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We introduce a fixpoint semantics for logic programs with two kinds of negation:
an explicit negation and a negation-by-failure. The programs may also be prioritized,
that is, their clauses may be arranged in a partial order that reflects preferences
among the corresponding rules. This yields a robust framework for representing
knowledge in logic programs with a considerable expressive power. The declarative
semantics for such programs is particularly suitable for reasoning with uncertainty,
in the sense that it pinpoints the incomplete and inconsistent parts of the data, and
regards the remaining information as classically consistent. As such, this semantics
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1. Introduction

Logic programming is a combination of logic as a representation language
and the theory of (constructive) automated deduction. However, it has long
been claimed that standard logic programs are neither sufficiently expressive for
formalizing various informal considerations (such as making preferences among
different assertions, exception handling, completion of partial knowledge in a
“rational” way, etc.) nor they are capable of properly imitating common-sense
reasoning. This was partly explained by the limited syntactical structure of such
programs, which in particular does not support a proper representation of nega-
tive information.

Various formalisms have been considered in order to overcome this limitation

* This work was prepared while the author was visiting the Department of Computer Science,
University of Leuven, Belgium.
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(see, e.g., [1,25,27,31,37,38,42,48] and a survey in [10, Section 3]). Most of them
do so by extending the expressive power of the programs under consideration
(and, of-course, provide some appropriate semantics that captures the “intended”
meaning of the extended logic programs that are obtained). Two syntactical
modifications are usually considered in this context. First, negations may appear
not only in the bodies of the rules, but also in their heads. Second, two different
operators are used for representing two different types of negative information.
One kind of negation, denoted here by —, corresponds to an “explicit” negative
data. Its role, like that of negation in classical logic, is to represent counter-
information. The other kind of negation, denoted here by not, may be associated
with a more “implicit” way of representing negative data. It is usually used for
expressing the fact that the corresponding assertion cannot be proved or verified
on the basis of the available information. It is therefore usual to associate this
connective with “negation-as-failure” (to prove the corresponding assertion). The
different nature of the two kinds of negations is demonstrated by the following
example:

Example 1.1. Consider a rule that expresses the fact that “If someone is in-
nocent (s)he cannot be guilty”. This rule may be represented by the following
implication:

—guilty(x) + innocent(x)

L.e., innocence must entail no guilt. On the other hand, a rule like the following
one:

innocent(z) < not guilty(z)
is somewhat less strict. It may be understood as stating that “someone is innocent

as long as it has not been proven that (s)he is guilty”.

It follows, then, that these two negation operators should be used in different
contexts. This is further illustrated by the following example (borrowed from
[27]):

Example 1.2. Consider a rule that states that “a school bus may cross railway
tracks if there is no crossing train”. This rule may be represented by the following
implication:

cross_railway_tracks < —train_is_comming
However, it should not be expressed as follows:
cross_railway tracks <- not train_is_comming

The reason for this is that the condition in the latter clause holds in cases that
there is no information available about a presence of a train. This is a weaker
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condition than that of the former clause, which is satisfied only if there is an
ezplicit evidence that no train is approaching the railway tracks.

Clearly, extending logic programs with two kinds of negations and allowing
the appearance of negative data in the rule heads, have far-reaching impacts on
the way knowledge is represented and processed. For instance, query evaluation
becomes more accurate since it is possible to distinguish between a query that
fails because it does not succeed, and a query that fails in a stronger sense, that
its negation succeeds. Moreover, these extensions of standard logic programs offer
some new opportunities that were not available before. A particularly important
one (on which we focus the attention in this paper) is the ability to represent and
reason with uncertain information. More specifically, in the representation level
this means the ability to express the following kinds of knowledge:

e Inconsistent belief. 1.e., a representation of contradictory data within the lan-
guage (unlike, e.g., positive logic programs, the syntax of which rules out any
possibility of representing contradictions.')

e Partial knowledge. l.e., the ability to deal directly with incomplete informa-
tion by explicitly pointing to cases in which the data (or the knowledge) is
incomplete.

e (Hierarchy of ) exceptions. l.e., the ability to disregard some piece of informa-
tion in the presence of another. More generally, preferring certain rules over
others. Such preferences may be represented either in the program language
itself or in a “meta-language” (as an additional information, not necessarily
represented in a clausal form, and sometimes not even specified by first-order
formulae).

In what follows we shall see how all these different types of knowledge are rep-
resented in our framework. For the time being we remain on the intuitive level
and just note that the strong negation — will usually be useful for representing
contradictory data, while the negation-by-failure operator not will be useful for
representing incomplete data. In addition, we will also allow some additional
information, expressed as a “meta-knowledge”, which exhibits preferences of cer-
tain pieces of information over others.

A proper way of handling incomplete and inconsistent information means
also an adequate formalism for processing (i.e., reasoning with) this kind of data.
The two main requirements in this respect are the following:

! Furthermore, even some formalisms that do allow negations in the clause bodies and heads
(e.g., [27,31,42]), treat atomic formulae and their negations as two different ways of representing
atomic information, so practically a representation of inconsistent information is not fully
supported in this case as well. We shall return to this issue in what follows.



4 O. Arieli / Paraconsistent declarative semantics for extended logic programs

e Non-monotonicity. l.e., the ability to modify the set of conclusions in the light
of new data. This is an important property of any formalism that deals with
partial information and applies default assumptions to it.

e Paraconsistency [15]. The semantics of inconsistent logic programs should not
be trivial, that is, inconsistent information should not entail every conclusion.

The following examples demonstrate these properties:

Example 1.3. Consider the following logic program, where p and ¢ are two
atomic formulae, and t is a propositional constant that corresponds to the clas-
sical truth value that represents true assertions.

P = {q+t, p+<t, —p+ not g}

Intuitively, P may be understood such that both p and g are known to be true, and
—p is also true, provided that it cannot be shown that the negation of ¢ holds.
In this interpretation P clearly contains inconsistent information regarding p.
However, a paraconsistent formalism should not attach to P a trivial fixpoint
semantics, since some part of it ({g+ t} in our case) is not related whatsoever
to any contradictory information in P (and therefore it should have a consistent
interpretation).? Moreover, a plausible semantics for such programs should make
a clear distinction between the “robust” part of the program (i.e., those clauses
that are not based on any contradictory information) and the “spoiled” one (i.e.,
rules that are defined in terms of inconsistent data).

Suppose now that a new datum arrives, and it indicates that if p holds then
=g must hold as well. The new program is therefore the following:

P = P U {~q+ p}

Now, the information regarding p becomes consistent (as the condition for con-
cluding —p does not hold anymore), while the data regarding ¢ is now inconsistent.
A non-monotonic formalism should adapt itself to the new situation. In partic-
ular, while the query —p should succeed where P is the underlying program, it
should fail w.r.t. P’

Example 1.4. A robust formalism for reasoning with uncertainty should also be
able to handle incomplete information in a plausible way. This is demonstrated
by the following example:

P = {g+ t, p< notp}

This time P contains incomplete information regarding p. Unlike some formalisms
that do not provide any model for this program (e.g., the stable model semantics
[26]), we claim that a proper semantics for P should distinguish between the

2 Note that since the data regarding p is inconsistent, the other two clauses contain “unreliable”
information, and thus may have inconsistent interpretations.
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meaningful data in P ({¢g<t}), and the meaningless data ({p < not p}). Note
that the well-founded semantics [47] does provide a plausible solution to this
case. In what follows (Section 3.2) we shall use this property of the well-founded
semantics for defining our way of handling incomplete information.

Many of the well-known formalisms for giving semantics to extended logic
programs (e.g., [27,37]) reduce to triviality in the presence of contradictory data,
and so they are not paraconsistent. Our approach, on the other hand, accepts
contradictory data and tries to cope with it. As classical logic is neither non-
monotonic nor paraconsistent, this approach must be non-classical in nature.?
In our case we use multiple-valued semantics in which there are particular truth
values that correspond to different degrees of contradictions and partial informa-
tion. The use of multiple-valued logics for giving semantics to logic programs is
discussed and justified in Sections 2.2 and 4.2.

The rest of this paper is organized as follows: in the next section we represent
our framework. In particular, we consider some semantical aspects such as show-
ing that Belnap four-valued structure [11,12] is particularly suitable for represent-
ing the kind of information we intend to decode in logic programs. In Section 3 we
introduce our fixpoint theory, first for logic programs without negation-as-failure,
and then for the general case. In Section 4 we further generalize our formalism to
cases in which the logic programs under consideration are prioritized, i.e., every
clause has its own relative priority over the other clauses. For extending our
semantics to the prioritized case we consider a generalization of the four-valued
semantical structure to a larger family of multiple-valued algebraic structures,
called bilattices [20,28,29]. The semantics that is obtained is then discussed and
some of its properties are illustrated. In Section 5 we summarize the main prop-
erties of our formalism (with respect to other related fixpoint semantics), and
conclude.

2. Preliminaries
2.1. Logic programs

In what follows p, ¢, r denote atomic formulae, [,11, 2, . .. denote literals (i.e.,
atomic formulae that may be preceded by —), and e, ey, €9, ... denote extended
literals (i.e. literals that may be preceded by not). The complement of a literal
I is denoted by [ (that is, if I=p for some atom p then [ =-p, and if [ =—p then
I=p). As usual in the context of logic programming, we shall deal with formulae
in a clausal form, as defined below:

% See, e.g., [5,6,11,12,32,34,39] for some non-classical methods for reasoning with partial or
contradictory information.
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Definition 2.1. Let n>m>0.

e A positive clause is a formula of the form p < p1,...,pn 4
o A standard clause is a formula of the form p < py,...,pm,n0t P41, ..., 00t Py
e A normal clause is a formula of the form p < I1,...,1,
e A general clause is a formula of the form [ < [1,... 1,
e An extended clause is a formula of the form [ + eq,..., e,
Given a clause [ < ej,e9,...,e,, we say that [ is the cause head, and

e1,...,ey is the clause body (sometimes abbreviated by Body). The clause head
is also called the conclusion (of the clause), and each element in the clause body
is called a condition (of the clause). The set of the (extended) literals that appear
in Body is denoted by L(Body).

A (possibly infinite) set P of extended (respectively: positive, standard,
normal, general) clauses is called an extended (respectively: positive, standard,
normal, general) logic program.

2.2. Some semantical considerations

A. The underlying multi-valued structure

First, we should decide what underlying semantics is most suitable for our
intended formalism. It is well-accepted that two-valued semantics is an appro-
priate semantical framework for positive logic programs. This is so since every
positive logic program P has a unique least Herbrand model, which is identical to
the least fixpoint of van-Emden and Kowalski’s immediate consequence operator
[46] of P. It follows, therefore, that the “intended” semantics of positive logic
programs can be captured within the two-valued setting.

Things are getting more complicated when negations may appear in the
clause bodies. In such cases a least two-valued model does not always exist
(Consider, e.g., P={p<not p}), and there are cases in which several minimal
two-valued models exist (For instance, P = {p + —¢q, ¢ < —p} has two minimal
Herbrand models. In one of them p is true and ¢ is false, and in the other one ¢
is true and p is false). One common way to overcome these problems is to con-
sider a minimization w.r.t. a three-valued semantics: Fitting’s operator [19,23],
based on Kripke/Kleene 3-valued semantics [30] always yields a least fixpoint
when applied to normal logic programs, and this is also the case with the three-
valued well-founded semantics [47], applied to standard logic programs. Under
some further assumptions on the syntactical structure of the logic programs under
consideration, some other 2-valued and 3-valued fixpoint semantics are uniquely

4 Such formulae are also called definite clauses.
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Figure 1. Belnap four-valued structure, FOUR

determined. For instance, as shown in [40,41], every standard logic program that
is weakly stratified [40] has a unique weakly perfect model [40], which coincides
with its unique stable model [26] and its unique well-founded model [47].

When negations may also appear in the clause heads, the logic programs
may be inconsistent, and so unless inconsistency reduces to triviality, neither 2-
valued nor 3-valued models can capture the semantics of such programs anymore.
Briefly, this is due to the fact that if P is some general (or extended) logic
program, then an “appropriate” semantics for it should be able to distinguish
among the following four different cases:

l.p<teP,p+—tgP
2.p—tgP,p+—teP
3. p+—teP, p+teP
4. p—tgP, p+—tgP

Assuming that neither p nor —p appears in any clause head in P other than
those mentioned above, one expects that in the former two cases p would have a
classical value (¢ in the first case and f in the second case), and in the latter two
cases two other values should be attached to p: one for denoting that the data
regarding p is inconsistent (as in case 3 above), and the other for denoting that
there is insufficient information regarding p (as in case 4 above).

It follows that in order to capture these four different cases on the seman-
tical level, a semantical structure for general or extended logic programs should
contain (at least) four different elements. Probably the best-known structure
with this property is Belnap’s FOUR (Figure 1).
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Belnap’s algebraic structure was introduced in [11,12] as a semantical tool
for representing different states of a reasoner’s knowledge (or belief). This struc-
ture consists of four truth values: the classical ones (¢, f), a truth value (L)
that intuitively represents lack of information, and a truth value (T) that may
intuitively be understood as representing contradictions. These four elements
are simultaneously arranged in two partial orders. In one of them (denoted here
by <;), f is the minimal element, ¢ is the maximal one, and L, T are two in-
termediate values that are incomparable. This partial order may be intuitively
understood as representing differences in the amount of truth of each element. We
denote by A and V the meet and join operations w.r.t <; (hence, e.g., TV L =t).
In the other partial order (denoted here by <g), L is the minimal element, T is
the maximal one, and ¢, f are two intermediate values. This partial order intu-
itively represents differences in the amount of knowledge (or information) that
each element exhibits. We denote by ® and @ the meet and join operations w.r.t
<k (hence, e.g., t® f =T). Another useful operator on FOUR is the negation
(denoted here by —) that is order reversing w.r.t. <; and order preserving w.r.t.
<k, ie., t=f, 2f=t, -T=T,and ~L=1.

The various semantical notions are defined on FOUR as natural general-
izations of similar classical ones: a wvaluation v is a function that assigns a truth
value in FOUR to each atomic formula. In what follows we shall sometimes
write v ={p:x,q:y} instead of v(p) ==z, v(q) =y. Any valuation is extended
to complex formulae in the obvious way. The set of the four-valued valuations is
denoted by V4.

D ={t, T} is the set of the designated elements of FOUR, i.e., the set of
elements in FOUR that represent true assertions. Hence, we say that a valuation
v satisfies a formula v iff v(y) € D. Note that D is a prime filter in FOUR (w.r.t.
both <; and <j) that consists of the elements that are <j-greater than or equal
to t. This corresponds to Belnap’s observation that the designated elements of
FOUR should be those that are “at least true” (see [12, Page 36]).

A valuation that assigns a designated value to every clause in a logic pro-
gram P is a model of P.

Next we define a useful partial order on the elements of V4 in terms of the
partial order <j of FOUR:

Definition 2.2.

a) A valuation v; € V4 is k-smaller than another valuation v, € V* if for every
atomic formula p, v1(p) <y v2(p).

b) A valuation v € V* is a k-minimal element in a set S C V* if there is no other
element in S that is k-smaller than v. If there is a single k-minimal element
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in S, we shall sometimes call it the k-least element of S.

It is easy to see that Definition 2.2(a) induces a lattice structure on the set of
the four-valued valuations: V*=(V* <;). Another useful way of (pre-)ordering
the elements in V4 is the following:

Definition 2.3 [5,6].

a) A valuation vy € V* is more consistent than another valuation vy € V* if
{plnlp)=T}rC{p | va(p)=T}

b) A valuation v € V* is a mazimally consistent element in a set SCV* if there
is no other element in S that is more consistent than v. 5

Clearly, the interesting cases of Definitions 2.2(b) and 2.3(b) are obtained
when S is the set of the models of the logic program P under consideration. Two
important sets of models are obtained in these cases: The k-minimal models of
P, and the mazimally consistent models of P. We shall reconsider these models
in what follows.

B. The meaning of the implication connective

Let P be a general logic program. The connectives that appear in the bod-
ies or the heads of the clauses in P, i.e.: conjunctions (,)® and negations (=),
should be regarded, respectively, as the greatest lower bound and the order-
reversing operation w.r.t. the <;-partial order of FOUR.” This corresponds to
the natural extensions to the multiple-valued case of the 2-valued definitions of
these connectives. However, as has already been observed in [10,27], the implica-
tion connective < of the program’s clauses should not be taken as the material
implication <=, where p <= ¢ = pV —q. This is so since, for instance, the in-
tuitive meaning of {-p <+ t, p < —q} is different than the intuitive meaning of
{=p+t, g+ —p},® thus a plausible semantics for P cannot be ‘contrapositive’
w.r.t. < and —. Moreover, in the multi-valued setting, the material implication
< is not suitable for representing entailment anymore. This is mainly due to the
following reasons:

1. p<«>p does not always hold in the four-valued setting, since excluded-middle
is not a four-valued tautology (Note that v(pV—p)=_L when v(p)=_1).

%1In [5,6] a valuation with the same property is called a most consistent element of S. Here we
have changed the terminology, so that it would not suggest uniqueness.

% Commas are used here also as a separator among clauses in the same program. This will not
cause any ambiguity.

" We shall discuss the semantics of the negation as failure operator (not) in a later stage.

® Intuitively, in the former program there is no explicit information on the validity of ¢, and so
q should not have a designated value, while in the latter program the condition in the rule
that defines g is satisfied, and so this time g should be assigned t¢.
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2. < does not have a deductive nature in FOUR. For instance, the fact that
every four-valued model of some conjunction Body is also a model of a literal /
does not imply that [ <= Body is true in every four-valued valuation (Consider,
e.g., the case in which Body=I).

We therefore consider an alternative definition for the implication connec-
tive, according to which it does function as an entailment in the four-valued
setting:

Definition 2.4 [5,8]. Let z,y € FOUR. Define:

x ifyeD
Ty =
Y t  otherwise

Note that on {¢, f} the material implication and the new implication are
identical, and both of them are generalizations of the classical implication. How-
ever, unlike the material implication, the implication connective defined in 2.4
does preserve both properties of entailment that were mentioned above.

In what follows we therefore use the implication connective of Definition
2.4 for representing the entailment of the program’s clauses. Note that the se-
mantics of this implication is in accordance with the following standard way of
understanding entailment in logic programs:

Proposition 2.5. For every valuation v € V* we have that v(I < Body) €D iff
either v(I) €D or v(Body) ¢D.

Proof. Immediately follows from Definition 2.4. O

2.8. The language and its extension to the first-order case

The language of the logic programs considered here is based on the implica-
tion connective <, the meaning of which was discussed in the previous section,
conjunction that correspond to the <;-join operator in FOUR, two negation
operators — and not, and four propositional constants t, f, ¢, u, that are respec-
tively associated with the elements ¢, f, T, L in FOUR. We therefore remain,
basically, on the propositional level. However, as first-order clauses are consid-
ered as universally quantified, first order logic programs may be handled within
our framework as well. We do so by considering their ground instances; every
non-grounded clause is viewed as representing the corresponding set of ground
clauses, formed by substituting every variable that appear in this clause with
every possible element of the corresponding domain. Formally, let p be a ground
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substitution from the variables of every clause C in P to the individuals of the
set of the closed terms H of P. Then we shall consider programs of the form

pH — {p(C) | C€P, p:var(C)—H}.

In what follows we shall abbreviate P for PH.

3. Paraconsistent declarative semantics for logic programs

We are now ready to introduce our fixpoint semantics for logic programs.
First, we treat general logic programs (i.e., programs without negation-as-failure),
and then we consider extended logic programs.

3.1. Semantics for general logic programs

Definition 3.1. Given a general logic program P, define for every ¢ > 1 and
every literal [ the following valuations:

vl (1) = L.

P0) t if there is a clause | < Body € P s.t. v/, (Body) € D, °
val; (1) =
' 1 otherwise.

vF (1) = valP (1) @ —wal? (7). 10

For a limit ordinal A we define:
val{ (1) = maz<, {val? (1) | a< )}, vE (1) = valf (1) @ -val{ (7).

Also, for every propositional constant x € {t, f, c,u} that is associated with an
element z€{t, f, T, L} in FOUR, we define vF(x) =vall(x) =z (i=0,1,...).

The basic operator used here for handling contradictory information is the
<k-join, ®. As it is noted in [21,24], this operator may be associated with a
“gullibility” (“accept all”) function that computes the combined knowledge of
its arguments. The choice of this operator may be intuitively justified, then, by
the need to do the following: (a) record cases in which there is an evidence for a
specific assertion and for the complementary assertion as the same time, and (b)
pinpoint the contradictory knowledge (or belief).

Note also that for every 1, 1/17) behaves as expected w.r.t. negation: since for
every z,y € FOUR, =(z @ y) = -z & -y, we have that

—u/ip(l) = ﬂ(valf(l) & —wal?(f)) = ﬂvaIZP(l) & vaIZ?(Z) = VZP(Z).

QV‘P

7 is defined on conjunctive formulae in the usual way: v (Body)= /\liEE(Body) v/ (1;). Thus,
v] (Body) € D iff Vi; € L(Body) v} (I;) €D.

10 Recall that [ is the complement of [, and @ is the <j-join operation in FOUR.
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Proposition 3.2. The sequence v/}, v, v) ..., defined in 3.1 for a general logic

program P, is <j-monotonic in V*.

Proof. Since the set D of the designated values is upwards-closed w.r.t. <g, it
easily follows from Definition 3.1 that for a given general logic program P, the
sequences {val’ } and {v/]'} are both <;-monotonic in i. O

By Knaster-Tarski theorem [45], it follows from Proposition 3.2 that the
sequence {v]} has a <j-least fixpoint. Denote this fixpoint by v”. An induced
consequence relation , may now be defined as follows: P v, ¢ iff v7(¢)) € D
(Thus, a query 1 follows from a logic program P if v7 (1)) is designated).

Proposition 3.3. Let P be a general logic program. Then v” is the k-minimal
four-valued model of P. Moreover, it is at least as consistent as any other model
of P, and the consequence relation induced by it is paraconsistent.

Proof. See Appendix A. O

Corollary 3.4. Let P be a general logic program. Then v/ is the k-least model
and a maximally consistent model of P.

Proof. Immediately follows from Proposition 3.3 and its proof. O

Being the k-least model of P, ¥ minimizes the amount of knowledge that
is pre-supposed, i.e. it does not assume anything that is not really known. This
property is further discussed in Remark 3.6 below. Moreover, the last corollary
also indicates that ¥ minimizes the amount of inconsistent belief in the set of
clauses.'? This is in accordance with the intuition that while one has to deal
with conflicts in a nontrivial way, contradictory data corresponds to inadequate
information about the real world, and therefore it should be minimized (see also
[6] for a discussion on maximally consistent models of general theories).

Note that the last corollary does not imply that v* is the only maximally
consistent model of P. Indeed, consider for instance the following program:

P={p«+t, -p«t, p<q}

Beside v¥ = {p: T, ¢: L}, P has two other maximally consistent models, namely
{p:T, q:t} and {p: T, q:f}. However, by Corollary 3.4 we have the following
result that shows that 7 provides the most compact way of representing the
most consistent knowledge:

"'In the sense that the set of the atoms that are assigned T by v* does not properly contain
any similar set of another model of P.
'? Recall Definition 2.3.
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Corollary 3.5. v7 is the k-least model among the maximally consistent model
of P.

Remark 3.6. Syntactically, normal logic programs are special cases of general
logic programs. Still, there are semantical differences between a set of rules
viewed as a normal program, and the same set of rules viewed as a general (or
extended) program. For instance, most of the semantics for normal logic programs
assign f to any atom that does not appear in (any clause head in) the program.
However, in general or extended logic programs this can be inferred from general
rules that are stated in the program itself (e.g., by adding rules for closed word
assumption; see Example 3.14a below), and so the absence of an atom p from a
general logic program indicates that p does not hold. Hence, if nothing is stated
regarding —p as well, in the corresponding semantics p should be unknown.'3

For another example on the semantical differences, consider the following
(general) program:

P={p+ g, gt}

Treated as a normal program, some of the 2-valued and the 3-valued fixpoint
semantics for P assign t to g and f to p. According to those semantics the
head of a clause program is associated with its corresponding clause bodies, and
therefore the truth value attached to a clause head should be the same as the
(least upper-bound of) the value(s) of its clause body(ies). This, however, is not
the case in our semantics, which assigns ¢ to g and L to p. This is justified by the
fact that P is now considered as a general logic program, and so had one wanted
to identify the information regarding p with that of its clause body, (s)he should
have added to P also the converse implication (in trms of p), i.e., =p + ¢.!* In
the absence of such clause our four-valued semantics correctly indicates that one
should not conclude here that p is false! '°

Once again, this example demonstrates our slogan: our semantics always
assumes as minimal knowledge as reasonably possible. Thus, if one wishes to
introduce more assumptions (e.g., to apply Clark’s completion [14,33] to specific
predicates), (s)he just has to add the appropriate clauses. In the absence of such
information the program may have other meaning than those that are imposed by
some of the 2-valued or 3-valued semantics for normal logic programs. Moreover,
since it is not always possible to distinguish in standard or normal logic programs
among the various possibilities offered by general (or extended) logic programs,
such refinements sometimes cannot even be captured by the 2-valued or the 3-
valued semantics for standard/normal logic programs!

'3 See also a remark on this matter in [27, Pages 591-592].

4 Indeed, as shown in Example B.3 in Appendix B, our 4-valued fixpoint semantics of PU{—p <
q} assigns ¢ to g and f to p.

15 This is so since the condition of the rule that defines p does not hold, and so one cannot infer
anything meaningful about p.
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In the rest of this section we show that in certain cases it is possible to
restore from our 4-valued fixpoint formalism some other 2-valued or 3-valued
fixpoint formalisms, if so one wishes.

Proposition 3.7. Let P be a positive logic program, and let P’ be the positive
program obtained from P by replacing every implication connective by a material
implication. Denote by I/}; . the valuation that is obtained from v? by changing

the l-assignments to f-assignments (Le., for every atom p, if 7 (p) = L then
V}’ﬁ(p):f). Then:

1. P and P’ have the same classical models (and thus the same least Herbrand
model), and

2. 1/};  is the (unique) 2-valued minimal Herbrand model of P and P’.

Proof. See Appendix A. O

The process of restoring Fitting’s <j-minimal 3-valued Kripke/Kleene se-
mantics for normal logic programs [19] is somewhat more complicated than the
process of restoring the 2-valued semantics of positive logic programs, described
in Proposition 3.7 above. Note, however, that if P is a normal logic program, the
following properties hold:

1. For every atom p, v7 (p) € {t, L}.

Proof. For every i and p, val;(p) € {¢, L}, and since P is a normal program,
val;(=p)=_L. Thus, for every i, v (p)=val;(p) €{t, L}, and so v7 (p) € {t, L}
as well.

2. 17 <, UP, where U” is the <;-least fixpoint of Fitting’s operator for P.

Proof. By the fact that U is a model of P and v is the <j-least model of
Pp.16

It follows, therefore, that v can be viewed as an “approximation” of ¥7: if
v assigns t to some atomic formulae, then so is U7, and if v¥ assigns L to some
atom, then U7 assigns either L or f to this atom. Thus, in order to restore from
vP Fitting’s 3-valued fixpoint semantics for P, it is possible to apply Fitting’s
operator on v (rather than to start the iterations with a valuation that assigns
1 to every atom), and then to proceed until a fixpoint is reached. This fixpoint
coincides with Fitting 3-valued Kripke/Kleene semantics for P.

P

An alternative way of computing Fitting’s 3-valued semantics from our 4-
valued semantics is described in Appendix B.

'8 Note that according to our semantics, the set of models of P contains the set of models w.r.t.
Fitting’s semantics. Thus (as illustrated in Remark 3.6), although ¥7 is the <j;-least model
in Fitting’s semantics, it is not necessarily the <j-least one in our case.
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3.2. Semantics for extended logic programs

In this section we extend the fixpoint semantics for general logic programs,
considered in the previous section, to extended logic programs. So now, in addi-
tion to the explicit negation (=), the negation-as-failure operator (not) may also
appear in the clauses bodies.

One way of understanding not in the four-valued setting is the following: if
we don’t know anything about p, i.e. we cannot prove either p or —p, then we
cannot say anything about not p as well. Otherwise, if p has a designated value
in the intended semantics (i.e., p is provable), then not p does not hold, and if p
does not have a designated value (i.e., it is not provable), then not p holds. It
follows, then, that not t = f, not T = f, not f =¢, and not L = 1.17

This interpretation of not is a natural generalization to the four-valued case
of the way not is interpreted by the well-founded semantics [47]. We thus give
semantics to logic programs in which not may appear in the clause bodies by
using a transformation, which is similar to that of the well-founded semantics,
for reducing extended logic programs to general logic programs. Then we use
the machinery of the previous section for giving semantics to the general logic
programs that are obtained. Below we formalize this idea.

Definition 3.8. Let v be a four-valued valuation. The set S, of literals that is
associated with v is the smallest set that satisfies the following conditions: '8

if v(l)=t then [€S,, ifv(l)=fthenl€S,, ifv(l)=T then {/,I}CS,.

Obviously, one can define the converse transformation as well. A four-valued
valuation vg may be constructed from a set S of literals as follows: for every
atom p,

if peS and —p&S
if pgS and —pe S
ifpeS and —pe S
if pgS and —p&S

vs(p) =

o

171t is interesting to note that in this interpretation, not may be represented as a conjunction
of two other negation operators: not p = —-pA~p, where ~p is an abbreviation of p— f, i.e.,
~p=fif peD, and ~p=tif p¢D.

18 Such sets are sometimes called answer sets (for v). We shall not use this terminology here,
since it is usual to require that if an answer set contains a pair of complementary literals,
then it should contain every literal. Since our formalism does not reduce to triviality in the
presence of inconsistent information, this requirement should obviously not hold here.



16 O. Arieli / Paraconsistent declarative semantics for extended logic programs

Definition 3.9. Let P be an extended program and let S be a set of literals.
The reduction of P w.r.t. S is the general logic program P | S, obtained from P
as follows:

1. Each clause that has a condition of the form not [ for some [ € S, is deleted
from P.

2. Every occurrence of not [, where [ € S, is eliminated from the (bodies of the)
remaining clauses.'”

3. Every occurrence of not [ in the (bodies of the) remaining clauses is replaced
by the propositional constant u.?°

Now we are ready to define our fixpoint semantics for extended logic pro-
grams. Recall that 7 denotes the fixpoint semantics for a general logic program

P.

Definition 3.10. A valuation € V* is a plausible model of an extended logic
program P, if it coincides with the fixpoint semantics of the general logic program
obtained by reducing P w.r.t. the set that is associated with u. In other words,
i is a plausible model of P iff

u= yP4Su,

Remark 3.11. If the only negation operator that appears in P is -, then P is
a general logic program, and so its unique plausible model is v”. It follows, in
particular, that the notion of plausible models of extended logic programs is a
generalization of the definition of fixpoint semantics for general logic programs.

Proposition 3.12. A plausible model of P is indeed a model of P.

Proof. Let p = vP¥% be a plausible model of P. Since P LS, is a general logic
program, by Proposition 3.3 4 is a model of P |S,,. But by the semantics of not
and the definition of reduction it is clear that if M is a model of P | Sys then M
is also a model of P. One concludes, then, that u is a model of P. O

As it is shown in Example 3.14 below, an extended logic program may have
more than one plausible model, and so one may use different preference criteria
for choosing the best models among the plausible ones. In the case of general
logic programs we have chosen <j-minimization as the criterion for preferring
the “best” model among the fixpoint valuations. This was justified by the fact
that general logic programs may contain contradictory data, and so we want to

191f a clause body becomes empty by this transformation, we treat this body as if it consists of
the propositional constant t.
20 Note that for this [, necessarily [ ¢S and 1 ¢ S.
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minimize the redundant information as much as possible. In the present case we
rather use the opposite methodology: since the negation-as-failure operator is
associated with incomplete information, we are dealing here with a lack of data,
so this time we should try to restrict the effect of the negation-as-failure operator
only to those cases in which indeed there is not enough data available. It follows,
therefore, that now we should seek for a mazimal knowledge (among the plausible
models). 2!

Definition 3.13. u is an adequate model of P if it is a <g-maximal element
among the plausible models of P. 22

Example 3.14. Below we consider our semantics for some inconsistent and/or
incomplete logic programs.

1. P = {-p<not p}.
Intuitively, P represents a closed word assumption (CWA, [43]) regarding
p: in the absence of any evidence for p, assume that —p holds. P has two
plausible models py ={p: L} and po={p: f}. But po >y u1, and so uy is the
adequate model of P.

2. (Example 1.4, revisited) P = {p+not p, q + t}.
The adequate model of P here is {p: L, ¢:t}. This indeed seems to be the
only reasonable interpretation here (see the discussion in Example 1.4), and
it coincides with the well-founded model [47] (for standard logic programs) of
P. Two-valued semantics, such as Gelfond-Lifschitz stable model semantics
[26], do not provide any model for P.

3. (Example 1.3, revisited) P = {q < t, p < t, —p « not —g}.
The adequate model here is {p: T, ¢:t}. It reflects our expectation that since
—q does not follow from P, the knowledge about p is contradictory. Note that
according to the semantics given in [27,37], P does not have any model, since
it contains contradictory information.

We postpone to a later stage (Section 5) some further discussions on ade-
quate models and other formalisms for giving semantics to extended logic pro-
grams. First we complete the presentation of our formalism also for the prioritized
case.

2! Informally, we use here a “min/max strategy”: knowledge minimization on the contradictory
components of the program, and knowledge maximization on its incomplete components.

271e., p is a plausible model of P, and there is no other plausible model of P that is strictly
<k-bigger than u. Note also that by Proposition 3.12; u is indeed a model of P.
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4. Prioritized logic programs
4.1. Motivation

As Proposition 3.3 and Corollary 3.4 imply, the four-valued fixpoint seman-
tics considered in the previous section has several appealing properties. However,
there might be cases in which one would like to refine the inference mechanism
induced by this fixpoint. To see this, consider the following example.

Example 4.1 (Tweety dilemma). Consider the following well-known program:

fly(z) < bird(z) —reptile(z) < bird(z)
P = bird(z) < penguin(z) —fly(z) < penguin(z)
bird(Tweety) «+ t penguin(Tweety) « t

The fixpoint semantics of P is the following:
VP (bird(Tweety)) = t, v” (penguin(Tweety)) = t,
v (reptile(Tweety)) = f, v” (has_feathers(Tweety)) = L,
vP (fly(Tweety)) = T.

While the truth values that are assigned to bird(Tweety), penguin(Tweety),
reptile(Tweety) and has_feathers(Tweety) correspond to the intuitive expec-
tations in this case,?® one usually tends to conclude from P that Tweety cannot
fly. However, this conclusion is based on some further, implicit knowledge, that
1s not represented in the program. Such knowledge is, e.g., the fact that the rule
“birds can fly” has exceptions that should “override” the default rule. Another
kind of knowledge that is not encoded in this program is the fact that the infor-
mation that Tweety is a penguin is more specific than the statement that it is a
bird, therefore the former data should have a higher priority than the latter one,
in case of “collisions” between the two.

The above inaccurate conclusion about the flying ability of Tweety is there-
fore an outcome of the limited way that knowledge is represented here, rather than
a consequence of a shortcoming of the reasoning process. A general method to
improve knowledge representation is to provide a way to prefer a certain data over
the other. In example 4.1, for instance, such mechanism will allow us to indicate
that the clause that states that “penguins cannot fly” should get a precedence
over the one that states that “birds can fly”.

Several methodologies for making such preferences have been proposed in
the literature. In [31], for instance, rules with negative conclusions are viewed as

23 The assignment of | to has_feathers(Tweety) is justified by the fact that nothing is mentioned
in the program about the property “has_feathers”.
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representing exceptions of rules with the positive counterparts as their conclu-
sions. As such, the former rules are given higher priorities over the latter rules.
Thus, for instance, in the semantics of [31] for P={q < t, p < t, —p  not —q},
p is false (cf. Example 3.14, Item 3).

According to the formalism proposed by Pereira et al. in [38], preferences of
different rules are encoded within the language itself. According to this approach
the conflict regarding the flying ability of Tweety in Example 4.1 is resolved by
stating that birds can fly unless they are “abnormal birds”. Thus, in the program
of that example, £1y(z) < bird(z) should be replaced by the following two rules:

fly(z) + bird(z),not abnormal bird(x)
abnormal bird(z) < bird(z), ~fly(z)

In the same paper, Pereira et al. also propose to associate a different ’label’
to each program rule, and to insert this label as another condition to the body
of the rule. This enables an easy way to represent a hierarchy of rules in the
language itself. For instance, the fact that under the conditions specified in Body
one should apply a rule labeled by [; instead of a rule labeled by [o, is encoded
by the following special preference rule: —ly <— Body, ;.

The formalisms mentioned above, although being elegant ones, have their
own limitations. First, they rule out any representation of contradictions in the
reasoner’s belief. Such contradictions do occur in practical problems, and it may
be useful to use a methodology to trace them and to represent their effect. Second,
as already observed in [38], because of the inherent asymmetry in the represen-
tation of the hierarchy of exceptions, each time that exceptions to exceptions are
specified, some rules in the program should be changed. Third, the rule labeling
and the need to maintain the preferences and the exceptions with special addi-
tional rules, require a lot of overhead; in practical cases this might yield awkward
programs, in which it would be difficult to grasp the essence from the whole data.

Here we consider another way of making preferences among programs
clauses, which has a more quantitative nature. The idea is to attach, in a meta-
language, different priorities to different clauses. We do so by assigning to every
clause a ‘confidence factor’ that reflects its relative priority over the other clauses.
For this, we consider algebraic structures that generalize Belnap’s four-valued
structure. In particular, we extend the four-valued semantics to a more general
semantics that is based on arbitrarily many truth values. In the next section we
review the basic notions that are related to these structures, and in Section 4.3
we use them for giving semantics to prioritized (extended) logic programs.
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4.2. Bilattices and logical bilattices — An overview

Definition 4.2 [28,29]. A bilattice is a structure B = (B, <, <, ) such that B
is a nonempty set containing at least two elements, (B, <;) and (B, <) are com-
plete lattices, and — is a unary operation on B that has the following properties:
(i) if z <; y then —x >; -y, (ii) if z <g y then -z <} -y, (iii) -~z = =.

The original motivation of Ginsberg [29] for using bilattices was to provide
a uniform approach for a diversity of applications in artificial intelligence. In par-
ticular, he treated first order theories and their consequences, truth maintenance
systems, and formalisms for default reasoning. The algebraic structure of bilat-
tices has been further investigated by Fitting [21,24] and Avron [9]. In a series
of paper Fitting has also shown that bilattices are very useful tools for providing
semantics for logic programs. He proposed an extension of Smullyan’s tableaux-
style proof method to bilattice-valued programs, and showed that this method is
sound and complete with respect to a natural generalization of van-Emden and
Kowalski’s operator [20,22]. Fitting also introduced a multi-valued fixpoint op-
erator for providing bilattice-based stable models and well-founded semantics for
logic programs [23]. A well-founded semantics for logic programs that is based
on a specific bilattice (denote here by NINE, see Figure 2 below) is also consid-
ered in [16]. Bilattices have also been found useful for model-based diagnostics
[29], computational linguistics [36], reasoning with inconsistent knowledge-bases
[5,44], and processing of distributed knowledge [35].

As in the four-valued case, we shall continue to denote by A, V., — the meet,
join, and the involution operations w.r.t. <;, and by ®,® the meet and the
join operations w.r.t. <j. The <;-maximal (respectively, <;-minimal) element
is denoted by t (respectively, f), and the <j-maximal (respectively, <;-minimal)
element is denoted by T (respectively, L).

Definition 4.3 [5]. Let B=(B, <;, <k, ) be a bilattice.

a) A bifilter of B is a nonempty proper subset D C B, such that:
(i) zAyeD iff z€D and yeD, (ii) zQyeD iff €D and yeD.

b) A bifilter D is called prime, if it also satisfies the following conditions:
(i) zVyeD iff zeDor yeD, (i) zdyeD iff z€D or yeD.

Clearly, for every prime bifilter D we have that ¢, T € D, while f, L €D.

Definition 4.4 [5]. A logical bilattice is a pair (B, D), in which B is a bilattice
and D is a prime bifilter of B.

The basic semantical notions of the four-valued case can easily be extended
to the bilattice-valued case. For instance, given a logical bilattice (B, D), the no-



O. Arieli / Paraconsistent declarative semantics for extended logic programs 21

tions of valuations, models, etc. are the same as in the four-valued case. The def-
inition of the implication connective < also remains the same: for every z,y,€ B
the value of x <y is z if y €D, and it is ¢ otherwise. The only difference is that
instead of taking D = {¢, T} as the set of the designated values, we now allow
that any prime bifilter in B would be the set of the designated values.

The minimal logical bilattice is FOUR with D= {t, T}. Next we describe
a general way of constructing logical bilattices with arbitrarily many elements:

Definition 4.5 [29]. Let (L,<r) be a complete lattice. The structure L ® L =
(Lx L, <4, <k, —) is defined as follows:

o (z1,y1) >t (z2,y2) iff 1 > z9 and y; <p, yo,
o (z1,y1) >k (z2,y2) iff 21 >p 29 and y; >1, y2,
o —(z,y) = (y,z).

A pair (z,y) € L ® L may intuitively be understood so that = represents the
amount of belief for some assertion, and y is the amount of belief against it.

Definition 4.6. Let (z,y)€L ® L. Denote: [(z,y)]r =z and [(z,y)]Fr = y.

Example 4.7. Let TWO = ({0,1},0 < 1} be the classical (two-valued) lattice.
Then in the notations of Definition 4.5, Belnap’s bilattice FOUR is isomorphic
to TWO ® TWO by the following isomorphism: ¢ corresponds to (1,0), f corre-
sponds to (0,1), L corresponds to (0,0), and T corresponds to (1,1).

Proposition 4.8 [20,29]. For every complete lattice (L,<pr), the structure L® L
is a bilattice.

Proof. (Outlines) Given a lattice L with a meet operation M and a join operation
LI, the bilattice operators are defined as follows:

(1, y1)V (w2, y2) = (z1Uz2,91MNYy2),  (z1,y1) A2, ¥2) = (1 M22, Yy1UY2),
(z1,91)® (w2, y2) = (x1Uz2, y1Uy2),  (21,y1)® (@2, y2) = (z1MNw2, y1 My2),
—(z,y)=(y, 7).

It is easy to verify that for every two elements x,y,€ Lx L, x VV y (respectively,
x A y) is the least upper bound (respectively, the greatest lower bound) of x
and y w.r.t. the <;-partial order (Definition 4.5). Similarly, z & y (respectively,
x ®y) is the least upper bound (respectively, the greatest lower bound) of z and
y w.r.t. the <g-partial order (Definition 4.5), and — satisfies all the properties of
a negation operator (Definition 4.2). O

Proposition 4.9 [5]. Let (L,<pr) be a complete lattice with a maximal element,
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m. Then the smallest?* (prime) bifilter in LOL is of the form {(m,r) | = € L}.
We shall denote this bifilter by Dy .

Corollary 4.10. Let (L,<p) be a complete bounded lattice. Then
a) (LOL,Drer) is a logical bilattice.

b) Every complete bounded lattice induces a logical bilattice.

Proof. Part (a) follows from Propositions 4.8 and 4.9. Part (b) follows from
part (a). O

4.3. Bilattice-based semantics for prioritized logic programs

For giving semantics to prioritized logic programs, we have found it useful
to concentrate on bilattices of the form {0,1,...,m}®{0,1,...,m}. We shall
denote these bilattices by B™.

As in the non-prioritized case, we start by considering a semantics for prior-
itized programs without negation-as-failure, and then consider the general case.

Definition 4.11. An m-prioritized general logic program is a set of quantitative
general clauses, i.e., a set of formulae of the form [ & Body, where [ is a literal,
Body is a conjunction of literals, and n is a number between 1 and m.

The quantitative values of the clauses (the n’s) may be intuitively under-
stood as representing “confidence factors” or “threshold values” of (the belief in)
the corresponding clauses. The idea is that a head of a quantitative clause is
evaluated only if there is a “sufficient” evidence in favor of the clause’s body, and
the evidence for the complement of the clause head does not exceed the clause’s
threshold value. Next we formalize this intuition:

Definition 4.12. Given a logical bilattice (B™, D) and an m-prioritized general
logic program P, consider for every literal [ and 1>1 the following functions:

vl (1) =vall (1) = L.

threshold? (1) = lub<, {v] | (Body) | | <~ Body € P}. %°

belief” (1) = lub<, {vF | (Body) | | < Body € P, [threshold? (I)]7 < n}. 26
valP (1) = lub<, (val? (1), belief? (1)).

24 With respect to set inclusion.
25 If there is no clause of the form ! & Body in P, define threshold?” (1) = L.

26 If no clause of the form [ & Body appears in P, or [threshold? (I)]7 > max{n | | & Bodyc P},
define belief” (1) = L.
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vl () = (vall ()], valf (D))

For a limit ordinal A we define:
threshold} (1) = lub<, {threshold” (1) | a < A}.
belief] (1) = lub<, {belief? (I) | a<\}.
val{ (1) = lub<, {valZ (1) | a< A}
v () = (valf ()], vall D))

Again, for every propositional constant x that corresponds to an element € B™
we define, for every i >0, vF (x) = vall (x) = z.

In each iteration we therefore compute, for each literal, its ‘threshold value’,
which is the least upper bound (w.r.t. <g) of the values attached to the relevant
clause bodies at the previous iteration.?” Then we compute the amount of the
‘belief’ in a certain literal [ during the current iteration. Again, the required value
is obtained by considering the relevant clause bodies, but this time we take into
account only those clauses with a ‘sufficiently high’ confidence factor, i.e., those
clauses with [ as their head, and with a confidence value that is not smaller than
the threshold value of I’s complement. Now, vaIZ-D(-) is a <g-monotonic function
that is based on these belief values, and finally — as in the four-valued case —
we use valf(-) for constructing the <;-monotonic sequence of valuations v that
yields, eventually, the fixpoint semantics for P.

Remark 4.13. As in the four-valued case, for every i and [, vF (1) = —vF (I).

As the next proposition shows, the semantics for non-prioritized programs
(Definition 3.1) is a particular case of the semantics for prioritized programs
(Definition 4.12).

Proposition 4.14. Let P be a general logic program, and let P’ be the 1-
prioritized logic program obtained from P by assigning the quantitative factor
n=1 to every general clause in P. Then, for every i, v/ (defined in 3.1) is the
same as v} (defined in 4.12).

Proof. See Appendix A. O

As in the four-valued case, the partial order <z on B can be used for defining
a partial order on the set V5 of the B-valued valuations: a valuation v; € V5B is

7 This value may be intuitively understood as an ‘a priori’ belief in the literal under considera-
tion, since the confidence factors of the clauses are not taken into account in the calculation
of this value.
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k-smaller than another valuation v, € VB (notation: vy <y, va) if v1(p) <k, v2(p)
for every atom p. The pair VB = (VB, <;) is clearly a lattice. Moreover,

Proposition 4.15. Let P be an m-prioritized general logic program, and let
B=1{0,1,...,m} ®{0,1...,m}. The sequence v}, v, v}, ... is <;-monotonic
in V5.

Proof. By Definition 4.12, for every o> and every literal I, val’, (1) >}, valg(l).
Thus v2 (1) >} I/g(l), and so vF >}, l/gf. O

Again, by Knaster-Tarski theorem [45], it follows that {v]} has a <j-least
fixpoint. We denote it by v/7.

The following result is an immediate consequence of Proposition 4.14.

Proposition 4.16. Let P be a general logic program, and let P’ be the 1-
prioritized program obtained from P by setting n = 1 as the quantitative factor
of every general clause in P. Then v” (the <j-least fixpoint of the v//-sequence,
defined in 3.1) is the same as P (the <j-least fixpoint of the Vf’—sequence,
defined in 4.12).

We now generalize our formalism to m-prioritized extended logic programs.
We do so in a way which is completely analogous to the way we generalized the
fixpoint semantics for non-prioritized general logic programs to non-prioritized
extended logic programs. l.e., we use a transformation like that of the well-
founded semantics to eliminate the negation-as-failure operators from the clause
bodies. What remains are m-prioritized general logic programs, to which we give
semantics in the way described above. The following definitions formalize this
process.

Definition 4.17. An m-prioritized extended logic program is a set of quantitative
extended clauses, i.e.: a set of formulae of the form [ &~ Body, where [ is a literal,
Body is a conjunction of extended literals, and n is a number between 1 and m.

Definition 4.18. Let P be an m-prioritized extended logic program.

a) A valuation u€V* is a plausible model of P, if it coincides with the fixpoint
semantics of the m-prioritized general logic program, obtained by reducing P
w.r.t. the set that is associated with p. Ie., yu = P+,

b) An adequate model of P is a <p-maximal plausible model of P.

By Proposition 4.14 and Definition 4.18 we have the following result:
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Proposition 4.19. Let P be an extended logic program, and let P’ be the 1-
prioritized extended logic program obtained from P by assigning the quantitative
factor n=1 to every extended clause in P. Then:

a) u is a plausible model of P (according to Definition 3.10) iff it is a plausible
model of P’ (according to Definition 4.18).

b) u is an adequate model of P iff it is an adequate model of P’.

4.4. Tweety dilemma, revisited

Consider again the logic program for Tweety dilemma, given in Example
4.1. The corresponding 1-prioritized program is the following:

fly(x) L bird(z) —reptile(z) L bird(z)
P1 =< bird(z) & penguin(z)  —fly(z) L penguin(z)
bird(Tweety) Lt penguin(Tweety) Lt

Since P; is a “flat” program (each clause is assigned the same priority), then by
Proposition 4.16 its fixpoint semantics coincides with that of the non-prioritized
case. In particular, we still have that v (f1y(Tweety)) = T. However, now it is
possible to give different priorities to different clauses. As we have noted during
the previous discussion on this example, the clause £1y(z) & bird(z) describes
only a default property of birds, while the other clauses of the program describe
rules that do not have exceptions. We therefore attach to £ly(z) L bird(z) a
lower priority (confidence factor) than the other assertions. The logic program
that is obtained is the following:

fly(x) & bird(z) —reptile(z) & bird(z)
Py =« bird(z) & penguin(z)  —fly(z) Z penguin(z)
bird(Tweety) &t penguin(Tweety) &t

The corresponding bilattice, NINE = {0,1,2} ® {0, 1,2} is displayed in Figure 2
(see also [5,6,44]). We abbreviate its elements by the following notations:
J-:(an) df:(oal) dt:(lvo) f:(OaQ) t:(230)
dT=(1,1) of=(1,2) ot=(2,1) T=(2,2)
Note that NINE has two prime bifilters: Dy = {z | x >} t} and Dy =
{z | © > dt}. Consequently, two corresponding logical bilattices may be con-
sidered: NZINE; = (NINE,D;) and NINE 4 = (NINE, Dy;). As Dy C Dy, the

former logical bilattice may be used for a more skeptical reasoning process, while
the latter one provides a more liberal approach for a query evaluation (we shall
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demonstrate this distinction in what follows).
Table 1 presents the process of constructing v72.
Table 1
iterative construction of »*2
function bird —bird penguin —penguin fly —-fly reptile —reptile
threshold t 1 t 1 1 1 1 1
beliefy t L t L 1 L L L
valy t 1 t 1 1 1 1 1
" t f t f 1 1 1 1
thresholds t 1 t 1 t t 4 t
beliefs t 1 t 1 1 t 1 t
valy t 1 t 1 1 t 1 t
Vs t f t f f t f t

It is easy to see that for every i > 2, VZP_EI :VZPQ, thus the <j-least fixpoint of
Ps is the following:
v"2 (bird(Tweety)) = t, v"? (penguin(Tweety)) = t,
vP2(reptile(Tweety)) = f, v"2(has_feathers(Tweety)) = L,
vP2(f1y(Tweety)) = f.

So the intuitive conclusion regarding the flying ability of Tweety is obtained, and
the other literal conclusions remain as in the non-prioritized case, as expected.

It is interesting to note that our approach supports a very flexible process
of belief revision. To see this, suppose that another datum arrives, and we are
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informed that Tweety might fly after all. Suppose further that our resource is
not so sure about this information, or that this resource is not a reliable one.
There are two options to express this uncertainty in our program: one way is
to attach to the new information a low priority. Alternatively, we can put an
attenuation factor in the clause body. The impact of the former option is that
in case of conflicts we prefer the complementary information and ignore the new
data altogether, while the effect of the latter option is that we always consider the
new data, but give it a lower weight when we draw our conclusions. According
to the second option, the modified program may be the following: 2%

P3 = Py U{ fly(Tweety) & dt }

Table 2 describes the iterative construction of v73.

Table 2
iterative construction of v”?
function bird —bird penguin —penguin fly —fly reptile —reptile
threshold, t L t L dt L L L
belief; t € t L dt 1 1 1
valy t 4 t L dt L L L
V1 t f t f dt df L L
thresholds t 4 t L t t L t
beliefs t 4 t L dt t L t
valz t 4 t L dt t L t
vy t f t f of ot f t

Again, after two iterations we reach a fixpoint, in which v (f1y(Tweety)) =
of . The interpretation of this result depends on the logical bilattice under con-
sideration (i.e., the choice of the prime bifilter in NINE):

e In NINE,; the fixpoint values of £1y(Tweety) and of ~f1y(Tweety) are both
designated. This means that the new datum, although being somewhat un-
reliable, causes an inconsistent belief regarding the flying ability of Tweety.
Nevertheless, the fact that £1y(Tweety) is assigned of rather than T reflects
the fact that P3 contains more evidence in favour of —f1y(Tweety) rather than
in favour of fly(Tweety).

e In NZNE; the fixpoint value of ~£1y(Tweety) is designated, while the fixpoint
value of fly(Tweety) is not. This means that despite the new datum we
actually still believe that Tweety cannot fly. However, because of the new
information, we are less certain than before (thus f1ly(Tweety) is assigned of
rather than f).

28 Where dt is a propositional constant that corresponds to the truth value dt in NINE (intuitively
understood as “true by default”).
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5. Some concluding remarks

We conclude with a summary of the main properties of the formalisms con-
sidered here, and some further remarks regarding related semantics.

Reasoning with incomplete and inconsistent data

One of the main drawbacks of some of the fixpoint semantics for extended
logic program (like those of [27] and [37]) is that they are reduced to triviality
in the presence of contradictions. As such, these formalisms inherit one of the
well-known shortcomings of classical logic. We do believe that since inconsistent
knowledge can and may be represented by extended logic programs, a plausible
semantics for such programs should be able to handle inconsistent situations in
a non-trivial way. That is, one should be able to draw meaningful conclusions
(and reject others) despite the inconsistency. The fixpoint semantics considered
here has such capabilities: it pinpoints the inconsistent and the incomplete parts
of the data, and regards the rest of the information as classically consistent.

Consider, for instance, the following program, which is an extended variant
of the program considered in Example 1.3 (see also item 3 of Example 3.14):

Pt g<4not ¢ —p<—not —rq
T ) ret ro <—not —ry —T34=T1,T9

This program provides a complete information regarding the truth or the falsity
of rj, i=1,2,3. Moreover, the information regarding these atoms is not affected
by either p, g, or their negations. The fact that the data regarding ¢ is incomplete
and the data regarding p is inconsistent should be localized (i.e., restricted only
to those literals whose definitions depend on p or ¢), and it should not affect the
values of the r;’s. Thus, the inconsistent data in P should not spoil the whole
piece of information that is represented by this program. The fixpoint semantics
that was considered here follows these guidelines; the unique plausible model for
P (and so its adequate model) is the following:

vPo= {p:T, q:L, ri:t, roit, r3:f ).

It follows that the complete information in P (the one that concerns with r;,
i=1,2,3) is preserved. In addition, the reasoner may realize that the data about
p is contradictory, and the data about ¢ is incomplete.

Relating negative data to its positive counterpart

Another major difference between the semantics introduced here and some
other semantics for extended logic programs (e.g, [25,27,31,42]) concerns with the
way a negative data is related to its positive counterpart. While the formalisms
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of [25,27,31,42] treat p and —p as two different atomic formulae, we preserve the
relation between an atomic formula and its negated atom. To see the importance
of this, consider the following program (also considered in [10, Example 3.3.6]
and [37, Example 1]):

P ={pé<mnotq q<+<notp —p«t}

According to the approaches that treat —p as (a strange way of writing) an atomic
formula, the well-founded semantics would assign here ¢ to —p, L to p, and L
to ¢q. So even though P is classically consistent, the distinction between p and
—p causes a counter-intuitive result here. In contrast, our approach yields a se-
mantics that seems to reflect the intuitive expectation in this case: the adequate
model of P (which is also the only plausible model of P is this case) assigns f to
p and ¢ to q.

For another example, consider the following logic program [37, Example 6]:
P = {r<mnotq q<mnotp p<mnotp gt}

The unique plausible model of P (and so its adequate model) is {p: L, q: f, r:t}
(which is the same as the one that is obtained in [37]). By considering —q as a
new atom, this program would have a single extended stable model, in which —¢
is true and all the other atomic formulae (p, q,r) are unknown. This seems to be
a counter-intuitive result in this case, since one expects here that r would follow

from P.

Paraconsistent and coherent approaches to inconsistency

The formalisms that we have described here for giving semantics to extended
logic programs are paraconsistent in nature. l.e., they accept contradictions
within the theory and try to cope with them. Another common approach to
handle contradictions (sometimes called coherent or conservative [13,48]) first
detects and eliminates the inconsistent part of the theory. Then, when consistency
is restored, some classical formalism is used for drawing plausible conclusions
from the “recovered” data. In [31], for instance, clauses with negative literals
in their heads are getting higher priorities than clauses with positive literals
in their head. The latter ones are ignored in case of contradictions with their
negated counterparts. This approach assures a contradictions-free semantics [31,
Theorem 2]. In [38] contradictions are excluded already in the level of knowledge
representation, since clauses for default rules have the form ! < Body,not I.
Thus, in order to derive I, one has to verify first that its complement, I, is not
provable. Other coherent formalisms for managing inconsistent information are
considered, e.g., in [2-4,7,13,18].
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Belief revision

The need to alter the set of conclusions according to an input that is fre-
quently modified is not an unusual phenomenon in common-sense reasoning in
general and logic programming in particular. Thus, the plausibility of different
formalisms in these areas is often determined by the way they handle revised in-
formation. To see that consider, e.g., the following example (anonymous author):

“A man fell from a plane. Fortunately, he was wearing a parachute. Unfor-
tunately, the parachute didn’t open. Fortunately, he fell from the plane at a
low altitude over a large haystack. Unfortunately, there was a pitchfork in the
haystack. Fortunately, he missed the pitchfork. Unfortunately, he missed the
haystack ...”.

After each sentence in this example there is a tendency to jump back and forth
between opposite conclusions regarding the ultimate fate of the skydriver. In
Tweety dilemma, considered in Section 4.4, we faced the same phenomenon when
we had to change our mind several times regarding Tweety’s ability to fly in light
of the new data that had arrived. Indeed, in the notations used in that section,

e fly(Tweety) follows from P, \ {penguin(Tweety) & t},
e fly(Tweety) does not follow from Ps,

e fly(Tweety) does not follow from Py U {f1y(Tweety) & dt} when the under-
lying semantics is induced by NZNE; (i.e., by a skeptical reasoning), but it

does follow from Py U {f1y(Tweety) & dt} when the underlying semantics is
induced by NZNE,; (i.e., by a more liberal reasoning).

As demonstrated in Section 4.4, the flexibility of the process for belief re-
vision in our case is reflected both on the semantical level (different choices of
logical bilattices yield different conclusions), and on the syntactical level (by en-
hancing the expressive power of the logic programs under consideration, thus
allowing various ways to represent knowledge, either in the program language
itself, or in a meta-language that reflects the reasoner’s preferences).
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Appendix
A. Proofs

Proposition 3.3. Let P be a general logic program. Then v is the k-minimal
four-valued model of P. Moreover, it is at least as consistent as any other model
of P, and the consequence relation induced by it is paraconsistent.

Proof. This proposition contains several claims. We divide the proof accord-
ingly.

1. v is a model of P:
Suppose not. Then there is a clause [ < Body in P s.t. v¥(Body) €D while
vP(l) ¢ D. In particular, there is an « s.t. for every 3> a, UE(Body) €D
while l/gf(l) ¢ D. But since v2 (Body) € D, for every > a, valg(l) = t,%% which
implies that l/gf(l) >k t, and so I/%D(l) € D. This contradicts the assumption
that v} (1) ¢D.

2. VP induces a paraconsistent consequence relation:
Consider, e.g., P = {p+t, -p<t}. Here v”(p) =T while v (q) = L for
every atom g#p. Thus P [£, g for every atom ¢#p, which means that trivial
reasoning from an inconsistent set of premises is not allowed.

3. v¥ is <j-smaller than any other model of P:
For a valuation v denote Sat(rv)={l | v(I) € D}. Let a be the fixpoint ordinal
of V7 (i.e., the minimal € s.t. V%D, = 1/%J for every ' > 3 >¢€). We show that
for every model M of P, Sat(v}) C Sat(M). This immediately implies that
vP <, M, since in this case, for every atom p, we have that

o If vP(p)=T, then since « is the fixpoint ordinal of v”, ¥ (p)=T. Hence
p,—~p € Sat(v). By our assumption this implies that p, —p € Sat(M), and
so M(p)=T as well.

o If v7(p) =t, then again by the definition of a, p € Sat(v)), and so p €
Sat(M). Thus M (p)€{t, T}, which implies that M (p) >, v” (p).

o If vP(p) = f, then v7(p) = f and since v2(—p) = -7 (p), we have that
—p€Sat(vF). By our assumption, then, ~p € Sat(M), thus M (—p) € {t, T}.
It follows that M (p)=-M(-p)€{f, T} and so M(p)>,v" (p).

e If v7(p)= L then clearly M(p)>;v7 (p).

It remains to show, therefore, that for every model M of P, Sat(v]) C Sat(M).
We show this by a transfinite induction on «.

29 for successor ordinals this follows from the definition of vaIZ;(l), and for limit ordinals this
follows from the fact that for every ', valy (I') € {t, L}.
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The case a =0 is obvious, since Sat(v]) = {t,c}.? For a successor ordinal

a >0, let I € Sat(v?). Then vl (l) € {t, T}, and so val? (l) @ —wal%(l) €
{t, T}. This means that either val?(l) € {t, T}, or —wal’(l) € {t, T} (i.e.,
val? (1) € {f, T}). But since for every literal I, val’ (I') € {t, L}, this means
that in our case necessarily val’ (1) =t. Hence, there is a general clause of
the form [ < Body, for which v2_, (Body) € {t, T}. Thus, for every I; € Body,
l; €Sat(v? ;). By the induction hypothesis, for every I; € Body, I; € Sat(M),
and so M (Body) € {t, T} as well. But M is a model of P, and so necessarily
M(l)e{t, T}, i.e. l€Sat(M).

If o is a limit ordinal and I € Sat(¢)), then by the same arguments as above,
val? () =t. This implies that there exists an ordinal 8 < a, for which valg(l) =
t as well. Thus € Sat(u;jp), and by the induction hypothesis we are done.

4. vP is at least as consistent as any other model of P:
Denote again by a the fixpoint ordinal of v7, and let Sat(v)={l | v(I) € D}.
Suppose that v7(p) = T for some atom p. Then p,—p € Sat(v”), and so
p, ~p€Sat(vF). By the proof of the previous item, for every model M of P,
Sat(vr) CSat(M). Thus p, ~p€Sat(M), and so M(p)=T as well.
|

Proposition 3.7. Let P be a positive logic program, and let P’ be the positive
program obtained from P by replacing every implication connective by a material
implication. Denote by I/}; . the valuation that is obtained from v? by changing
the 1-assignments to f-assignments. Then:

1. P and P’ have the same classical models (and thus the same least Herbrand
model), and

2. U};l is the (unique) 2-valued minimal Herbrand model of P and P’.

Proof. The first claim simply follows from the fact that the implication connec-
tive of Definition 2.4 is the same as the material implication on {¢, f}. Regarding
the other part, note first that since only atomic formulae appear in the clauses
heads, for every atom p and for every i we have that val” (—p)=_L, and therefore
vF (p) =vall (p) € {t, L}. Tt follows that v” assigns only values in {t, L} to the
atomic formulae (and so, for every literal I, v7(I)€{t, f, L}). Now, let p < Body
be a clause in P. Since P is positive, then v”(Body) =t iff all the atoms in

Body are assigned t by v”, iff all the atoms in Body are assigned ¢ by I/};J_, iff
V};J_(Body) =t. Similarly, v (Body) € {f, L} iff there is an atomic formula in
Body that is assigned either L or f by v7, iff there is an atomic formula in Body

30 Recall that t and c are the propositional constants that are associated with ¢ and T, respec-
tively (and so they are elements of Sat(v) for every v).
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that is assigned f by V}’L, iff V};L(BOdy) = f. It follows that for every clause C
in P, v7(C) €D iff I/f/J_(C) €D. Thus I/};J_ is a 2-valued model of P.
It remains to show that U};l is <;-minimal among the classical models of

P. Indeed, this follows from the fact that ©” is <j-smaller than any other model
of P (Proposition 3.3), and so the set of atomic formulae that are assigned ¢ by
v? does not properly contain any corresponding set of a classical model of P.3!
Thus, the set of atomic formulae that are assigned t by I/}; | does not properly

contain any corresponding set of a classical model of P either, and so 1/}; | isa <4-
minimal model among the classical models of P. Since P has the same classical
models as those of P’ (item 1 of this proposition), we conclude that 1/}; | is also a
<;-minimal model among the classical models of P’. But being positive, P’ has
only one <;-minimal classical model (which is its least Herbrand model), and so
U};l coincides with this model. O

Proposition 4.14. Let P be a general logic program, and let P’ be the 1-
prioritized logic program obtained from P by assigning the quantitative factor
n=1 to every general clause in P. Then, for every 4, v/ (defined in 3.1) is the
same as v/ (defined in 4.12).

Proof. First, as noted in Example 4.7, the bilattice B={0,1}®{0, 1} that gives
semantics to the 1-prioritized program P’ is isomorphic to the bilattice FOUR
used in Section 2 to give semantics to the “flat” (non-prioritized) program P. In
what follows we shall use both representations to denote the same elements.

By the definition of the <;-operations and the <j-operations in the bilattice
{0,1}®{0, 1}, we have that 32

vl (1) = valf (1) @ ~valf () = ([val? ()], valf (D]r) @ (lval? ()], [valf (D)]7)
= (maz([valf (1)]r, [vall ()]F), maz([valf (1)]r, valf (I)]7)).
But since valf(-) e{t, L}={(1,0),(0,0)}, we have that [vaI;P( J)]r = 0, thus
vl (1) = (valf D]z, [valf (D)]7).-

Since vJ' (1) = (val?' (D)7, [val?’ (I)]7), it remains to show that for every i and I,
val? (I)]7 = [val?’ (I)]. We shall consider here the case in which i is a successor
ordinal, leaving the other case to the reader.

Indeed, recall that all the clauses in P’ are assigned the maximal confidence
factor (which is 1 in our case), and so for every i and I, [threshold! ()] < 1. It
follows, then, that

3! Indeed, if M is a classical model of P and p is an atom s.t. v”(p) =t while M(p) #¢, then
M(p)=f, and so v* £, M.
32 See the proof of Proposition 4.8 for the definitions of the relevant operations.
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vall’ (1) = lub<, (val’ | (1), belief?" (1))
= lub<, (val?' | (1), lub<, {vF | (Body,) | | ¢ Body; € P'}).
Using again the fact that v (1) = (val? ()]r, [val?' (I)]7), we have that
val?” (1)) = max((vall”, (1)}r, max{[v}",(Body;)lr | I+ Body; € P'})
= max([v?, (1)]r, max{[v}",(Body;)]r | | + Body; € P'}).
Since in our case B={0,1}®{0, 1}, it follows that
valP’ (1)}r =1 if 3(1 & Body) € P' and v, (Body) € Dyo1ye(0.1}»
[val?' (I)]7 =0 otherwise.
On the other hand, by the definition of val?,
[val? (1)]7 =1 if val? (1) =t, if 3(I + Body) € P and v’ |(Body) € Drour,
[val” (1)]7 =0 otherwise.

It follows, therefore, that [val? (1)]p = [val?' (I)]7, as required. O

B. Embedding in Fitting’s semantics

In what follows we consider some cases in which our 4-valued semantics may
be transformed into Fitting’s 3-valued semantics.

Definition B.1. Given a normal logic program P, consider the following general
logic program:
P*=P U {-p«1 | p+ Body€P, vP(p)= 1, | € L(Body)} U
{-p+t|pefeP, vP(p) =1}

Intuitively, P* is obtained from P by adding rules that explicitly formalize
what is implicitly assumed by Fitting’s semantics. For instance, in Fitting’s
semantics the meaning of p < f is that p is false. Here, since negations may also
appear in the clause heads, we must also explicitly declare that we mean that —p
should hold, and so we add the statement —p <+ t.

Proposition B.2. Let P be a normal logic program in which each atomic for-
mula appears at most once in a clause head. Let also ¥7 be Fitting fixpoint
semantics for P. Then U7 =17",

Example B.3.

1. Let P = {p < q}. According to Fitting’s semantics this is an abbreviation
of P = {p + q, q + £} (an atom that occurs in P but does not appear
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in any clause head in P is considered as false, see [19, Section 5]). Fitting’s
least fixpoint semantics for P’ assigns f to p and ¢. Now, by Definition B.1,
(P ={p+ q, q« £, =p < —q, =q < t}. It is easy to verify that our
four-valued semantics for (P’)* also assigns f to both p and q.

2. Let P = {p + p}. Then P* = {p < p, -p < —p}. This is a natural
extension of P to an extended logic program that states that both p and its
negation depend only on themselves. Clearly, then, U7 = 7" = {p: 1}.

3. Consider again the logic program P of Remark 3.6. By Definition B.1 we have
that P* = {p < —q, —p < q, q < t}. By Proposition B.2, our four-valued
semantics for P* is the same as that of Fitting 3-valued fixpoint operator for
‘P. Both of them assign ¢ to ¢ and f to p.

Remark B.J. The requirement in Proposition B.2 that every atomic formula
should not appear more than once in a clause head is indeed necessary. To
see that consider, e.g., the following program:

P={q<p, q« —-r, r+t}

Then P* =P U {-q<+ —p, =g+ r}, and while U7 (q) =P (p)vIP(-r)= L, we
have that 7" (¢)=f.

Proof of Proposition B.2. By Definition B.1, P* = P U P, where
P.={-p<+1|p< Body € P, vP(p) =L, | € L(Body)} U
{-p+t|pefeP, vP(p) =1}

e Suppose first that for some atom ¢, U”(q) =¢. We show that in this case
v”(q) =t as well. Assuming this, then by the definition of 7., ¢ cannot appear
in the head of any clause of P, and so —¢q cannot appear in the head of any clause
of P*. Tt follows, then, that for every o, valZ (=¢)=_L, and so 7" (¢)=val? (¢) €
{t, L}. Thus v" (q) € {t,L}. On the other hand, if P; C Py then 72 >, 171,
thus v%" (q) > v7 (¢) =t. It follows, then, that v% " (¢)=t, and so v”" (q) =¥% (q)
in this case.

To complete the proof for the first case it remains therefore to show that for
every atom ¢, if U7 (q) =t then v”(q) =t as well. Let {¥}, ¥ ...} be the <;-
monotonic iterative sequence of valuations used for constructing U”. Since —q
does not appear in any clause head in P, we have that for every « valz(—'q) =1,
and so v7(p) =val” (¢) =t. Thus, for showing that if ¥%(¢g) =t then v”(q) =t,
it is sufficient to show that for every a and atom ¢ s.t. P (q) =t, val?(q) =1t
as well. We show this by a transfinite induction on a. For a =0 we have that
TP (q) =val} (¢) = L, so the condition is vacuously met. For a=1, UT(q) =t iff
g+t EPiffvall (g) =t. For a successor ordinal a > 1, UP (q) =t iff there is a clause
of the form g< Body in P and ¥% | (Body)=t, iff VI; € L(Body) V¥ ,(1;)=t, iff
(induction hypothesis) Vi; € L(Body) val’,_|(I;)=t. Thus val” | (Body)=t, which
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implies that v” | (Body) € D, and so val” (¢) =t. Finally, if « is a limit ordinal,
TP (q) :maxjk{\llg(q) | B<a}, where < is the three-valued analogue of <j.3?
Thus, the assumption that U7 (¢) =¢ implies that \Ilg(q) =t for some S<a. By
the induction hypothesis, then, valg(q) =¢. Thus val” (q) :maxgk{valg(l) | B<
a} €{t, T}. But we have shown that val” (¢) € {t, L}, thus val” (¢) =t.

e Suppose now that 7 (q)=f. Let {¥],UT ...} be the <;-monotonic iterative
sequence of valuations used for constructing 7. We show that for every o and
literal I s.t. WP (1) = f, val?" (I) =t. Assuming this, we are able to show that
17" (q) = TP (q) in this case as well, since the fact that U7 (g) = f implies that
there exists some € s.t. for every 8> ¢ \I/Z;(q) = f, and so by our assumption,
valg*(—rq) =t. Note also that by Proposition 3.3, v” is the <;-least model of P,
thus, since U” is a model of P, and since f =¥ (q) >, " (¢) €{t, L}, necessarily
vP(q) = L. Thus, for every a, val” (q)= L. Since q does not appear in the head
of clauses in P, this means that for every a, valz* (q) = L as well. Tt follows,
then, that for every S>¢€ Vg?*(q) :valg*(q) @ —rvalg*(—rq) =1 ®—t=f. One thus
concludes that v (q) = f=0%(q).

For this case of the proof it remains, therefore, to show that for every a and
a literal I s.t. WP (1) = £, val?" (I) =t. We show it by a transfinite induction on
a. For a =0 the condition is vacuously met, since ¥} (I) = L for every I. For
a=1, the fact that W] (I) = f entails that /< f appears in P. Since P is a normal
program, [ must be an atom in this case. Moreover, by our assumption on P,
this is the only clause which contains I as its head, and so v¥ (I)=_L. Thus [+t
appears in P, and so valf*(Z) =t. Suppose now that for some successor ordinal
a>1, UP(l) = f. By the construction of the \Il;?—s, and by our assumption on
P, it follows that for the only clause of the form [ < Body that appears in P,
UP_(Body) = f. This means that there is some I’ € L(Body) s.t. ¥%_ (') = f.
By induction hypothesis, then, val?" (I") = t. Now, ¥P(l) >, ¥P(I) = f thus
UP(1)=f. On the other-hand, using again the fact that 7 is the <;-least model
of P and that U” is a model of P, P (1) >, P (1) €{t, L}. Hence v”(I)=_L. This
means that [ <1 appears in 2. But val’," | (I)=t, and so v/7", (I") is designated.
Thus, valg* (I)=t, as required. The proof for limit ordinals is the same as in the
previous item.

e Finally, suppose that 7 (q) = L. Again, let {¥}, ¥T ...} be the <;-monotonic
iterative sequence of valuations used for constructing ¥”. This time we show that
for every o and literal [ s.t. WP (I)= L we have that val”? ()= L as well. This
implies that v”"(q) = ¥¥(q) also in this case, since the fact that ¥7(q) = L
implies that for every a, ¥7(¢) = L, and so by our assumption, for every a we
have that val? (—¢) = L. Note also that since L = ¥"(q) > ¥ (q), necessarily
vP(q) = L, and so val”(q) = L for every a. Since ¢ does not appear in the

331e., 11 = vy iff for every atom p, vi(p) =k v2(p), where L < t and L < f.
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head of clauses in P, this means that for every a, val} (¢) = L as well. Thus
VP (q)=vall (¢)®—val} (-q)=L@—-1L=_1. Tt follows that 7" (q)= L =07 (q).

It remains to show that for every a and a literal I s.t. U2 (I)= L, we have
that also valg*(i) = 1. Again, we show it by a transfinite induction on «. For
a = 0 this is obviously true, since by their definitions ¥} and val}  are both
identically 1. For a=1, U7 (l)= L iff U7 (p) = L where p is the atomic part of I,
iff either p does not appear in the head of any clause of P, or p+ Body € P and
L(Body) # 0. In the first case neither [ nor I appear in the head of any clause
of P*, and in the second case if a clause of the form [ < Body appears in P*,
then £(Body)#0. In both cases, therefore, val]~ (I)=_L. For a successor ordinal
a>1, UP(l) = L means again that U7 (p) = L, where p is the atomic part of
[. This can happen if either p does not appear in the head of any clause of P
(which again implies that val’” (1) = L, as in the basis of the induction), or else
— by our assumption on P — there is a single clause in P of the form p < Body
and UP_,(Body) = 1. This means that VI' € L(Body) ¥*_,(I') € {t, L} (and
3l € L(Body) s.t. U7 (1)=1). By what we have shown in the first case of this
proof (in case that ¥% (') =t) and by the induction hypothesis (in case that
TP (1"=1),val”" (") = L for every I' € L(Body). Thus, v2",(I")=val?" (') €

a—1
{L,t}. In other words, v2" (") €{L, f} so vZ",(I') is not designated. Since the
only clauses in which —p may appear as their head are of the form —p < I, it
follows that vals* (=p)=_. Since p do not appear as a head of any clause in P-,
we also have that val” (p) = val” (p) <, vF(p) < v"(p) < ¥P(p) = L. Hence,
both vals* (p) =L and valf*(—up) = 1. Thus, either if I =p or | = —=p, we have
that vals* (I)= L. The proof for limit ordinals is similar to the ones given in the
previous items. O
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