
A Bilattice-based Approach to RecoverConsistent Data from Inconsistent Knowledge-BasesOfer Arieli Arnon AvronDepartment of Computer Science Department of Computer ScienceSchool of Mathematical Sciences School of Mathematical SciencesTel-Aviv University Tel-Aviv UniversityRamat-Aviv 69978, ISRAEL. Ramat-Aviv 69978, ISRAEL.Email: ofera@math.tau.ac.il Email: aa@math.tau.ac.ilAbstractBilattices, which have been shown to be very useful in logic programming, are used here for recoveringconsistent data from an inconsistent knowledge-base. Our method is conservative in the sense that itconsiders the contradictory data as useless, and regards all the remaining information una�ected. Thiskind of approach is nonmonotonic and paraconsistent in nature.1 IntroductionOne of the most signi�cant drawbacks of the classical calculus is its inability to deduce nontrivial resultsin the presence of an inconsistency. The warranty of drawing any conclusion whatsoever just because ofthe existence of a contradiction, is certainly unrealistic. Nevertheless, the classical calculus is still a veryconvenient framework to work with; adding new mechanisms or connectives to it generally cause a consid-erable growth in the computational complexity needed to maintain the resulting system. The purpose ofthis work, then, is to propose means that would allow drawing conclusions from systems that are based onclassical logic, although the information might become temporarily inconsistent.The scenario we think of is the following: Suppose that a given �rst-order classical knowledge-base hasbecome inconsistent. For the reason stated above, any attempt to deduce meaningful inferences from this\polluted" knowledge-base is useless. Our approach solves this \dead-end" by temporarily expanding thesemantics to be multi-valued, and this without changing the knowledge-base syntacticly.How do we practically recover consistent data from an inconsistent knowledge-base without changing it?The �rst step, as we have implied, is to switch into a special multi-valued framework. For this, we use a spe-cial algebraic structures called bilattices. Bilattices were �rst proposed by Ginsberg (see [Gi88]) as a basisfor a general framework for many applications. This notion was further developed by Fitting ([Fi90a, Fi94]),who showed that bilattices are most suitable for logic programming ([Fi89, Fi90b, Fi91, Fi93]). In bilat-tices the elements (which are also referred to as \truth values") are simultaneously arranged in two partialorders: one, �t, may intuitively be understood as a measure of the degree of truth that each element repre-sents; the other, �k, describes (again, intuitively) di�erences in the amount of knowledge (or information)that each element exhibits on the assertions that it is supposed to represent.The next step is to develop a mechanism that enables paraconsistent inferences. For this, we use anepistemic entailment proposed in [KL92] as the consequence relation of the logic 1. This relation can beviewed as a kind of a \closed word assumption", since it considers only the \most consistent" models1See [AA94c] for a detailed discussion on the advantages of the present logic with respect to the logic of [KL92] in particular,and to annotated logics [Su90a, Su90b, KS92] in general.



(mcms) of a given set of assertions. As was shown in [AA94a, AA94b], this relation enjoys some appealingfeatures, such as being non-monotonic, paraconsistent ([dC74]), and a \plausibility logic" ([Le92]).By using j=con we are able to: a) discover easily the \core" of the inconsistency in KB, and b) constructconsistent subsets of the knowledge-base (called \support sets"), which are useful means to override thecontradictions when focusing the attention on certain (recoverable) formulae. These support sets are thecandidates to be the \recovered" knowledge-base. The common feature shared by each support set isthat it considers some contradictory information as useless, and regards all the remaining information notdepending on it as una�ected. This kind of approach is called in [Wa94] conservative (skeptical), and itapparently has not yet been studied in the literature (refer also to [Wa94, p.107]).2 Preliminary de�nitions and notationsIn this section we briey review the notions that will be signi�cant in what follows. For a more detailedpresentation of the following notions, refer to [AA94b].2.1 BilatticesDe�nition 2.1 [Gi88] A bilattice is a structure B = (B;�t;�k;:) such that B is a non empty set con-taining at least two elements; (B;�t), (B;�k) are complete lattices; and : is a unary operation on B s.t.:(a) if a�t b then :a�t:b, (b) if a�k b then :a�k:b, (c) ::a=a.Notation 2.2 Following Fitting, we shall use ^ and _ for the meet and join which correspond to �t, and
, � for the meet and join under �k . He suggested to intuitively understand 
 and � as representing the\consensus" and \accept all" operations, respectively 2. f and t will denote, respectively, the least and thegreatest element w.r.t. �t, while ? and > { the least and the greatest element w.r.t. �k. While t and fmay have their usual intuitive meaning, ? and > could be thought of as representing no information andinconsistent knowledge, respectively. Obviously, f; t;? and > are all di�erent (see lemma 2.3).Lemma 2.3 [Gi88] Let B = (B;�t;�k;:) be a bilattice, and suppose that a; b2B.a) :(a^b) = :a_:b; :(a_b) = :a^:b; :(a
b) = :a
:b; :(a�b) = :a�:b.b) :f= t; :t=f ; :?=?; :>=>.De�nition 2.4 [AA94a] Let B = (B;�t;�k;:) be a bilattice.a) A bi�lter is a nonempty set F�B, s.t: (i) a^b2F i� a2F and b2F , (ii) a
b2F i� a2F and b2F .b) A bi�lter F is prime, if it also satis�es: (i) a_b2F i� a2F or b2F , (ii) a�b2F i� a2F or b2F .Given a bilattice B, it may contain many bi�lters. The elements of a bi�lter are taken to be designatedtruth values of B; i.e, they represent formulae that are considered true.De�nition 2.5 Given a bilattice B = (B;�t;�k;:). Two natural candidates for being the set of thedesignated values of B are Dk(B)=fb2B j b �k tg and Dt(B)=fb2B j b �t >g.Lemma 2.6 Let B=(B;�t;�k;:) be a bilattice. For every b2B, fb;:bg�Dt(B) i� b=>.Proof: fb;:bg�Dt(B) i� b�t> and :b�t> i� b�t> and b�t:>=> i� b=>. 2De�nition 2.7 [AA94a] A logical bilattice is a pair (B;F), where B is a bilattice, and F is a prime bi�lter.Example 2.8 Belnap's FOUR, Ginsberg's DEFAULT , and NINE (�gure 1) are all logical bilattices withF=Dk(�)=Dt(�). In case of FOUR and DEFAULT there is no other bi�lter. NINE induces also anotherlogical bilattice, in which F=Dk(NINE)[ fof; d>; dtg.2These operators would not play a central role in what follows, since we will be most interested in the \classical" operators^ and _. However, our method allows the usage of these operators without any further e�ort, so we shall refer to then as well.
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-tu?udf u dtud>uf utu>������HHHHHHAAAAAA���@@@HHHHHH������@@@���������Figure 1: FOUR, NINE, and DEFAULT2.2 The logicDe�nition 2.9 Let B be an arbitrary bilattice. The language BL(B) (Bilattice-based Language over B)is the standard propositional language over f^;_;:;
;�g enriched with a propositional constant for eachelement in B. In what follows we shall �x B, so we shall shorten BL(B) to BL.De�nition 2.10 Let KB be a set of formulae above BL.a) A(KB) denotes the set of the atomic formulae that appear in some formula of KB.b) L(KB) denotes the set of the literals that appear in some formula of KB.De�nition 2.11a) A valuation � is a function that assigns a truth value from B to each atomic formula, and map everyconstant to its corresponding value in B. Any valuation is extended to complex formulas in the standardway. We shall sometimes denote  :b2� (or � = f :b; : : :g) instead of �( ) = b.b) Given (B;F), we will say that � satis�es  (� j= ), i� �( )2F .c) A valuation that satis�es every formula in a given set of formulas, KB, is said to be a model of KB.The set of the models of KB will be denoted mod(KB):The next notion describes the truth values of B that represent inconsistent beliefs:De�nition 2.12 [AA94a] Let (B;F) be a logical bilattice. A subset I of B is an inconsistency set , if ithas the following properties: (a) b 2 I i� :b 2 I, (b) b 2 F \ I i� b 2 F and :b 2 F 3.Example 2.13 I1 = fb j b 2 F ^ :b 2 Fg is the minimal inconsistency set in every logical bilattice.I2=fb j b=:bg is inconsistency set in FOUR, DEFAULT , and NINE with F=Dk(�) 4.In the following discussion we �x some logical bilattice (B;F) as well as an inconsistency set I of it.l2L(KB) will denote an arbitrary literal, l { its complementary, and p; q2A(KB) { atomic formulae.Notation 2.14 Given a valuation M on KB. Denote: IncM (KB)=fp2A(KB) j M(p)2Ig.3Note that by (b) of de�nition 2.12, always >2I and t 62I. Hence, by (a), f 62I.4Note that ? 62I1, while ?2I2. Indeed, one of the major considerations when choosing an inconsistency set, is whetherto include ? in I or not. Although in every bilattice :?=? (see lemma 2.3), ? intuitively reects no knowledge whatsoeverabout the assertion it represents; in particular one might not take such assertions as inconsistent.



De�nition 2.15 Let M;N be two models of a �nite set of formulae, KB.a) M is more consistent than N (M>conN), i� IncM(KB)�IncN (KB).b) M is a most consistent model of KB (mcm, in short), if there is no other model of KB which is moreconsistent than M . The set of all the mcms of KB will be denoted by con(KB).c) M is smaller than N (with respect to <k), M <kN , if for any p2A(KB), M(p)�kN(p), and there isq2A(KB) s.t M(q) <k N(q).d) M is a minimal model of KB, if there in no other model of KB which is smaller than M . The set ofall the minimal models of KB will be denoted by min(KB).De�nition 2.16 Let KB be a �nite sets of formulae and  { a formula. Let S be any set of valuations.We denote KB j=S  if each model of KB which is in S, is also a model of  .Some particularly interesting instances of de�nition 2.16 are the following: (1) KB j=mod(KB)  if everymodel of KB is a model of  (abbreviation: KB j= ), (2) KB j=con(KB) if every mcm of KB is a modelof  (abbreviation: KB j=con  ), and (3) KB j=min(KB)  if every minimal model of KB is a model of  (abbreviation: KB j=min ).Example 2.17 Let KB = fs; :s; r1; r1!:r2; r2! dg and B = FOUR with F = ft;>g. The modelsof KB are listed in �gure 2 below. It follows that con(KB) = fM1;M2;M3g provided that ? 62 I, whileif ? 2 I, con(KB) = fM2;M3g. Also, min(KB) = fM1;M9g, thus KB j=con :r2, while KB 6j= :r2 andKB 6j=min:r2. Model No. s r1 r2 d Model No. s r1 r2 dM1 > t f ? M9 > > ? tM2 > t f t M10 > > ? >M3 > t f f M11 �M12 > > t t;>M4 > t f > M13 �M16 > > f ?; t; f;>M5 �M8 > t > ?; t; f;> M17 �M20 > > > ?; t; f;>Figure 2: The models of KB2.3 The knowledge-basesDe�nition 2.18 A formula  over BL is an extended clause, if  is a literal, or  = � _ ', where � and' are extended clauses, or  = �� ', where � and ' are extended clauses.De�nition 2.19 A formula  is said to be normalized , if it has no subformula of the form �_�, �^�,���, �
�, or ::�.Lemma 2.20 For every formula  there is an equivalent normalized formula  0 such that for every valu-ation �, �( )2F i� �( 0)2F .From now on, unless otherwise stated, the knowledge-bases that we shall consider are �nite sets ofnormalized extended-clauses. As the next proposition shows, presenting the formulae in an (normalized)extended clause form does not reduce the generality:Proposition 2.21 For every formula  over BL there is a set S of normalized extended clauses such thatfor every valuation M; M j= i� M j=S.Proof: By an induction on the structure of the negation normal form of  . 2Lemma 2.22 Let  be an extended clause over BL, li (i = 1 : : :n) { its literals, and � { a valuation onA( ). Then � j= i� there is 1� i�n s.t. � j= li.Proof: By an induction on the structure of  . 2



3 Classi�cation of the atomic formulaeThe �rst step to recover inconsistent situations is to identify the atomic formulae that are involved in theconicts. In order to do so, we divide the atomic formulae that appear in the clauses of the knowledge-baseinto four subsets as follows:De�nition 3.1 Let KB be a set of formulae, and l2L(KB).a) If KB j=con l and KB j=conl, then l is said to be spoiled .b) If KB j=con l and KB 6j=con l, then l is said to be recoverable.c) If KB 6j=con l and KB 6j=conl, then l is said to be damaged . 5Example 3.2 In example 2.17, s is spoiled, r1 and :r2 are recoverable, and d is damaged.3.1 The spoiled literalsWe treat �rst those literals that form, as their name suggests, the \core" of the inconsistency in KB. Asthe following theorem suggests, those literals are very easy to detect:Theorem 3.3 Let KB be a knowledge-base, and l2L(KB). The following conditions are equivalent:(a) l is a spoiled literal of KB. (b) M(l) 2 I \ F for every model M of KB. (c) M 0(l) 2 I \ F for everymcm M 0 of KB. (d) fl; lg � KB.Proof: The only nontrivial transition in the sequence (a)! (c)! (d)! (b)! (a) is (c)! (d): Supposethat for every mcm M 0 of KB, M 0(l)2I \ F . Since KB is �nite, then for every model of KB there is anmcm of KB which is more consistent or equal to it. Hence l is assigned some inconsistent truth value inevery model of KB. Assume that l2 fp;:pg for some p2A(KB), and consider the following valuations:�t = fq :> j q2A(KB); q 6= pg [ fp : tg; �f = fq :> j q2A(KB); q 6= pg [ fp :fg. Since �t is not a modelof KB (because p has a consistent value under �t), :p2KB (otherwise, every formula  2KB contains aliteral l0 s.t. �t(l0)2F , and so �t j= by lemma 2.22). Similarly, since �f is not a model of KB, p2KB. 2Corollary 3.4 If F=Dt(B) then every model of KB assigns > to every spoiled literal.Proof: Immediate from (d) of theorem 3.3, since fb;:bg2Dt(B) i� b=> (see lemma 2.6). 23.2 The recoverable literals and their support setsThe recoverable literals are those that may be viewed as the \robust" part of a given inconsistent knowledge-base, since all the mcms \agree" on their validity. As we shall see, each recoverable literal l can be associatedwith a consistent subset, which preserves the information about l.De�nition 3.5 Let KB be a �nite set of normalized extended clause in BL.a) A model M of KB is consistent if it assigns a consistent value to every atom that appears in A(KB).b) KB is consistent if it has a consistent model.c) A subset KB0�KB is consistent in KB if KB0 is a consistent set, and (at least) one of its consistentmodels is expandable to a (not necessarily consistent) model of KB.Example 3.6 KB0 = fqg is a consistent set, which is not consistent in KB = fq;:qg, since there is noconsistent model of KB0 that is expandable to a model of KB.De�nition 3.7 A set of normalized extended clauses SS(l) is a support set of l (or: SS(l) supports l), ifSS(l) satis�es the following conditions: (a) SS(l)�KB ; SS(l) is not empty, (b) SS(l) is consistent in KB,(c) SS(l) j=con l and SS(l) 6j=conl.5As noted before, these notions (but not the context) are taken from [KL92].



De�nition 3.8 If SS(l) supports l, and there is no support set SS0(l) s.t. SS(l)�SS0(l), then SS(l) is saidto be a maximal support set of l, or recovered subset of KB. A knowledge-base that has a recovered subsetis called recoverable.Example 3.9 Consider again the example given in 2.17 and 3.2: KB = fs; :s; r1; r1!:r2; r2! dg.Here KB is a recoverable knowledge-base, since S = fr1; r1!:r2; r2! dg is a maximal support set ofboth r1 and :r2. Note that S does not support d, since S 6j=con d.Theorem 3.10 Every recoverable literal has a support set.Outline of proof: Without loss of generality, suppose that l=p, where p2A(KB) is recoverable. Let Mbe an mcm of KB, s.t. M(p)2F nI. Suppose that fr1; r2; : : : ; rng are the members of A(KB)nIncM(KB).De�ne: SS0(p)=f 2KB j A( )�frigmi=1g. This SS0(p) is a support set for p. 2Theorem 3.11 If l is a recoverable literal in KB, then no subset of KB supports l.Proof: Without a loss of generality, suppose that l= p, and assume that SS0(p) is a support set for :p.SS0(p) has a consistent model, M 0, which is expandable to a model M of KB. M preserves the valuationsofM 0 on A(SS0(p)), so in particular M(q)=M 0(q) 62I for every q2A(SS0(p)). Let N be an mcm of KB s.t.N�conM (such an N exists since KB is �nite). Since N�conM then still N(q) 62I for every q2A(SS0(p)).Also, N is an mcm of KB and p is a recoverable atom of KB, hence N(p)2F . Let N 0 be the reductionof N to SS0(p). Since N 0 is identical to N on A(SS0(p)), and since N is a model of KB, then: (a) N 0 is amodel of SS0(p), (b) N 0(q) 62I for every q2A(SS0(p)), and (c) N 0(p)2F . Form (a) and (b), then, N 0 is aconsistent model of SS0(p), and so from (c), N 0(:p) 62F . Thus SS0(p) 6j=con:p; a contradiction. 2Proposition 3.12 Let l be a literal s.t. KB j=con l. l is recoverable i� it has a support set.Proof: The \only if" part was proved in theorem 3.10. For the \if" direction note that since l has asupport set, it cannot be spoiled. l cannot be damaged either, since KB j=con l. This is also the reasonwhy l cannot be recoverable. The only possibility left, then, is that l is recoverable. 2Corollary 3.13 Every literal l such that flg�KB and flg 6�KB is recoverable 6.Proof: It is easy to see that if flg 6�KB then SS(l)= flg is a support set of l (not necessarily maximal).Since SS(l) j= l and j= is monotonic, then KB j= l as well, and so KB j=con l. By 3.12, l is recoverable. 2Another re�nment of proposition 3.12 is the following: For KB0 �KB denote by con(KB) #KB0 thereductions of the mcms of KB to the language of KB0. Then:Proposition 3.14 l is a recoverable literal i� it has a support set SS(l) s.t. SS(l) j=con(KB)#SS(l) l.Proof: If l is recoverable, then by theorem 3.10 it must have a support set SS(l). Also, since l is recoverable,it is assigned a designated truth value by every mcm. These values are kept when reducing the mcms tothe language of SS(l), hence SS(l) j=con(KB)#SS(l) l. For the converse, it is easy to verify that l cannot beeither spoiled or damaged, and that l cannot be recoverable. 2When a recoverable literal has several support sets it seems reasonable to prefer those that are maximal(w.r.t. containment relation). We next consider such sets:De�nition 3.15 Let l be a recoverable literal in KB, and M { an mcm of KB such that M(l)2F n I.The support set of l that is associated with M is: SSM(l) = f 2KB j A( )\ IncM(KB)=;g 7.6The converse of corollary 3.13 is, of course, not true. Consider, e.g. KB = fp_:p; p! q; :p! qg: q is recoverablealthough fqg 6�KB. Moreover, this knowledge-base contains a recoverable literal although there is no l2L(KB) s.t. flg�KB.7This is indeed a support set of l. See the proof of theorem 3.10.



Proposition 3.16 Every maximal support sets of a recoverable literal l is associated with some mcm Mof KB s.t. M(l) 62I.Proof: Suppose that SS0(l) is an arbitrary support set of l. Let N 0 be a consistent model of SS0(l), andN { its expansion to the whole KB. Consider any mcm M that satis�es N �con M . Since A(SS0(l))�A(KB)nIncN(KB) � A(KB)nIncM(KB), then each formula  2 SS0(l) consists only of literals that areassigned consistent truth values under M . Hence SS0(l)�SSM(l). 2Corollary 3.17 A knowledge-base is recoverable i� it has a recoverable literal.Proof: By de�nition 3.8, a recoverable knowledge-base KB must have a maximal support set, and byproposition 3.16, such a set is of the form SSM(l), where l is a recoverable literal of KB. The conversedirection: let l be a recoverable literal of KB. We have shown that there is an mcm M of KB such thatSSM(l) is a support set of l. By the proof of proposition 3.16 this support set is contained in some maximalsupport set of l, and so KB is a recoverable. 23.3 The damaged literalsThe last class of literals according to the j=con-categorization consists of those literals that a consistenttruth value cannot be reliably attached to them (at least, not according to the most consistent models ofthe knowledge-base). The following theorem strengthens this intuition:Theorem 3.18 l is damaged i� there exist mcms M1 and M2 s.t. M1(l) = f and M2(l) = t.Proof: \If": follows directly from the de�nition of damaged literals. For the converse, suppose that p isthe atomic part of l. Since l is damaged i� p is damaged, it su�ces to prove the claim for p. Now, p isdamaged, thus there are mcms N1 and N2 s.t. N1(p) 62F and N2(:p) 62F . Suppose that M1 is a valuationthat assigns f to p and is equal to N1 for all the other members of A(KB). Similarly, suppose that M2assigns t to p and is equal to N2 otherwise. Since N1 and N2 are mcms of KB, so are M1 and M2. 2We conclude this subsection with some observations related to damaged literals:� The existence of a support set for a damaged literal is not assured. For instance, the damaged literald of example 3.9 is a member of a support set (S). Still, no support set of KB supports d.� Even if there are support sets for a damaged literal, there can be other subsets that support itsnegation: For example, in KB = fp; :p_q; r; :r_:qg where B = FOUR, q is damaged. It has asupport set: SS(q)=fp; :p_qg, but there is a support set for :q as well: SS(:q)=fr; :r_:qg.� Consider KB = fp_q; :p_:qg. Here both p and q are damaged although KB is a consistent set.Intuitively, this is so because there is not enough data in KB about either p or q. In particular, aliteral can be damaged not just because of \over" information, but because of a lack of data as well.In both cases, however, its truth value cannot be recovered safely.4 The minimal mcms of KBIn this section we show that if one is interested only in recovering an inconsistent knowledge-base (that is,discovering the spoiled, damaged, and recoverable literals of KB, as well as the support sets of the latters),then it is su�cient to consider only the �k-minimal models of the most consistent models (minimal mcms,in short). The set of the minimal mcms of KB will be denoted by 
(KB), or just 
.Abstractly, we can view the construction of 
 as a composition of the two consequence relations \j=con"and \j=min". First, we con�ne ourselves to the mcms ofKB by using j=con , then we minimize the valuationsthat we have got by using j=min. This process is a special case of what is called \strati�cation" in [BS88].



Lemma 4.1 Let KB be a �nite set of normalized extended clauses. For every mcm M of KB there is anN 2
(KB) s.t. N�kM and IncN (KB)=IncM(KB).Proof: Let M 2mcm(KB) and N 2
(KB) s.t. N�kM . Suppose also that IncN(KB) 6=IncM (KB). SinceM;N 2mcms(KB), there are q1; q22A(KB) s.t. q12IncN (KB)nIncM (KB) and q22IncM (KB)nIncN(KB).Assume that N(q1) 2 F . Since N(q1) 2 I then N(:q1) 2 F as well. Thus M(q1) �k N(q1) 2 F andM(:q1)�k N(:q1)2F , so M(q1)2 I { a contradiction. Hence N(q1) 62 F . Similarly, N(:q1) 62 F . Now,consider the valuation N 0 that assigns t to q1, and is equal toN on every other p2A(KB). It is easy to verifythat for  2KB, N 0( )2F whenever N( )2F , thus N 02mod(KB). But IncN (KB)= IncN 0(KB) [ fq1g,therefore N 0>con N , and so N 62mcm(KB). In particular N 62
(KB) { a contradiction. 2Proposition 4.2 Let KB be a �nite set of extended clauses in BL. Then:a) l is spoiled literal in KB i� for every model M 2
(KB), M(l)2F and M(l)2F .b) l is recoverable i� for every M 2
(KB), M(l)2F , and there is N 2
(KB) s.t. N(l)2F n I.c) l is damaged literal in KB i� there are M1;M22
(KB) s.t. M1(l) 62F and M2(l) 62F .Proof: We show only part (b); the proofs of the other parts are similar. Suppose that for every M 2
,M(l)2 F . Since F is upwards closed w.r.t. �k , this is true for every mcm M 0, hence KB j=con l. Sincethere is an N 2 
 s.t. N(l)2 F n I, then N(l) 62 F , and so KB 6j=conl, thus l is recoverable. The otherdirection: since l is recoverable, it is assigned a designated truth value in every mcm of KB, in particularit is designated in every minimal mcm. Also, there must be an mcm N s.t. N(l)2F n I (otherwise l isspoiled). By lemma 4.1 there is an N 02
 s.t. N 0(l) 62I as well. Therefore N 0(l)2F n I. 2Another result is a characterization of the maximal support sets in terms of minimal mcms (cf. 3.16):Proposition 4.3 Every maximal support set of a recoverable literal l is associated with some minimalmcm M 2
 s.t. M(l) 62I.Proof: Follows easily from proposition 3.16 and lemma 4.1. 25 Extensions to �rst-order logicIt is possible to directly expand the present discussion to any �rst-order knowledge-bases provided that:(a) there are no quanti�ers within the clauses; each extended clause that contains variables is considered asuniversally quanti�ed, and (b) no function symbols are allowed. Consequently, a knowledge-base containingnon-grounded formula,  , will be viewed as representing the corresponding set of ground formulae formedby substituting each variable that appears in  with every possible member of the Herbrand universe, U .Since we have not allowed the appearance of function symbols, and since we deal with �nite knowledge-bases, U must be �nite as well. Formally: KBU = f�( ) j  2 KB; � : var( )! Ug where � is a groundsubstitution from the variables of every  2KB to the individuals of Herbrand universe U .6 Examples and discussionIn what follows we consider two benchmark problems which are given in [Li88]. The illustrations areconsidered in B=FOUR with I=f>g. As it is shown below, our system manages to keep the results veryclose to those suggested in [Li88].Consider the following block world knowledge-base:KB1 = fheavy(A); heavy(B); :on table(A); :red(B); heavy(x)! on table(x); heavy(x)! red(x)gThe minimal mcms of KB1 are given in �gure 3 8. Their associated support sets are listed below:8KB1 has 16 mcms. We omit the other 12, which are not �k-minimal.



mcm heavy(A) heavy(B) red(A) red(B) on table(A) on table(B)M1a t t t > > tM1b t > t f > ?M1c > t ? > f tM1d > > ? f f ?Figure 3: The minimal mcms of KB1KB1a = fheavy(A); heavy(B); heavy(A)! red(A); heavy(B)! on the table(B)gKB1b = fheavy(A); :red(B); heavy(A)! red(A)gKB1c = f:on the table(A); heavy(B); heavy(B)! on the table(B)gKB1d = f:on the table(A); :red(B)g 9KB1a seems to be the preferable support sets according to many criteria: It is the largest set, it supportsmore literals than any other support set, and it contains maximal information in the sense of [Lo94] 10.KB1a implies that on the table(B) and red(A). These are also the conclusions in [Li88, problem A3].For another example of the block world, consider the following knowledge-base:KB2 = fheavy(A); heavy(B); heavy(C); heavy(x)! on table(x); :on table(A)_ :on table(B)gNote that the last assertion in KB2 states that there is an unknown exception in the information. Themcms of KB2 are given in �gure 4.mcm heavy(A) heavy(B) heavy(C) on table(A) on table(B) on table(C)M2a > t t f t tM2b t > t t f tM2c t t t > t tM2d t t t t > tFigure 4: The (minimal) mcms of KB2Hence, heavy(X) for X=A;B;C and on table(C) are all recoverable, while on table(A) and on table(B)are damaged. The support sets of KB2 are listed bellow:fheavy(B); heavy(C); heavy(B)! on table(B); heavy(C)! on table(C); :on table(A)_:on table(B)gfheavy(A); heavy(C); heavy(A)! on table(A); heavy(C)! on table(C); :on table(A)_:on table(B)gfheavy(A); heavy(B); heavy(C); heavy(B)! on table(B); heavy(C)! on table(C)gfheavy(A); heavy(B); heavy(C); heavy(A)! on table(A); heavy(C)! on table(C)gNote that every recovered knowledge-base preserves the intuitive conclusions of KB2, i.e.: (a) block C ison the table, and (b) either block A or block B is on the table, but there is no evidence that both are onthe table. Again, these conclusions are similar to those of [Li88].Due to the lack of space we have not considered here all the benchmarks of [Li88]. We con�ned ourselvesto two representative examples of category A (default reasoning). However, the reader might want to checkthat many other test criteria mentioned there are met in our system. Most notable are the inheritancefeatures, and the autoepistemic characterizations.9The \conservative" nature of the system is emphasized here: each solution gets rid of the information it considers ascontradictory, and leaves all the other data unchanged.10See [AA94c] for a detailed discussion of methods for choosing the preferred support set.
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