(A), heavy(C) — on_table(C')}

Note that every recovered knowledge-base preserves the intuitive conclusions of KB2, i.e.: (a) block C' is
on the table, and (b) either block A or block B is on the table, but there is no evidence that both are on
the table. Again, these conclusions are similar to those of [Li88].

Due to the lack of space we have not considered here all the benchmarks of [Li88]. We confined ourselves
to two representative examples of category A (default reasoning). However, the reader might want to check
that many other test criteria mentioned there are met in our system. Most notable are the inheritance
features, and the autoepistemic characterizations.

°The “conservative” mnature of the system is emphasized here: each solution gets rid of the information it considers as
contradictory, and leaves all the other data unchanged.
198ee [AA94c] for a detailed discussion of methods for choosing the preferred support set.
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