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.ilWe introdu
e a �xpoint semanti
s for logi
 programs with two kinds of negation:an expli
it negation and a negation-by-failure. The programs may also be prioritized,that is, their 
lauses may be arranged in a partial order that re
e
ts preferen
esamong the 
orresponding rules. This yields a robust framework for representingknowledge in logi
 programs with a 
onsiderable expressive power. The de
larativesemanti
s for su
h programs is parti
ularly suitable for reasoning with un
ertainty,in the sense that it pinpoints the in
omplete and in
onsistent parts of the data, andregards the remaining information as 
lassi
ally 
onsistent. As su
h, this semanti
sallows to draw 
on
lusions in a non-trivial way, even in 
ases that the logi
 programsunder 
onsideration are not 
onsistent. Finally, we show that this formalism maybe regarded as a simple and 
exible pro
ess for belief revision.Keywords: Logi
 programming, Fixpoint semanti
s, Para
onsisten
y, Multi-valuedlogi
s.AMS Subje
t 
lassi�
ation: Primary 68N17, 68T37; Se
ondary 03B50, 03B53.1. Introdu
tionLogi
 programming is a 
ombination of logi
 as a representation languageand the theory of (
onstru
tive) automated dedu
tion. However, it has longbeen 
laimed that standard logi
 programs are neither suÆ
iently expressive forformalizing various informal 
onsiderations (su
h as making preferen
es amongdi�erent assertions, ex
eption handling, 
ompletion of partial knowledge in a\rational" way, et
.) nor they are 
apable of properly imitating 
ommon-sensereasoning. This was partly explained by the limited synta
ti
al stru
ture of su
hprograms, whi
h in parti
ular does not support a proper representation of nega-tive information.Various formalisms have been 
onsidered in order to over
ome this limitation� This work was prepared while the author was visiting the Department of Computer S
ien
e,University of Leuven, Belgium.
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onsistent de
larative semanti
s for extended logi
 programs(see, e.g., [1,25,27,31,37,38,42,48℄ and a survey in [10, Se
tion 3℄). Most of themdo so by extending the expressive power of the programs under 
onsideration(and, of-
ourse, provide some appropriate semanti
s that 
aptures the \intended"meaning of the extended logi
 programs that are obtained). Two synta
ti
almodi�
ations are usually 
onsidered in this 
ontext. First, negations may appearnot only in the bodies of the rules, but also in their heads. Se
ond, two di�erentoperators are used for representing two di�erent types of negative information.One kind of negation, denoted here by :, 
orresponds to an \expli
it" negativedata. Its role, like that of negation in 
lassi
al logi
, is to represent 
ounter-information. The other kind of negation, denoted here by not, may be asso
iatedwith a more \impli
it" way of representing negative data. It is usually used forexpressing the fa
t that the 
orresponding assertion 
annot be proved or veri�edon the basis of the available information. It is therefore usual to asso
iate this
onne
tive with \negation-as-failure" (to prove the 
orresponding assertion). Thedi�erent nature of the two kinds of negations is demonstrated by the followingexample:Example 1.1. Consider a rule that expresses the fa
t that \If someone is in-no
ent (s)he 
annot be guilty". This rule may be represented by the followingimpli
ation: :guilty(x) inno
ent(x)I.e., inno
en
e must entail no guilt. On the other hand, a rule like the followingone: inno
ent(x) not guilty(x)is somewhat less stri
t. It may be understood as stating that \someone is inno
entas long as it has not been proven that (s)he is guilty".It follows, then, that these two negation operators should be used in di�erent
ontexts. This is further illustrated by the following example (borrowed from[27℄):Example 1.2. Consider a rule that states that \a s
hool bus may 
ross railwaytra
ks if there is no 
rossing train". This rule may be represented by the followingimpli
ation: 
ross railway tra
ks :train is 
ommingHowever, it should not be expressed as follows:
ross railway tra
ks not train is 
ommingThe reason for this is that the 
ondition in the latter 
lause holds in 
ases thatthere is no information available about a presen
e of a train. This is a weaker
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ondition than that of the former 
lause, whi
h is satis�ed only if there is anexpli
it eviden
e that no train is approa
hing the railway tra
ks.Clearly, extending logi
 programs with two kinds of negations and allowingthe appearan
e of negative data in the rule heads, have far-rea
hing impa
ts onthe way knowledge is represented and pro
essed. For instan
e, query evaluationbe
omes more a

urate sin
e it is possible to distinguish between a query thatfails be
ause it does not su

eed , and a query that fails in a stronger sense, thatits negation su

eeds. Moreover, these extensions of standard logi
 programs o�ersome new opportunities that were not available before. A parti
ularly importantone (on whi
h we fo
us the attention in this paper) is the ability to represent andreason with un
ertain information. More spe
i�
ally, in the representation levelthis means the ability to express the following kinds of knowledge:� In
onsistent belief. I.e., a representation of 
ontradi
tory data within the lan-guage (unlike, e.g., positive logi
 programs, the syntax of whi
h rules out anypossibility of representing 
ontradi
tions.1)� Partial knowledge. I.e., the ability to deal dire
tly with in
omplete informa-tion by expli
itly pointing to 
ases in whi
h the data (or the knowledge) isin
omplete.� (Hierar
hy of) ex
eptions. I.e., the ability to disregard some pie
e of informa-tion in the presen
e of another. More generally, preferring 
ertain rules overothers. Su
h preferen
es may be represented either in the program languageitself or in a \meta-language" (as an additional information, not ne
essarilyrepresented in a 
lausal form, and sometimes not even spe
i�ed by �rst-orderformulae).In what follows we shall see how all these di�erent types of knowledge are rep-resented in our framework. For the time being we remain on the intuitive leveland just note that the strong negation : will usually be useful for representing
ontradi
tory data, while the negation-by-failure operator not will be useful forrepresenting in
omplete data. In addition, we will also allow some additionalinformation, expressed as a \meta-knowledge", whi
h exhibits preferen
es of 
er-tain pie
es of information over others.A proper way of handling in
omplete and in
onsistent information meansalso an adequate formalism for pro
essing (i.e., reasoning with) this kind of data.The two main requirements in this respe
t are the following:1 Furthermore, even some formalisms that do allow negations in the 
lause bodies and heads(e.g., [27,31,42℄), treat atomi
 formulae and their negations as two di�erent ways of representingatomi
 information, so pra
ti
ally a representation of in
onsistent information is not fullysupported in this 
ase as well. We shall return to this issue in what follows.
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larative semanti
s for extended logi
 programs� Non-monotoni
ity. I.e., the ability to modify the set of 
on
lusions in the lightof new data. This is an important property of any formalism that deals withpartial information and applies default assumptions to it.� Para
onsisten
y [15℄. The semanti
s of in
onsistent logi
 programs should notbe trivial, that is, in
onsistent information should not entail every 
on
lusion.The following examples demonstrate these properties:Example 1.3. Consider the following logi
 program, where p and q are twoatomi
 formulae, and t is a propositional 
onstant that 
orresponds to the 
las-si
al truth value that represents true assertions.P = fq  t; p t; :p not :qgIntuitively, P may be understood su
h that both p and q are known to be true, and:p is also true, provided that it 
annot be shown that the negation of q holds.In this interpretation P 
learly 
ontains in
onsistent information regarding p.However, a para
onsistent formalism should not atta
h to P a trivial �xpointsemanti
s, sin
e some part of it (fq tg in our 
ase) is not related whatsoeverto any 
ontradi
tory information in P (and therefore it should have a 
onsistentinterpretation).2 Moreover, a plausible semanti
s for su
h programs should makea 
lear distin
tion between the \robust" part of the program (i.e., those 
lausesthat are not based on any 
ontradi
tory information) and the \spoiled" one (i.e.,rules that are de�ned in terms of in
onsistent data).Suppose now that a new datum arrives, and it indi
ates that if p holds then:q must hold as well. The new program is therefore the following:P 0 = P [ f:q  pgNow, the information regarding p be
omes 
onsistent (as the 
ondition for 
on-
luding :p does not hold anymore), while the data regarding q is now in
onsistent.A non-monotoni
 formalism should adapt itself to the new situation. In parti
-ular, while the query :p should su

eed where P is the underlying program, itshould fail w.r.t. P 0.Example 1.4. A robust formalism for reasoning with un
ertainty should also beable to handle in
omplete information in a plausible way. This is demonstratedby the following example: P = fq  t; p not pgThis time P 
ontains in
omplete information regarding p. Unlike some formalismsthat do not provide any model for this program (e.g., the stable model semanti
s[26℄), we 
laim that a proper semanti
s for P should distinguish between the2Note that sin
e the data regarding p is in
onsistent, the other two 
lauses 
ontain \unreliable"information, and thus may have in
onsistent interpretations.
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 programs 5meaningful data in P (fq tg), and the meaningless data (fp not pg). Notethat the well-founded semanti
s [47℄ does provide a plausible solution to this
ase. In what follows (Se
tion 3.2) we shall use this property of the well-foundedsemanti
s for de�ning our way of handling in
omplete information.Many of the well-known formalisms for giving semanti
s to extended logi
programs (e.g., [27,37℄) redu
e to triviality in the presen
e of 
ontradi
tory data,and so they are not para
onsistent. Our approa
h, on the other hand, a

epts
ontradi
tory data and tries to 
ope with it. As 
lassi
al logi
 is neither non-monotoni
 nor para
onsistent, this approa
h must be non-
lassi
al in nature.3In our 
ase we use multiple-valued semanti
s in whi
h there are parti
ular truthvalues that 
orrespond to di�erent degrees of 
ontradi
tions and partial informa-tion. The use of multiple-valued logi
s for giving semanti
s to logi
 programs isdis
ussed and justi�ed in Se
tions 2.2 and 4.2.The rest of this paper is organized as follows: in the next se
tion we representour framework. In parti
ular, we 
onsider some semanti
al aspe
ts su
h as show-ing that Belnap four-valued stru
ture [11,12℄ is parti
ularly suitable for represent-ing the kind of information we intend to de
ode in logi
 programs. In Se
tion 3 weintrodu
e our �xpoint theory, �rst for logi
 programs without negation-as-failure,and then for the general 
ase. In Se
tion 4 we further generalize our formalism to
ases in whi
h the logi
 programs under 
onsideration are prioritized, i.e., every
lause has its own relative priority over the other 
lauses. For extending oursemanti
s to the prioritized 
ase we 
onsider a generalization of the four-valuedsemanti
al stru
ture to a larger family of multiple-valued algebrai
 stru
tures,
alled bilatti
es [20,28,29℄. The semanti
s that is obtained is then dis
ussed andsome of its properties are illustrated. In Se
tion 5 we summarize the main prop-erties of our formalism (with respe
t to other related �xpoint semanti
s), and
on
lude.2. Preliminaries2.1. Logi
 programsIn what follows p; q; r denote atomi
 formulae, l; l1; l2; : : : denote literals (i.e.,atomi
 formulae that may be pre
eded by :), and e; e1; e2; : : : denote extendedliterals (i.e. literals that may be pre
eded by not). The 
omplement of a literall is denoted by l (that is, if l=p for some atom p then l=:p, and if l=:p thenl=p). As usual in the 
ontext of logi
 programming, we shall deal with formulaein a 
lausal form, as de�ned below:3 See, e.g., [5,6,11,12,32,34,39℄ for some non-
lassi
al methods for reasoning with partial or
ontradi
tory information.
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larative semanti
s for extended logi
 programsDe�nition 2.1. Let n�m�0.� A positive 
lause is a formula of the form p p1; : : : ; pn 4� A standard 
lause is a formula of the form p p1; : : : ; pm; not pm+1; : : : ; not pn� A normal 
lause is a formula of the form p l1; : : : ; ln� A general 
lause is a formula of the form l l1; : : : ; ln� An extended 
lause is a formula of the form l  e1; : : : ; enGiven a 
lause l  e1; e2; : : : ; en, we say that l is the 
ause head , ande1; : : : ; en is the 
lause body (sometimes abbreviated by Body). The 
lause headis also 
alled the 
on
lusion (of the 
lause), and ea
h element in the 
lause bodyis 
alled a 
ondition (of the 
lause). The set of the (extended) literals that appearin Body is denoted by L(Body).A (possibly in�nite) set P of extended (respe
tively: positive, standard,normal, general) 
lauses is 
alled an extended (respe
tively: positive, standard ,normal , general) logi
 program.2.2. Some semanti
al 
onsiderationsA. The underlying multi-valued stru
tureFirst, we should de
ide what underlying semanti
s is most suitable for ourintended formalism. It is well-a

epted that two-valued semanti
s is an appro-priate semanti
al framework for positive logi
 programs. This is so sin
e everypositive logi
 program P has a unique least Herbrand model, whi
h is identi
al tothe least �xpoint of van-Emden and Kowalski's immediate 
onsequen
e operator[46℄ of P. It follows, therefore, that the \intended" semanti
s of positive logi
programs 
an be 
aptured within the two-valued setting.Things are getting more 
ompli
ated when negations may appear in the
lause bodies. In su
h 
ases a least two-valued model does not always exist(Consider, e.g., P = fp not pg), and there are 
ases in whi
h several minimaltwo-valued models exist (For instan
e, P = fp :q; q :pg has two minimalHerbrand models. In one of them p is true and q is false, and in the other one qis true and p is false). One 
ommon way to over
ome these problems is to 
on-sider a minimization w.r.t. a three-valued semanti
s: Fitting's operator [19,23℄,based on Kripke/Kleene 3-valued semanti
s [30℄ always yields a least �xpointwhen applied to normal logi
 programs, and this is also the 
ase with the three-valued well-founded semanti
s [47℄, applied to standard logi
 programs. Undersome further assumptions on the synta
ti
al stru
ture of the logi
 programs under
onsideration, some other 2-valued and 3-valued �xpoint semanti
s are uniquely4 Su
h formulae are also 
alled de�nite 
lauses.
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Figure 1. Belnap four-valued stru
ture, FOURdetermined. For instan
e, as shown in [40,41℄, every standard logi
 program thatis weakly strati�ed [40℄ has a unique weakly perfe
t model [40℄, whi
h 
oin
ideswith its unique stable model [26℄ and its unique well-founded model [47℄.When negations may also appear in the 
lause heads, the logi
 programsmay be in
onsistent, and so unless in
onsisten
y redu
es to triviality, neither 2-valued nor 3-valued models 
an 
apture the semanti
s of su
h programs anymore.Brie
y, this is due to the fa
t that if P is some general (or extended) logi
program, then an \appropriate" semanti
s for it should be able to distinguishamong the following four di�erent 
ases:1. p t 2 P, :p t 62 P2. p t 62 P, :p t 2 P3. p t 2 P, :p t 2 P4. p t 62 P, :p t 62 PAssuming that neither p nor :p appears in any 
lause head in P other thanthose mentioned above, one expe
ts that in the former two 
ases p would have a
lassi
al value (t in the �rst 
ase and f in the se
ond 
ase), and in the latter two
ases two other values should be atta
hed to p: one for denoting that the dataregarding p is in
onsistent (as in 
ase 3 above), and the other for denoting thatthere is insuÆ
ient information regarding p (as in 
ase 4 above).It follows that in order to 
apture these four di�erent 
ases on the seman-ti
al level, a semanti
al stru
ture for general or extended logi
 programs should
ontain (at least) four di�erent elements. Probably the best-known stru
turewith this property is Belnap's FOUR (Figure 1).
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larative semanti
s for extended logi
 programsBelnap's algebrai
 stru
ture was introdu
ed in [11,12℄ as a semanti
al toolfor representing di�erent states of a reasoner's knowledge (or belief). This stru
-ture 
onsists of four truth values: the 
lassi
al ones (t; f), a truth value (?)that intuitively represents la
k of information, and a truth value (>) that mayintuitively be understood as representing 
ontradi
tions. These four elementsare simultaneously arranged in two partial orders. In one of them (denoted hereby �t), f is the minimal element, t is the maximal one, and ?;> are two in-termediate values that are in
omparable. This partial order may be intuitivelyunderstood as representing di�eren
es in the amount of truth of ea
h element. Wedenote by ^ and _ the meet and join operations w.r.t �t (hen
e, e.g., >_?= t).In the other partial order (denoted here by �k), ? is the minimal element, > isthe maximal one, and t; f are two intermediate values. This partial order intu-itively represents di�eren
es in the amount of knowledge (or information) thatea
h element exhibits. We denote by 
 and � the meet and join operations w.r.t�k (hen
e, e.g., t�f =>). Another useful operator on FOUR is the negation(denoted here by :) that is order reversing w.r.t. �t and order preserving w.r.t.�k, i.e., :t=f , :f= t, :>=>, and :?=?.The various semanti
al notions are de�ned on FOUR as natural general-izations of similar 
lassi
al ones: a valuation � is a fun
tion that assigns a truthvalue in FOUR to ea
h atomi
 formula. In what follows we shall sometimeswrite � = fp : x; q : yg instead of �(p) = x, �(q) = y. Any valuation is extendedto 
omplex formulae in the obvious way. The set of the four-valued valuations isdenoted by V 4.D = ft;>g is the set of the designated elements of FOUR, i.e., the set ofelements in FOUR that represent true assertions. Hen
e, we say that a valuation� satis�es a formula  i� �( )2D. Note that D is a prime �lter in FOUR (w.r.t.both �t and �k) that 
onsists of the elements that are �k-greater than or equalto t. This 
orresponds to Belnap's observation that the designated elements ofFOUR should be those that are \at least true" (see [12, Page 36℄).A valuation that assigns a designated value to every 
lause in a logi
 pro-gram P is a model of P.Next we de�ne a useful partial order on the elements of V 4 in terms of thepartial order �k of FOUR:De�nition 2.2.a) A valuation �1 2 V 4 is k-smaller than another valuation �2 2 V 4 if for everyatomi
 formula p, �1(p) �k �2(p).b) A valuation � 2 V 4 is a k-minimal element in a set S�V 4 if there is no otherelement in S that is k-smaller than �. If there is a single k-minimal element
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 programs 9in S, we shall sometimes 
all it the k-least element of S.It is easy to see that De�nition 2.2(a) indu
es a latti
e stru
ture on the set ofthe four-valued valuations: V4=(V 4;�k). Another useful way of (pre-)orderingthe elements in V 4 is the following:De�nition 2.3 [5,6℄.a) A valuation �1 2 V 4 is more 
onsistent than another valuation �2 2 V 4 iffp j �1(p)=>g � fp j �2(p)=>g.b) A valuation � 2 V 4 is a maximally 
onsistent element in a set S�V 4 if thereis no other element in S that is more 
onsistent than �. 5Clearly, the interesting 
ases of De�nitions 2.2(b) and 2.3(b) are obtainedwhen S is the set of the models of the logi
 program P under 
onsideration. Twoimportant sets of models are obtained in these 
ases: The k-minimal models ofP, and the maximally 
onsistent models of P. We shall re
onsider these modelsin what follows.B. The meaning of the impli
ation 
onne
tiveLet P be a general logi
 program. The 
onne
tives that appear in the bod-ies or the heads of the 
lauses in P, i.e.: 
onjun
tions (;)6 and negations (:),should be regarded, respe
tively, as the greatest lower bound and the order-reversing operation w.r.t. the �t-partial order of FOUR.7 This 
orresponds tothe natural extensions to the multiple-valued 
ase of the 2-valued de�nitions ofthese 
onne
tives. However, as has already been observed in [10,27℄, the impli
a-tion 
onne
tive  of the program's 
lauses should not be taken as the materialimpli
ation  -, where p  - q � p _ :q. This is so sin
e, for instan
e, the in-tuitive meaning of f:p t; p :qg is di�erent than the intuitive meaning off:p t; q :pg,8 thus a plausible semanti
s for P 
annot be `
ontrapositive'w.r.t.  and :. Moreover, in the multi-valued setting, the material impli
ation - is not suitable for representing entailment anymore. This is mainly due to thefollowing reasons:1. p -p does not always hold in the four-valued setting, sin
e ex
luded-middleis not a four-valued tautology (Note that �(p_:p)=? when �(p)=?).5 In [5,6℄ a valuation with the same property is 
alled a most 
onsistent element of S. Here wehave 
hanged the terminology, so that it would not suggest uniqueness.6 Commas are used here also as a separator among 
lauses in the same program. This will not
ause any ambiguity.7We shall dis
uss the semanti
s of the negation as failure operator (not) in a later stage.8 Intuitively, in the former program there is no expli
it information on the validity of q, and soq should not have a designated value, while in the latter program the 
ondition in the rulethat de�nes q is satis�ed, and so this time q should be assigned t.
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 programs2.  - does not have a dedu
tive nature in FOUR. For instan
e, the fa
t thatevery four-valued model of some 
onjun
tion Body is also a model of a literal ldoes not imply that l -Body is true in every four-valued valuation (Consider,e.g., the 
ase in whi
h Body= l).We therefore 
onsider an alternative de�nition for the impli
ation 
onne
-tive, a

ording to whi
h it does fun
tion as an entailment in the four-valuedsetting:De�nition 2.4 [5,8℄. Let x; y 2 FOUR. De�ne:x y = (x if y2Dt otherwiseNote that on ft; fg the material impli
ation and the new impli
ation areidenti
al, and both of them are generalizations of the 
lassi
al impli
ation. How-ever, unlike the material impli
ation, the impli
ation 
onne
tive de�ned in 2.4does preserve both properties of entailment that were mentioned above.In what follows we therefore use the impli
ation 
onne
tive of De�nition2.4 for representing the entailment of the program's 
lauses. Note that the se-manti
s of this impli
ation is in a

ordan
e with the following standard way ofunderstanding entailment in logi
 programs:Proposition 2.5. For every valuation �2V 4 we have that �(l  Body)2D i�either �(l)2D or �(Body) 62D.Proof. Immediately follows from De�nition 2.4.2.3. The language and its extension to the �rst-order 
aseThe language of the logi
 programs 
onsidered here is based on the impli
a-tion 
onne
tive  , the meaning of whi
h was dis
ussed in the previous se
tion,
onjun
tion that 
orrespond to the �t-join operator in FOUR, two negationoperators : and not, and four propositional 
onstants t, f, 
, u, that are respe
-tively asso
iated with the elements t, f , >, ? in FOUR. We therefore remain,basi
ally, on the propositional level. However, as �rst-order 
lauses are 
onsid-ered as universally quanti�ed, �rst order logi
 programs may be handled withinour framework as well. We do so by 
onsidering their ground instan
es; everynon-grounded 
lause is viewed as representing the 
orresponding set of ground
lauses, formed by substituting every variable that appear in this 
lause withevery possible element of the 
orresponding domain. Formally, let � be a ground
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 programs 11substitution from the variables of every 
lause C in P to the individuals of theset of the 
losed terms H of P. Then we shall 
onsider programs of the formPH = f�(C) j C 2P; � :var(C)!Hg:In what follows we shall abbreviate P for PH .3. Para
onsistent de
larative semanti
s for logi
 programsWe are now ready to introdu
e our �xpoint semanti
s for logi
 programs.First, we treat general logi
 programs (i.e., programs without negation-as-failure),and then we 
onsider extended logi
 programs.3.1. Semanti
s for general logi
 programsDe�nition 3.1. Given a general logi
 program P, de�ne for every i � 1 andevery literal l the following valuations:�P0 (l) = ?.valPi (l) = (t if there is a 
lause l  Body 2 P s.t. �Pi�1(Body) 2 D, 9? otherwise.�Pi (l) = valPi (l)� :valPi (l). 10For a limit ordinal � we de�ne:valP� (l) = max�kfvalP� (l) j �<�g, �P� (l) = valP� (l)� :valP� (l).Also, for every propositional 
onstant x 2 ft; f; 
; ug that is asso
iated with anelement x2ft; f;>;?g in FOUR, we de�ne �Pi (x) = valPi (x) = x (i = 0; 1; : : :).The basi
 operator used here for handling 
ontradi
tory information is the�k-join, �. As it is noted in [21,24℄, this operator may be asso
iated with a\gullibility" (\a

ept all") fun
tion that 
omputes the 
ombined knowledge ofits arguments. The 
hoi
e of this operator may be intuitively justi�ed, then, bythe need to do the following: (a) re
ord 
ases in whi
h there is an eviden
e for aspe
i�
 assertion and for the 
omplementary assertion as the same time, and (b)pinpoint the 
ontradi
tory knowledge (or belief).Note also that for every i, �Pi behaves as expe
ted w.r.t. negation: sin
e forevery x; y 2 FOUR, :(x� y) = :x� :y, we have that:�Pi (l) = :(valPi (l)� :valPi (l)) = :valPi (l)� valPi (l) = �Pi (l):9 �Pj is de�ned on 
onjun
tive formulae in the usual way: �Pj (Body)=Vli2L(Body) �Pj (li). Thus,�Pj (Body) 2 D i� 8li2L(Body) �Pj (li)2D.10 Re
all that l is the 
omplement of l, and � is the �k-join operation in FOUR.
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onsistent de
larative semanti
s for extended logi
 programsProposition 3.2. The sequen
e �P0 ; �P1 ; �P2 ; : : :, de�ned in 3.1 for a general logi
program P, is �k-monotoni
 in V4.Proof. Sin
e the set D of the designated values is upwards-
losed w.r.t. �k, iteasily follows from De�nition 3.1 that for a given general logi
 program P, thesequen
es fvalPi g and f�Pi g are both �k-monotoni
 in i.By Knaster-Tarski theorem [45℄, it follows from Proposition 3.2 that thesequen
e f�Pi g has a �k-least �xpoint. Denote this �xpoint by �P . An indu
ed
onsequen
e relation j�� may now be de�ned as follows: P j��  i� �P( ) 2 D(Thus, a query  follows from a logi
 program P if �P( ) is designated).Proposition 3.3. Let P be a general logi
 program. Then �P is the k-minimalfour-valued model of P. Moreover, it is at least as 
onsistent as any other modelof P,11 and the 
onsequen
e relation indu
ed by it is para
onsistent.Proof. See Appendix A.Corollary 3.4. Let P be a general logi
 program. Then �P is the k-least modeland a maximally 
onsistent model of P.Proof. Immediately follows from Proposition 3.3 and its proof.Being the k-least model of P, �P minimizes the amount of knowledge thatis pre-supposed, i.e. it does not assume anything that is not really known. Thisproperty is further dis
ussed in Remark 3.6 below. Moreover, the last 
orollaryalso indi
ates that �P minimizes the amount of in
onsistent belief in the set of
lauses.12 This is in a

ordan
e with the intuition that while one has to dealwith 
on
i
ts in a nontrivial way, 
ontradi
tory data 
orresponds to inadequateinformation about the real world, and therefore it should be minimized (see also[6℄ for a dis
ussion on maximally 
onsistent models of general theories).Note that the last 
orollary does not imply that �P is the only maximally
onsistent model of P. Indeed, 
onsider for instan
e the following program:P = fp t; :p t; p qgBeside �P = fp :>; q :?g, P has two other maximally 
onsistent models, namelyfp :>; q : tg and fp :>; q : fg. However, by Corollary 3.4 we have the followingresult that shows that �P provides the most 
ompa
t way of representing themost 
onsistent knowledge:11 In the sense that the set of the atoms that are assigned > by �P does not properly 
ontainany similar set of another model of P.12 Re
all De�nition 2.3.
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s for extended logi
 programs 13Corollary 3.5. �P is the k-least model among the maximally 
onsistent modelof P.Remark 3.6. Synta
ti
ally, normal logi
 programs are spe
ial 
ases of generallogi
 programs. Still, there are semanti
al di�eren
es between a set of rulesviewed as a normal program, and the same set of rules viewed as a general (orextended) program. For instan
e, most of the semanti
s for normal logi
 programsassign f to any atom that does not appear in (any 
lause head in) the program.However, in general or extended logi
 programs this 
an be inferred from generalrules that are stated in the program itself (e.g., by adding rules for 
losed wordassumption; see Example 3.14a below), and so the absen
e of an atom p from ageneral logi
 program indi
ates that p does not hold. Hen
e, if nothing is statedregarding :p as well, in the 
orresponding semanti
s p should be unknown.13For another example on the semanti
al di�eren
es, 
onsider the following(general) program: P = fp :q; q  tg:Treated as a normal program, some of the 2-valued and the 3-valued �xpointsemanti
s for P assign t to q and f to p. A

ording to those semanti
s thehead of a 
lause program is asso
iated with its 
orresponding 
lause bodies, andtherefore the truth value atta
hed to a 
lause head should be the same as the(least upper-bound of) the value(s) of its 
lause body(ies). This, however, is notthe 
ase in our semanti
s, whi
h assigns t to q and ? to p. This is justi�ed by thefa
t that P is now 
onsidered as a general logi
 program, and so had one wantedto identify the information regarding p with that of its 
lause body, (s)he shouldhave added to P also the 
onverse impli
ation (in trms of p), i.e., :p  q.14 Inthe absen
e of su
h 
lause our four-valued semanti
s 
orre
tly indi
ates that oneshould not 
on
lude here that p is false! 15On
e again, this example demonstrates our slogan: our semanti
s alwaysassumes as minimal knowledge as reasonably possible. Thus, if one wishes tointrodu
e more assumptions (e.g., to apply Clark's 
ompletion [14,33℄ to spe
i�
predi
ates), (s)he just has to add the appropriate 
lauses. In the absen
e of su
hinformation the program may have other meaning than those that are imposed bysome of the 2-valued or 3-valued semanti
s for normal logi
 programs. Moreover,sin
e it is not always possible to distinguish in standard or normal logi
 programsamong the various possibilities o�ered by general (or extended) logi
 programs,su
h re�nements sometimes 
annot even be 
aptured by the 2-valued or the 3-valued semanti
s for standard/normal logi
 programs!13 See also a remark on this matter in [27, Pages 591{592℄.14 Indeed, as shown in Example B.3 in Appendix B, our 4-valued �xpoint semanti
s of P[f:p qg assigns t to q and f to p.15 This is so sin
e the 
ondition of the rule that de�nes p does not hold, and so one 
annot inferanything meaningful about p.
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onsistent de
larative semanti
s for extended logi
 programsIn the rest of this se
tion we show that in 
ertain 
ases it is possible torestore from our 4-valued �xpoint formalism some other 2-valued or 3-valued�xpoint formalisms, if so one wishes.Proposition 3.7. Let P be a positive logi
 program, and let P' be the positiveprogram obtained from P by repla
ing every impli
ation 
onne
tive by a materialimpli
ation. Denote by �Pf=? the valuation that is obtained from �P by 
hangingthe ?-assignments to f -assignments (I.e., for every atom p, if �P(p) = ? then�Pf=?(p)=f). Then:1. P and P 0 have the same 
lassi
al models (and thus the same least Herbrandmodel), and2. �Pf=? is the (unique) 2-valued minimal Herbrand model of P and P'.Proof. See Appendix A.The pro
ess of restoring Fitting's �k-minimal 3-valued Kripke/Kleene se-manti
s for normal logi
 programs [19℄ is somewhat more 
ompli
ated than thepro
ess of restoring the 2-valued semanti
s of positive logi
 programs, des
ribedin Proposition 3.7 above. Note, however, that if P is a normal logi
 program, thefollowing properties hold:1. For every atom p, �P(p)2ft;?g.Proof. For every i and p, vali(p)2ft;?g, and sin
e P is a normal program,vali(:p)=?. Thus, for every i, �Pi (p)=vali(p)2ft;?g, and so �P(p)2ft;?gas well.2. �P�k	P , where 	P is the �k-least �xpoint of Fitting's operator for P.Proof. By the fa
t that 	P is a model of P and �P is the �k-least model ofP.16It follows, therefore, that �P 
an be viewed as an \approximation" of 	P : if�P assigns t to some atomi
 formulae, then so is 	P , and if �P assigns ? to someatom, then 	P assigns either ? or f to this atom. Thus, in order to restore from�P Fitting's 3-valued �xpoint semanti
s for P, it is possible to apply Fitting'soperator on �P (rather than to start the iterations with a valuation that assigns? to every atom), and then to pro
eed until a �xpoint is rea
hed. This �xpoint
oin
ides with Fitting 3-valued Kripke/Kleene semanti
s for P.An alternative way of 
omputing Fitting's 3-valued semanti
s from our 4-valued semanti
s is des
ribed in Appendix B.16 Note that a

ording to our semanti
s, the set of models of P 
ontains the set of models w.r.t.Fitting's semanti
s. Thus (as illustrated in Remark 3.6), although 	P is the �k-least modelin Fitting's semanti
s, it is not ne
essarily the �k-least one in our 
ase.
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s for extended logi
 programs 153.2. Semanti
s for extended logi
 programsIn this se
tion we extend the �xpoint semanti
s for general logi
 programs,
onsidered in the previous se
tion, to extended logi
 programs. So now, in addi-tion to the expli
it negation (:), the negation-as-failure operator (not) may alsoappear in the 
lauses bodies.One way of understanding not in the four-valued setting is the following: ifwe don't know anything about p, i.e. we 
annot prove either p or :p, then we
annot say anything about not p as well. Otherwise, if p has a designated valuein the intended semanti
s (i.e., p is provable), then not p does not hold, and if pdoes not have a designated value (i.e., it is not provable), then not p holds. Itfollows, then, that not t = f , not > = f , not f = t, and not ? = ?.17This interpretation of not is a natural generalization to the four-valued 
aseof the way not is interpreted by the well-founded semanti
s [47℄. We thus givesemanti
s to logi
 programs in whi
h not may appear in the 
lause bodies byusing a transformation, whi
h is similar to that of the well-founded semanti
s,for redu
ing extended logi
 programs to general logi
 programs. Then we usethe ma
hinery of the previous se
tion for giving semanti
s to the general logi
programs that are obtained. Below we formalize this idea.De�nition 3.8. Let � be a four-valued valuation. The set S� of literals that isasso
iated with � is the smallest set that satis�es the following 
onditions: 18if �(l)= t then l2S� ; if �(l)=f then l2S� ; if �(l)=> then fl; lg�S� :Obviously, one 
an de�ne the 
onverse transformation as well. A four-valuedvaluation �S may be 
onstru
ted from a set S of literals as follows: for everyatom p, �S(p) = 8>><>>:t if p2S and :p 62Sf if p 62S and :p2S> if p2S and :p2S? if p 62S and :p 62S17 It is interesting to note that in this interpretation, not may be represented as a 
onjun
tionof two other negation operators: not p = :p^�p, where �p is an abbreviation of p!f , i.e.,�p=f if p2D, and �p= t if p 62D.18 Su
h sets are sometimes 
alled answer sets (for �). We shall not use this terminology here,sin
e it is usual to require that if an answer set 
ontains a pair of 
omplementary literals,then it should 
ontain every literal. Sin
e our formalism does not redu
e to triviality in thepresen
e of in
onsistent information, this requirement should obviously not hold here.
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larative semanti
s for extended logi
 programsDe�nition 3.9. Let P be an extended program and let S be a set of literals.The redu
tion of P w.r.t. S is the general logi
 program P #S, obtained from Pas follows:1. Ea
h 
lause that has a 
ondition of the form not l for some l2S, is deletedfrom P.2. Every o

urren
e of not l, where l2S, is eliminated from the (bodies of the)remaining 
lauses.193. Every o

urren
e of not l in the (bodies of the) remaining 
lauses is repla
edby the propositional 
onstant u.20Now we are ready to de�ne our �xpoint semanti
s for extended logi
 pro-grams. Re
all that �P denotes the �xpoint semanti
s for a general logi
 programP.De�nition 3.10. A valuation �2 V 4 is a plausible model of an extended logi
program P, if it 
oin
ides with the �xpoint semanti
s of the general logi
 programobtained by redu
ing P w.r.t. the set that is asso
iated with �. In other words,� is a plausible model of P i� � = �P#S� :Remark 3.11. If the only negation operator that appears in P is :, then P isa general logi
 program, and so its unique plausible model is �P . It follows, inparti
ular, that the notion of plausible models of extended logi
 programs is ageneralization of the de�nition of �xpoint semanti
s for general logi
 programs.Proposition 3.12. A plausible model of P is indeed a model of P.Proof. Let � = �P#S� be a plausible model of P. Sin
e P #S� is a general logi
program, by Proposition 3.3 � is a model of P #S�. But by the semanti
s of notand the de�nition of redu
tion it is 
lear that if M is a model of P #SM then Mis also a model of P. One 
on
ludes, then, that � is a model of P.As it is shown in Example 3.14 below, an extended logi
 program may havemore than one plausible model, and so one may use di�erent preferen
e 
riteriafor 
hoosing the best models among the plausible ones. In the 
ase of generallogi
 programs we have 
hosen �k-minimization as the 
riterion for preferringthe \best" model among the �xpoint valuations. This was justi�ed by the fa
tthat general logi
 programs may 
ontain 
ontradi
tory data, and so we want to19 If a 
lause body be
omes empty by this transformation, we treat this body as if it 
onsists ofthe propositional 
onstant t.20 Note that for this l, ne
essarily l 62S and l 62S.
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 programs 17minimize the redundant information as mu
h as possible. In the present 
ase werather use the opposite methodology: sin
e the negation-as-failure operator isasso
iated with in
omplete information, we are dealing here with a la
k of data,so this time we should try to restri
t the e�e
t of the negation-as-failure operatoronly to those 
ases in whi
h indeed there is not enough data available. It follows,therefore, that now we should seek for a maximal knowledge (among the plausiblemodels). 21De�nition 3.13. � is an adequate model of P if it is a �k-maximal elementamong the plausible models of P. 22Example 3.14. Below we 
onsider our semanti
s for some in
onsistent and/orin
omplete logi
 programs.1. P = f:p not pg.Intuitively, P represents a 
losed word assumption (CWA, [43℄) regardingp: in the absen
e of any eviden
e for p, assume that :p holds. P has twoplausible models �1=fp :?g and �2=fp :fg. But �2>k�1, and so �2 is theadequate model of P.2. (Example 1.4, revisited) P = fp not p; q  tg.The adequate model of P here is fp :?; q : tg. This indeed seems to be theonly reasonable interpretation here (see the dis
ussion in Example 1.4), andit 
oin
ides with the well-founded model [47℄ (for standard logi
 programs) ofP. Two-valued semanti
s, su
h as Gelfond-Lifs
hitz stable model semanti
s[26℄, do not provide any model for P.3. (Example 1.3, revisited) P = fq  t; p t; :p not :qg.The adequate model here is fp :>; q : tg. It re
e
ts our expe
tation that sin
e:q does not follow from P, the knowledge about p is 
ontradi
tory. Note thata

ording to the semanti
s given in [27,37℄, P does not have any model, sin
eit 
ontains 
ontradi
tory information.We postpone to a later stage (Se
tion 5) some further dis
ussions on ade-quate models and other formalisms for giving semanti
s to extended logi
 pro-grams. First we 
omplete the presentation of our formalism also for the prioritized
ase.21 Informally, we use here a \min/max strategy": knowledge minimization on the 
ontradi
tory
omponents of the program, and knowledge maximization on its in
omplete 
omponents.22 I.e., � is a plausible model of P, and there is no other plausible model of P that is stri
tly�k-bigger than �. Note also that by Proposition 3.12, � is indeed a model of P.
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larative semanti
s for extended logi
 programs4. Prioritized logi
 programs4.1. MotivationAs Proposition 3.3 and Corollary 3.4 imply, the four-valued �xpoint seman-ti
s 
onsidered in the previous se
tion has several appealing properties. However,there might be 
ases in whi
h one would like to re�ne the inferen
e me
hanismindu
ed by this �xpoint. To see this, 
onsider the following example.Example 4.1 (Tweety dilemma). Consider the following well-known program:P = 8><>: fly(x) bird(x) :reptile(x) bird(x)bird(x) penguin(x) :fly(x) penguin(x)bird(Tweety) t penguin(Tweety) t 9>=>;The �xpoint semanti
s of P is the following:�P(bird(Tweety)) = t, �P(penguin(Tweety)) = t,�P(reptile(Tweety)) = f , �P(has feathers(Tweety)) = ?,�P(fly(Tweety)) = >.While the truth values that are assigned to bird(Tweety), penguin(Tweety),reptile(Tweety) and has feathers(Tweety) 
orrespond to the intuitive expe
-tations in this 
ase,23 one usually tends to 
on
lude from P that Tweety 
annot
y. However, this 
on
lusion is based on some further, impli
it knowledge, thatis not represented in the program. Su
h knowledge is, e.g., the fa
t that the rule\birds 
an 
y" has ex
eptions that should \override" the default rule. Anotherkind of knowledge that is not en
oded in this program is the fa
t that the infor-mation that Tweety is a penguin is more spe
i�
 than the statement that it is abird, therefore the former data should have a higher priority than the latter one,in 
ase of \
ollisions" between the two.The above ina

urate 
on
lusion about the 
ying ability of Tweety is there-fore an out
ome of the limited way that knowledge is represented here, rather thana 
onsequen
e of a short
oming of the reasoning pro
ess. A general method toimprove knowledge representation is to provide a way to prefer a 
ertain data overthe other. In example 4.1, for instan
e, su
h me
hanism will allow us to indi
atethat the 
lause that states that \penguins 
annot 
y" should get a pre
eden
eover the one that states that \birds 
an 
y".Several methodologies for making su
h preferen
es have been proposed inthe literature. In [31℄, for instan
e, rules with negative 
on
lusions are viewed as23 The assignment of ? to has feathers(Tweety) is justi�ed by the fa
t that nothing is mentionedin the program about the property \has feathers".
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 programs 19representing ex
eptions of rules with the positive 
ounterparts as their 
on
lu-sions. As su
h, the former rules are given higher priorities over the latter rules.Thus, for instan
e, in the semanti
s of [31℄ for P=fq  t; p t; :p not :qg,p is false (
f. Example 3.14, Item 3).A

ording to the formalism proposed by Pereira et al. in [38℄, preferen
es ofdi�erent rules are en
oded within the language itself. A

ording to this approa
hthe 
on
i
t regarding the 
ying ability of Tweety in Example 4.1 is resolved bystating that birds 
an 
y unless they are \abnormal birds". Thus, in the programof that example, fly(x) bird(x) should be repla
ed by the following two rules:fly(x) bird(x); not abnormal bird(x)abnormal bird(x) bird(x);:fly(x)In the same paper, Pereira et al. also propose to asso
iate a di�erent 'label'to ea
h program rule, and to insert this label as another 
ondition to the bodyof the rule. This enables an easy way to represent a hierar
hy of rules in thelanguage itself. For instan
e, the fa
t that under the 
onditions spe
i�ed in Bodyone should apply a rule labeled by l1 instead of a rule labeled by l2, is en
odedby the following spe
ial preferen
e rule: :l2  Body; l1.The formalisms mentioned above, although being elegant ones, have theirown limitations. First, they rule out any representation of 
ontradi
tions in thereasoner's belief. Su
h 
ontradi
tions do o

ur in pra
ti
al problems, and it maybe useful to use a methodology to tra
e them and to represent their e�e
t. Se
ond,as already observed in [38℄, be
ause of the inherent asymmetry in the represen-tation of the hierar
hy of ex
eptions, ea
h time that ex
eptions to ex
eptions arespe
i�ed, some rules in the program should be 
hanged. Third, the rule labelingand the need to maintain the preferen
es and the ex
eptions with spe
ial addi-tional rules, require a lot of overhead; in pra
ti
al 
ases this might yield awkwardprograms, in whi
h it would be diÆ
ult to grasp the essen
e from the whole data.Here we 
onsider another way of making preferen
es among programs
lauses, whi
h has a more quantitative nature. The idea is to atta
h, in a meta-language, di�erent priorities to di�erent 
lauses. We do so by assigning to every
lause a `
on�den
e fa
tor' that re
e
ts its relative priority over the other 
lauses.For this, we 
onsider algebrai
 stru
tures that generalize Belnap's four-valuedstru
ture. In parti
ular, we extend the four-valued semanti
s to a more generalsemanti
s that is based on arbitrarily many truth values. In the next se
tion wereview the basi
 notions that are related to these stru
tures, and in Se
tion 4.3we use them for giving semanti
s to prioritized (extended) logi
 programs.
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larative semanti
s for extended logi
 programs4.2. Bilatti
es and logi
al bilatti
es { An overviewDe�nition 4.2 [28,29℄. A bilatti
e is a stru
ture B = (B;�t;�k;:) su
h that Bis a nonempty set 
ontaining at least two elements, (B;�t) and (B;�k) are 
om-plete latti
es, and : is a unary operation on B that has the following properties:(i) if x �t y then :x �t :y, (ii) if x �k y then :x �k :y, (iii) ::x = x.The original motivation of Ginsberg [29℄ for using bilatti
es was to providea uniform approa
h for a diversity of appli
ations in arti�
ial intelligen
e. In par-ti
ular, he treated �rst order theories and their 
onsequen
es, truth maintenan
esystems, and formalisms for default reasoning. The algebrai
 stru
ture of bilat-ti
es has been further investigated by Fitting [21,24℄ and Avron [9℄. In a seriesof paper Fitting has also shown that bilatti
es are very useful tools for providingsemanti
s for logi
 programs. He proposed an extension of Smullyan's tableaux-style proof method to bilatti
e-valued programs, and showed that this method issound and 
omplete with respe
t to a natural generalization of van-Emden andKowalski's operator [20,22℄. Fitting also introdu
ed a multi-valued �xpoint op-erator for providing bilatti
e-based stable models and well-founded semanti
s forlogi
 programs [23℄. A well-founded semanti
s for logi
 programs that is basedon a spe
i�
 bilatti
e (denote here by NINE, see Figure 2 below) is also 
onsid-ered in [16℄. Bilatti
es have also been found useful for model-based diagnosti
s[29℄, 
omputational linguisti
s [36℄, reasoning with in
onsistent knowledge-bases[5,44℄, and pro
essing of distributed knowledge [35℄.As in the four-valued 
ase, we shall 
ontinue to denote by ^;_;: the meet,join, and the involution operations w.r.t. �t, and by 
;� the meet and thejoin operations w.r.t. �k. The �t-maximal (respe
tively, �t-minimal) elementis denoted by t (respe
tively, f), and the �k-maximal (respe
tively, �k-minimal)element is denoted by > (respe
tively, ?).De�nition 4.3 [5℄. Let B=(B;�t;�k;:) be a bilatti
e.a) A bi�lter of B is a nonempty proper subset D�B, su
h that:(i) x^y2D i� x2D and y2D, (ii) x
y2D i� x2D and y2D.b) A bi�lter D is 
alled prime, if it also satis�es the following 
onditions:(i) x_y2D i� x2D or y2D, (ii) x�y2D i� x2D or y2D.Clearly, for every prime bi�lter D we have that t;>2D, while f;?62D.De�nition 4.4 [5℄. A logi
al bilatti
e is a pair (B;D), in whi
h B is a bilatti
eand D is a prime bi�lter of B.The basi
 semanti
al notions of the four-valued 
ase 
an easily be extendedto the bilatti
e-valued 
ase. For instan
e, given a logi
al bilatti
e (B;D), the no-



O. Arieli / Para
onsistent de
larative semanti
s for extended logi
 programs 21tions of valuations, models, et
. are the same as in the four-valued 
ase. The def-inition of the impli
ation 
onne
tive  also remains the same: for every x; y;2Bthe value of x y is x if y2D, and it is t otherwise. The only di�eren
e is thatinstead of taking D = ft;>g as the set of the designated values, we now allowthat any prime bi�lter in B would be the set of the designated values.The minimal logi
al bilatti
e is FOUR with D= ft;>g. Next we des
ribea general way of 
onstru
ting logi
al bilatti
es with arbitrarily many elements:De�nition 4.5 [29℄. Let (L,�L) be a 
omplete latti
e. The stru
ture L� L =(L�L, �t, �k, :) is de�ned as follows:� (x1; y1) �t (x2; y2) i� x1 �L x2 and y1 �L y2,� (x1; y1) �k (x2; y2) i� x1 �L x2 and y1 �L y2,� :(x; y) = (y; x).A pair (x; y)2L�L may intuitively be understood so that x represents theamount of belief for some assertion, and y is the amount of belief against it.De�nition 4.6. Let (x; y)2L� L. Denote: [(x; y)℄T = x and [(x; y)℄F = y.Example 4.7. Let T WO= (f0; 1g; 0 < 1g be the 
lassi
al (two-valued) latti
e.Then in the notations of De�nition 4.5, Belnap's bilatti
e FOUR is isomorphi
to T WO�T WO by the following isomorphism: t 
orresponds to (1; 0), f 
orre-sponds to (0; 1), ? 
orresponds to (0; 0), and > 
orresponds to (1; 1).Proposition 4.8 [20,29℄. For every 
omplete latti
e (L,�L), the stru
ture L�Lis a bilatti
e.Proof. (Outlines) Given a latti
e L with a meet operation u and a join operationt, the bilatti
e operators are de�ned as follows:(x1; y1)_(x2; y2)=(x1tx2; y1uy2); (x1; y1)^(x2; y2)=(x1ux2; y1ty2);(x1; y1)�(x2; y2)=(x1tx2; y1ty2); (x1; y1)
(x2; y2)=(x1ux2; y1uy2);:(x; y)=(y; x).It is easy to verify that for every two elements x; y;2L�L, x _ y (respe
tively,x ^ y) is the least upper bound (respe
tively, the greatest lower bound) of xand y w.r.t. the �t-partial order (De�nition 4.5). Similarly, x� y (respe
tively,x
 y) is the least upper bound (respe
tively, the greatest lower bound) of x andy w.r.t. the �k-partial order (De�nition 4.5), and : satis�es all the properties ofa negation operator (De�nition 4.2).Proposition 4.9 [5℄. Let (L,�L) be a 
omplete latti
e with a maximal element,
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s for extended logi
 programsm. Then the smallest24 (prime) bi�lter in L�L is of the form f(m;x) j x2Lg.We shall denote this bi�lter by DL�L.Corollary 4.10. Let (L,�L) be a 
omplete bounded latti
e. Thena) (L�L;DL�L) is a logi
al bilatti
e.b) Every 
omplete bounded latti
e indu
es a logi
al bilatti
e.Proof. Part (a) follows from Propositions 4.8 and 4.9. Part (b) follows frompart (a).4.3. Bilatti
e-based semanti
s for prioritized logi
 programsFor giving semanti
s to prioritized logi
 programs, we have found it usefulto 
on
entrate on bilatti
es of the form f0; 1; : : : ;mg�f0; 1; : : : ;mg. We shalldenote these bilatti
es by Bm.As in the non-prioritized 
ase, we start by 
onsidering a semanti
s for prior-itized programs without negation-as-failure, and then 
onsider the general 
ase.De�nition 4.11. An m-prioritized general logi
 program is a set of quantitativegeneral 
lauses, i.e., a set of formulae of the form l n Body, where l is a literal,Body is a 
onjun
tion of literals, and n is a number between 1 and m.The quantitative values of the 
lauses (the n's) may be intuitively under-stood as representing \
on�den
e fa
tors" or \threshold values" of (the belief in)the 
orresponding 
lauses. The idea is that a head of a quantitative 
lause isevaluated only if there is a \suÆ
ient" eviden
e in favor of the 
lause's body, andthe eviden
e for the 
omplement of the 
lause head does not ex
eed the 
lause'sthreshold value. Next we formalize this intuition:De�nition 4.12. Given a logi
al bilatti
e (Bm;D) and an m-prioritized generallogi
 program P, 
onsider for every literal l and i�1 the following fun
tions:�P0 (l) = valP0 (l) = ?.thresholdPi (l) = lub�kf�Pi�1(Body) j l n Body 2 Pg. 25beliefPi (l) = lub�kf�Pi�1(Body) j l n Body 2 P; [thresholdPi (l)℄T � ng. 26valPi (l) = lub�k(valPi�1(l); beliefPi (l)).24 With respe
t to set in
lusion.25 If there is no 
lause of the form l n Body in P, de�ne thresholdPi (l)=?.26 If no 
lause of the form l n Body appears in P, or [thresholdPi (l)℄T > maxfn j l n Body2Pg,de�ne beliefPi (l)=?.
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 programs 23�Pi (l) = ([valPi (l)℄T ; [valPi (l)℄T ).For a limit ordinal � we de�ne:thresholdP� (l) = lub�kfthresholdP� (l) j �<�g.beliefP� (l) = lub�kfbeliefP� (l) j �<�g.valP� (l) = lub�kfvalP� (l) j �<�g.�P� (l) = ([valP� (l)℄T ; [valP� (l)℄T ).Again, for every propositional 
onstant x that 
orresponds to an element x2Bmwe de�ne, for every i�0, �Pi (x) = valPi (x) = x.In ea
h iteration we therefore 
ompute, for ea
h literal, its `threshold value',whi
h is the least upper bound (w.r.t. �k) of the values atta
hed to the relevant
lause bodies at the previous iteration.27 Then we 
ompute the amount of the`belief' in a 
ertain literal l during the 
urrent iteration. Again, the required valueis obtained by 
onsidering the relevant 
lause bodies, but this time we take intoa

ount only those 
lauses with a `suÆ
iently high' 
on�den
e fa
tor, i.e., those
lauses with l as their head, and with a 
on�den
e value that is not smaller thanthe threshold value of l's 
omplement. Now, valPi (�) is a �k-monotoni
 fun
tionthat is based on these belief values, and �nally | as in the four-valued 
ase |we use valPi (�) for 
onstru
ting the �k-monotoni
 sequen
e of valuations �Pi thatyields, eventually, the �xpoint semanti
s for P.Remark 4.13. As in the four-valued 
ase, for every i and l, �Pi (l) = :�Pi (l).As the next proposition shows, the semanti
s for non-prioritized programs(De�nition 3.1) is a parti
ular 
ase of the semanti
s for prioritized programs(De�nition 4.12).Proposition 4.14. Let P be a general logi
 program, and let P 0 be the 1-prioritized logi
 program obtained from P by assigning the quantitative fa
torn=1 to every general 
lause in P. Then, for every i, �Pi (de�ned in 3.1) is thesame as �P 0i (de�ned in 4.12).Proof. See Appendix A.As in the four-valued 
ase, the partial order �k on B 
an be used for de�ninga partial order on the set V B of the B-valued valuations: a valuation �1 2 V B is27 This value may be intuitively understood as an `a priori' belief in the literal under 
onsidera-tion, sin
e the 
on�den
e fa
tors of the 
lauses are not taken into a

ount in the 
al
ulationof this value.
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 programsk-smaller than another valuation �2 2 V B (notation: �1 <k �2) if �1(p) �k �2(p)for every atom p. The pair VB = (V B;�k) is 
learly a latti
e. Moreover,Proposition 4.15. Let P be an m-prioritized general logi
 program, and letB = f0; 1; : : : ;mg � f0; 1 : : : ;mg. The sequen
e �P0 ; �P1 ; �P2 ; : : : is �k-monotoni
in VB.Proof. By De�nition 4.12, for every �>� and every literal l, valP� (l)�k valP� (l).Thus �P� (l)�k �P� (l), and so �P� �k �P� .Again, by Knaster-Tarski theorem [45℄, it follows that f�Pi g has a �k-least�xpoint. We denote it by �P .The following result is an immediate 
onsequen
e of Proposition 4.14.Proposition 4.16. Let P be a general logi
 program, and let P 0 be the 1-prioritized program obtained from P by setting n = 1 as the quantitative fa
torof every general 
lause in P. Then �P (the �k-least �xpoint of the �Pi -sequen
e,de�ned in 3.1) is the same as �P 0 (the �k-least �xpoint of the �P 0i -sequen
e,de�ned in 4.12).We now generalize our formalism to m-prioritized extended logi
 programs.We do so in a way whi
h is 
ompletely analogous to the way we generalized the�xpoint semanti
s for non-prioritized general logi
 programs to non-prioritizedextended logi
 programs. I.e., we use a transformation like that of the well-founded semanti
s to eliminate the negation-as-failure operators from the 
lausebodies. What remains are m-prioritized general logi
 programs, to whi
h we givesemanti
s in the way des
ribed above. The following de�nitions formalize thispro
ess.De�nition 4.17. Anm-prioritized extended logi
 program is a set of quantitativeextended 
lauses, i.e.: a set of formulae of the form l n Body, where l is a literal,Body is a 
onjun
tion of extended literals, and n is a number between 1 and m.De�nition 4.18. Let P be an m-prioritized extended logi
 program.a) A valuation �2V 4 is a plausible model of P, if it 
oin
ides with the �xpointsemanti
s of the m-prioritized general logi
 program, obtained by redu
ing Pw.r.t. the set that is asso
iated with �. I.e., � = �P#S� .b) An adequate model of P is a �k-maximal plausible model of P.By Proposition 4.14 and De�nition 4.18 we have the following result:
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 programs 25Proposition 4.19. Let P be an extended logi
 program, and let P 0 be the 1-prioritized extended logi
 program obtained from P by assigning the quantitativefa
tor n=1 to every extended 
lause in P. Then:a) � is a plausible model of P (a

ording to De�nition 3.10) i� it is a plausiblemodel of P 0 (a

ording to De�nition 4.18).b) � is an adequate model of P i� it is an adequate model of P 0.4.4. Tweety dilemma, revisitedConsider again the logi
 program for Tweety dilemma, given in Example4.1. The 
orresponding 1-prioritized program is the following:P1 = 8>>><>>>: fly(x) 1 bird(x) :reptile(x) 1 bird(x)bird(x) 1 penguin(x) :fly(x) 1 penguin(x)bird(Tweety) 1 t penguin(Tweety) 1 t 9>>>=>>>;Sin
e P1 is a \
at" program (ea
h 
lause is assigned the same priority), then byProposition 4.16 its �xpoint semanti
s 
oin
ides with that of the non-prioritized
ase. In parti
ular, we still have that �P1(fly(Tweety)) = >. However, now it ispossible to give di�erent priorities to di�erent 
lauses. As we have noted duringthe previous dis
ussion on this example, the 
lause fly(x) 1 bird(x) des
ribesonly a default property of birds, while the other 
lauses of the program des
riberules that do not have ex
eptions. We therefore atta
h to fly(x) 1 bird(x) alower priority (
on�den
e fa
tor) than the other assertions. The logi
 programthat is obtained is the following:P2 = 8>>><>>>: fly(x) 1 bird(x) :reptile(x) 2 bird(x)bird(x) 2 penguin(x) :fly(x) 2 penguin(x)bird(Tweety) 2 t penguin(Tweety) 2 t 9>>>=>>>;The 
orresponding bilatti
e, NINE = f0; 1; 2g � f0; 1; 2g is displayed in Figure 2(see also [5,6,44℄). We abbreviate its elements by the following notations:?=(0; 0) df=(0; 1) dt=(1; 0) f=(0; 2) t=(2; 0)d>=(1; 1) of=(1; 2) ot=(2; 1) >=(2; 2)Note that NINE has two prime bi�lters: Dt = fx j x �k tg and Ddt =fx j x �k dtg. Consequently, two 
orresponding logi
al bilatti
es may be 
on-sidered: NINEt = (NINE;Dt) and NINEdt = (NINE;Ddt). As Dt � Ddt, theformer logi
al bilatti
e may be used for a more skepti
al reasoning pro
ess, whilethe latter one provides a more liberal approa
h for a query evaluation (we shall
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Figure 2. NINEdemonstrate this distin
tion in what follows).Table 1 presents the pro
ess of 
onstru
ting �P2 .Table 1iterative 
onstru
tion of �P2fun
tion bird :bird penguin :penguin fly :fly reptile :reptilethreshold1 t ? t ? ? ? ? ?belief1 t ? t ? ? ? ? ?val1 t ? t ? ? ? ? ?�1 t f t f ? ? ? ?threshold2 t ? t ? t t ? tbelief2 t ? t ? ? t ? tval2 t ? t ? ? t ? t�2 t f t f f t f tIt is easy to see that for every i�2, �P2i+1=�P2i , thus the �k-least �xpoint ofP2 is the following:�P2(bird(Tweety)) = t, �P2(penguin(Tweety)) = t,�P2(reptile(Tweety)) = f , �P2(has feathers(Tweety)) = ?,�P2(fly(Tweety)) = f .So the intuitive 
on
lusion regarding the 
ying ability of Tweety is obtained, andthe other literal 
on
lusions remain as in the non-prioritized 
ase, as expe
ted.It is interesting to note that our approa
h supports a very 
exible pro
essof belief revision. To see this, suppose that another datum arrives, and we are
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 programs 27informed that Tweety might 
y after all. Suppose further that our resour
e isnot so sure about this information, or that this resour
e is not a reliable one.There are two options to express this un
ertainty in our program: one way isto atta
h to the new information a low priority. Alternatively, we 
an put anattenuation fa
tor in the 
lause body. The impa
t of the former option is thatin 
ase of 
on
i
ts we prefer the 
omplementary information and ignore the newdata altogether, while the e�e
t of the latter option is that we always 
onsider thenew data, but give it a lower weight when we draw our 
on
lusions. A

ordingto the se
ond option, the modi�ed program may be the following: 28P3 = P2 [ f fly(Tweety) 2 dt gTable 2 des
ribes the iterative 
onstru
tion of �P3 .Table 2iterative 
onstru
tion of �P3fun
tion bird :bird penguin :penguin fly :fly reptile :reptilethreshold1 t ? t ? dt ? ? ?belief1 t ? t ? dt ? ? ?val1 t ? t ? dt ? ? ?�1 t f t f dt df ? ?threshold2 t ? t ? t t ? tbelief2 t ? t ? dt t ? tval2 t ? t ? dt t ? t�2 t f t f of ot f tAgain, after two iterations we rea
h a �xpoint, in whi
h �P3(fly(Tweety)) =of . The interpretation of this result depends on the logi
al bilatti
e under 
on-sideration (i.e., the 
hoi
e of the prime bi�lter in NINE):� In NINEot the �xpoint values of fly(Tweety) and of :fly(Tweety) are bothdesignated. This means that the new datum, although being somewhat un-reliable, 
auses an in
onsistent belief regarding the 
ying ability of Tweety.Nevertheless, the fa
t that fly(Tweety) is assigned of rather than > re
e
tsthe fa
t that P3 
ontains more eviden
e in favour of :fly(Tweety) rather thanin favour of fly(Tweety).� InNINE t the �xpoint value of :fly(Tweety) is designated, while the �xpointvalue of fly(Tweety) is not. This means that despite the new datum wea
tually still believe that Tweety 
annot 
y. However, be
ause of the newinformation, we are less 
ertain than before (thus fly(Tweety) is assigned ofrather than f).28 Where dt is a propositional 
onstant that 
orresponds to the truth value dt inNINE (intuitivelyunderstood as \true by default").
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 programs5. Some 
on
luding remarksWe 
on
lude with a summary of the main properties of the formalisms 
on-sidered here, and some further remarks regarding related semanti
s.Reasoning with in
omplete and in
onsistent dataOne of the main drawba
ks of some of the �xpoint semanti
s for extendedlogi
 program (like those of [27℄ and [37℄) is that they are redu
ed to trivialityin the presen
e of 
ontradi
tions. As su
h, these formalisms inherit one of thewell-known short
omings of 
lassi
al logi
. We do believe that sin
e in
onsistentknowledge 
an and may be represented by extended logi
 programs, a plausiblesemanti
s for su
h programs should be able to handle in
onsistent situations ina non-trivial way. That is, one should be able to draw meaningful 
on
lusions(and reje
t others) despite the in
onsisten
y. The �xpoint semanti
s 
onsideredhere has su
h 
apabilities: it pinpoints the in
onsistent and the in
omplete partsof the data, and regards the rest of the information as 
lassi
ally 
onsistent.Consider, for instan
e, the following program, whi
h is an extended variantof the program 
onsidered in Example 1.3 (see also item 3 of Example 3.14):P = ( p t q not q :p not :r1r1 t r2 not :r1 :r3 r1; r2 )This program provides a 
omplete information regarding the truth or the falsityof ri, i=1; 2; 3. Moreover, the information regarding these atoms is not a�e
tedby either p, q, or their negations. The fa
t that the data regarding q is in
ompleteand the data regarding p is in
onsistent should be lo
alized (i.e., restri
ted onlyto those literals whose de�nitions depend on p or q), and it should not a�e
t thevalues of the ri's. Thus, the in
onsistent data in P should not spoil the wholepie
e of information that is represented by this program. The �xpoint semanti
sthat was 
onsidered here follows these guidelines; the unique plausible model forP (and so its adequate model) is the following:�P = f p :>; q :?; r1 : t; r2 : t; r3 :f g:It follows that the 
omplete information in P (the one that 
on
erns with ri,i=1; 2; 3) is preserved. In addition, the reasoner may realize that the data aboutp is 
ontradi
tory, and the data about q is in
omplete.Relating negative data to its positive 
ounterpartAnother major di�eren
e between the semanti
s introdu
ed here and someother semanti
s for extended logi
 programs (e.g, [25,27,31,42℄) 
on
erns with theway a negative data is related to its positive 
ounterpart. While the formalisms
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 programs 29of [25,27,31,42℄ treat p and :p as two di�erent atomi
 formulae, we preserve therelation between an atomi
 formula and its negated atom. To see the importan
eof this, 
onsider the following program (also 
onsidered in [10, Example 3.3.6℄and [37, Example 1℄):P = f p not q q  not p :p t gA

ording to the approa
hes that treat :p as (a strange way of writing) an atomi
formula, the well-founded semanti
s would assign here t to :p, ? to p, and ?to q. So even though P is 
lassi
ally 
onsistent, the distin
tion between p and:p 
auses a 
ounter-intuitive result here. In 
ontrast, our approa
h yields a se-manti
s that seems to re
e
t the intuitive expe
tation in this 
ase: the adequatemodel of P (whi
h is also the only plausible model of P is this 
ase) assigns f top and t to q.For another example, 
onsider the following logi
 program [37, Example 6℄:P = f r  not q q  not p p not p :q  t gThe unique plausible model of P (and so its adequate model) is fp :?; q :f; r : tg(whi
h is the same as the one that is obtained in [37℄). By 
onsidering :q as anew atom, this program would have a single extended stable model, in whi
h :qis true and all the other atomi
 formulae (p; q; r) are unknown. This seems to bea 
ounter-intuitive result in this 
ase, sin
e one expe
ts here that r would followfrom P.Para
onsistent and 
oherent approa
hes to in
onsisten
yThe formalisms that we have des
ribed here for giving semanti
s to extendedlogi
 programs are para
onsistent in nature. I.e., they a

ept 
ontradi
tionswithin the theory and try to 
ope with them. Another 
ommon approa
h tohandle 
ontradi
tions (sometimes 
alled 
oherent or 
onservative [13,48℄) �rstdete
ts and eliminates the in
onsistent part of the theory. Then, when 
onsisten
yis restored, some 
lassi
al formalism is used for drawing plausible 
on
lusionsfrom the \re
overed" data. In [31℄, for instan
e, 
lauses with negative literalsin their heads are getting higher priorities than 
lauses with positive literalsin their head. The latter ones are ignored in 
ase of 
ontradi
tions with theirnegated 
ounterparts. This approa
h assures a 
ontradi
tions-free semanti
s [31,Theorem 2℄. In [38℄ 
ontradi
tions are ex
luded already in the level of knowledgerepresentation, sin
e 
lauses for default rules have the form l  Body; not l.Thus, in order to derive l, one has to verify �rst that its 
omplement, l, is notprovable. Other 
oherent formalisms for managing in
onsistent information are
onsidered, e.g., in [2{4,7,13,18℄.
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s for extended logi
 programsBelief revisionThe need to alter the set of 
on
lusions a

ording to an input that is fre-quently modi�ed is not an unusual phenomenon in 
ommon-sense reasoning ingeneral and logi
 programming in parti
ular. Thus, the plausibility of di�erentformalisms in these areas is often determined by the way they handle revised in-formation. To see that 
onsider, e.g., the following example (anonymous author):\A man fell from a plane. Fortunately, he was wearing a para
hute. Unfor-tunately, the para
hute didn't open. Fortunately, he fell from the plane at alow altitude over a large haysta
k. Unfortunately, there was a pit
hfork in thehaysta
k. Fortunately, he missed the pit
hfork. Unfortunately, he missed thehaysta
k : : :".After ea
h senten
e in this example there is a tenden
y to jump ba
k and forthbetween opposite 
on
lusions regarding the ultimate fate of the skydriver. InTweety dilemma, 
onsidered in Se
tion 4.4, we fa
ed the same phenomenon whenwe had to 
hange our mind several times regarding Tweety's ability to 
y in lightof the new data that had arrived. Indeed, in the notations used in that se
tion,� fly(Tweety) follows from P2 n fpenguin(Tweety) 2 tg,� fly(Tweety) does not follow from P2,� fly(Tweety) does not follow from P2 [ ffly(Tweety) 2 dtg when the under-lying semanti
s is indu
ed by NINEt (i.e., by a skepti
al reasoning), but itdoes follow from P2 [ ffly(Tweety) 2 dtg when the underlying semanti
s isindu
ed by NINEot (i.e., by a more liberal reasoning).As demonstrated in Se
tion 4.4, the 
exibility of the pro
ess for belief re-vision in our 
ase is re
e
ted both on the semanti
al level (di�erent 
hoi
es oflogi
al bilatti
es yield di�erent 
on
lusions), and on the synta
ti
al level (by en-han
ing the expressive power of the logi
 programs under 
onsideration, thusallowing various ways to represent knowledge, either in the program languageitself, or in a meta-language that re
e
ts the reasoner's preferen
es).A
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 programs 31AppendixA. ProofsProposition 3.3. Let P be a general logi
 program. Then �P is the k-minimalfour-valued model of P. Moreover, it is at least as 
onsistent as any other modelof P, and the 
onsequen
e relation indu
ed by it is para
onsistent.Proof. This proposition 
ontains several 
laims. We divide the proof a

ord-ingly.1. �P is a model of P:Suppose not. Then there is a 
lause l Body in P s.t. �P(Body)2D while�P(l) 62 D. In parti
ular, there is an � s.t. for every � � �, �P� (Body) 2 Dwhile �P� (l) 62D. But sin
e �P� (Body)2D, for every �>�, valP� (l) = t,29 whi
himplies that �P� (l)�k t, and so �P� (l) 2D. This 
ontradi
ts the assumptionthat �P� (l) 62D.2. �P indu
es a para
onsistent 
onsequen
e relation:Consider, e.g., P = fp t; :p tg. Here �P(p) => while �P(q) =? forevery atom q 6=p. Thus P 6j�� q for every atom q 6=p, whi
h means that trivialreasoning from an in
onsistent set of premises is not allowed.3. �P is �k-smaller than any other model of P:For a valuation � denote Sat(�)=fl j �(l)2Dg. Let � be the �xpoint ordinalof �P (i.e., the minimal � s.t. �P�0 = �P� for every �0��� �). We show thatfor every model M of P, Sat(�P� )� Sat(M). This immediately implies that�P�kM , sin
e in this 
ase, for every atom p, we have that� If �P(p)=>, then sin
e � is the �xpoint ordinal of �P , �P� (p)=>. Hen
ep;:p2Sat(�P� ). By our assumption this implies that p;:p2Sat(M), andso M(p)=> as well.� If �P(p) = t, then again by the de�nition of �, p 2 Sat(�P� ), and so p 2Sat(M). Thus M(p)2ft;>g, whi
h implies that M(p)�k �P(p).� If �P(p) = f , then �P� (p) = f and sin
e �P� (:p) = :�P� (p), we have that:p2Sat(�P� ). By our assumption, then, :p2Sat(M), thusM(:p)2ft;>g.It follows that M(p)=:M(:p)2ff;>g and so M(p)�k �P(p).� If �P(p)=? then 
learly M(p)�k �P(p).It remains to show, therefore, that for every modelM of P, Sat(�P� )�Sat(M).We show this by a trans�nite indu
tion on �.29 for su

essor ordinals this follows from the de�nition of valP� (l), and for limit ordinals thisfollows from the fa
t that for every l0, valP� (l0)2ft;?g.
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s for extended logi
 programsThe 
ase �=0 is obvious, sin
e Sat(�P0 ) = ft; 
g.30 For a su

essor ordinal� > 0, let l 2 Sat(�P� ). Then �P� (l) 2 ft;>g, and so valP� (l) � :valP� (l) 2ft;>g. This means that either valP� (l) 2 ft;>g, or :valP� (l) 2 ft;>g (i.e.,valP� (l)2 ff;>g). But sin
e for every literal l0, valP� (l0)2 ft;?g, this meansthat in our 
ase ne
essarily valP� (l) = t. Hen
e, there is a general 
lause ofthe form l Body, for whi
h �P��1(Body)2ft;>g. Thus, for every li2Body,li2Sat(�P��1). By the indu
tion hypothesis, for every li2Body, li2Sat(M),and so M(Body)2ft;>g as well. But M is a model of P, and so ne
essarilyM(l)2ft;>g, i.e. l2Sat(M).If � is a limit ordinal and l2Sat(�P� ), then by the same arguments as above,valP� (l)= t. This implies that there exists an ordinal �<�, for whi
h valP� (l)=t as well. Thus l2Sat(�P� ), and by the indu
tion hypothesis we are done.4. �P is at least as 
onsistent as any other model of P:Denote again by � the �xpoint ordinal of �P , and let Sat(�)=fl j �(l)2Dg.Suppose that �P(p) = > for some atom p. Then p;:p 2 Sat(�P), and sop;:p2Sat(�P� ). By the proof of the previous item, for every model M of P,Sat(�P� )�Sat(M). Thus p;:p2Sat(M), and so M(p)=> as well.Proposition 3.7. Let P be a positive logi
 program, and let P' be the positiveprogram obtained from P by repla
ing every impli
ation 
onne
tive by a materialimpli
ation. Denote by �Pf=? the valuation that is obtained from �P by 
hangingthe ?-assignments to f -assignments. Then:1. P and P 0 have the same 
lassi
al models (and thus the same least Herbrandmodel), and2. �Pf=? is the (unique) 2-valued minimal Herbrand model of P and P'.Proof. The �rst 
laim simply follows from the fa
t that the impli
ation 
onne
-tive of De�nition 2.4 is the same as the material impli
ation on ft; fg. Regardingthe other part, note �rst that sin
e only atomi
 formulae appear in the 
lausesheads, for every atom p and for every i we have that valPi (:p)=?, and therefore�Pi (p) = valPi (p)2 ft;?g. It follows that �P assigns only values in ft;?g to theatomi
 formulae (and so, for every literal l, �P(l)2ft; f;?g). Now, let p Bodybe a 
lause in P. Sin
e P is positive, then �P(Body) = t i� all the atoms inBody are assigned t by �P , i� all the atoms in Body are assigned t by �Pf=?, i��Pf=?(Body) = t. Similarly, �P(Body) 2 ff;?g i� there is an atomi
 formula inBody that is assigned either ? or f by �P , i� there is an atomi
 formula in Body30 Re
all that t and 
 are the propositional 
onstants that are asso
iated with t and >, respe
-tively (and so they are elements of Sat(�) for every �).
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 programs 33that is assigned f by �Pf=?, i� �Pf=?(Body) = f . It follows that for every 
lause Cin P, �P(C)2D i� �Pf=?(C)2D. Thus �Pf=? is a 2-valued model of P.It remains to show that �Pf=? is �t-minimal among the 
lassi
al models ofP. Indeed, this follows from the fa
t that �P is �k-smaller than any other modelof P (Proposition 3.3), and so the set of atomi
 formulae that are assigned t by�P does not properly 
ontain any 
orresponding set of a 
lassi
al model of P.31Thus, the set of atomi
 formulae that are assigned t by �Pf=? does not properly
ontain any 
orresponding set of a 
lassi
al model of P either, and so �Pf=? is a �t-minimal model among the 
lassi
al models of P. Sin
e P has the same 
lassi
almodels as those of P 0 (item 1 of this proposition), we 
on
lude that �Pf=? is also a�t-minimal model among the 
lassi
al models of P 0. But being positive, P' hasonly one �t-minimal 
lassi
al model (whi
h is its least Herbrand model), and so�Pf=? 
oin
ides with this model.Proposition 4.14. Let P be a general logi
 program, and let P 0 be the 1-prioritized logi
 program obtained from P by assigning the quantitative fa
torn=1 to every general 
lause in P. Then, for every i, �Pi (de�ned in 3.1) is thesame as �P 0i (de�ned in 4.12).Proof. First, as noted in Example 4.7, the bilatti
e B=f0; 1g�f0; 1g that givessemanti
s to the 1-prioritized program P 0 is isomorphi
 to the bilatti
e FOURused in Se
tion 2 to give semanti
s to the \
at" (non-prioritized) program P. Inwhat follows we shall use both representations to denote the same elements.By the de�nition of the �t-operations and the �k-operations in the bilatti
ef0; 1g�f0; 1g, we have that 32�Pi (l) = valPi (l)� :valPi (l) = ([valPi (l)℄T ; [valPi (l)℄F )� ([valPi (l)℄F ; [valPi (l)℄T )= (max([valPi (l)℄T ; [valPi (l)℄F ); max([valPi (l)℄F ; [valPi (l)℄T )).But sin
e valPi (�)2ft;?g=f(1; 0); (0; 0)g, we have that [valPi (�)℄F = 0, thus�Pi (l) = ([valPi (l)℄T ; [valPi (l)℄T ).Sin
e �P 0i (l) = ([valP 0i (l)℄T ; [valP 0i (l)℄T ), it remains to show that for every i and l,[valPi (l)℄T = [valP 0i (l)℄T . We shall 
onsider here the 
ase in whi
h i is a su

essorordinal, leaving the other 
ase to the reader.Indeed, re
all that all the 
lauses in P 0 are assigned the maximal 
on�den
efa
tor (whi
h is 1 in our 
ase), and so for every i and l, [thresholdPi (l)℄T � 1. Itfollows, then, that31 Indeed, if M is a 
lassi
al model of P and p is an atom s.t. �P(p) = t while M(p) 6= t, thenM(p)=f , and so �P 6�kM .32 See the proof of Proposition 4.8 for the de�nitions of the relevant operations.
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onsistent de
larative semanti
s for extended logi
 programsvalP 0i (l) = lub�k(valP 0i�1(l); beliefP 0i (l))= lub�k(valP 0i�1(l); lub�kf�P 0i�1(Bodyj) j l 1 Bodyj 2 P 0g).Using again the fa
t that �P 0i (l) = ([valP 0i (l)℄T ; [valP 0i (l)℄T ), we have that[valP 0i (l)℄T = max([valP 0i�1(l)℄T ; maxf[�P 0i�1(Bodyj)℄T j l 1 Bodyj 2 P 0g)= max([�P 0i�1(l)℄T ; maxf[�P 0i�1(Bodyj)℄T j l 1 Bodyj 2 P 0g).Sin
e in our 
ase B=f0; 1g�f0; 1g, it follows that[valP 0i (l)℄T =1 if 9(l 1 Body) 2 P 0 and �P 0i�1(Body) 2 Df0;1g�f0;1g,[valP 0i (l)℄T =0 otherwise.On the other hand, by the de�nition of valPi ,[valPi (l)℄T =1 if valPi (l)= t, if 9(l Body) 2 P and �Pi�1(Body) 2 DFOUR,[valPi (l)℄T =0 otherwise.It follows, therefore, that [valPi (l)℄T = [valP 0i (l)℄T , as required.B. Embedding in Fitting's semanti
sIn what follows we 
onsider some 
ases in whi
h our 4-valued semanti
s maybe transformed into Fitting's 3-valued semanti
s.De�nition B.1. Given a normal logi
 program P, 
onsider the following generallogi
 program:P� = P [ f:p l j p Body 2 P; �P(p) = ?; l 2 L(Body)g [f:p t j p f 2 P; �P(p) = ?g.Intuitively, P� is obtained from P by adding rules that expli
itly formalizewhat is impli
itly assumed by Fitting's semanti
s. For instan
e, in Fitting'ssemanti
s the meaning of p f is that p is false. Here, sin
e negations may alsoappear in the 
lause heads, we must also expli
itly de
lare that we mean that :pshould hold, and so we add the statement :p t.Proposition B.2. Let P be a normal logi
 program in whi
h ea
h atomi
 for-mula appears at most on
e in a 
lause head. Let also 	P be Fitting �xpointsemanti
s for P. Then 	P=�P� .Example B.3.1. Let P = fp  qg. A

ording to Fitting's semanti
s this is an abbreviationof P 0 = fp  q; q  fg (an atom that o

urs in P but does not appear
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 programs 35in any 
lause head in P is 
onsidered as false, see [19, Se
tion 5℄). Fitting'sleast �xpoint semanti
s for P 0 assigns f to p and q. Now, by De�nition B.1,(P 0)� = fp  q; q  f; :p  :q; :q  tg. It is easy to verify that ourfour-valued semanti
s for (P 0)� also assigns f to both p and q.2. Let P = fp  pg. Then P� = fp  p; :p  :pg. This is a naturalextension of P to an extended logi
 program that states that both p and itsnegation depend only on themselves. Clearly, then, 	P = �P� = fp : ?g.3. Consider again the logi
 program P of Remark 3.6. By De�nition B.1 we havethat P� = fp  :q; :p  q; q  tg. By Proposition B.2, our four-valuedsemanti
s for P� is the same as that of Fitting 3-valued �xpoint operator forP. Both of them assign t to q and f to p.Remark B.4. The requirement in Proposition B.2 that every atomi
 formulashould not appear more than on
e in a 
lause head is indeed ne
essary. Tosee that 
onsider, e.g., the following program:P = fq  p; q  :r; r  tg:Then P�=P [ f:q :p; :q rg, and while 	P(q) =	P(p)_	P(:r) =?, wehave that �P�(q)=f .Proof of Proposition B.2. By De�nition B.1, P� = P [ P: whereP: = f:p l j p Body 2 P; �P(p) = ?; l 2 L(Body)g [f:p t j p f 2 P; �P(p) = ?g.� Suppose �rst that for some atom q, 	P(q) = t. We show that in this 
ase�P(q)= t as well. Assuming this, then by the de�nition of P:, :q 
annot appearin the head of any 
lause of P:, and so :q 
annot appear in the head of any 
lauseof P�. It follows, then, that for every �, valP�� (:q)=?, and so �P�� (q)=valP�� (q)2ft;?g. Thus �P�(q) 2 ft;?g. On the other hand, if P1 �P2 then �P2 �k �P1 ,thus �P�(q)�k �P(q)= t. It follows, then, that �P�(q)= t, and so �P�(q)=	P (q)in this 
ase.To 
omplete the proof for the �rst 
ase it remains therefore to show that forevery atom q, if 	P(q)= t then �P(q)= t as well. Let f	P0 ;	P1 ; : : :g be the �k-monotoni
 iterative sequen
e of valuations used for 
onstru
ting 	P . Sin
e :qdoes not appear in any 
lause head in P, we have that for every � valP� (:q)=?,and so �P� (p) = valP� (q) = t. Thus, for showing that if 	P(q) = t then �P(q) = t,it is suÆ
ient to show that for every � and atom q s.t. 	P� (q) = t, valP� (q) = tas well. We show this by a trans�nite indu
tion on �. For �= 0 we have that	P0 (q)= valP� (q)=?, so the 
ondition is va
uously met. For �=1, 	P1 (q)= t i�q t2P i� valP1 (q)= t. For a su

essor ordinal �>1, 	P� (q)= t i� there is a 
lauseof the form q Body in P and 	P��1(Body)= t, i� 8li2L(Body) 	P��1(li)= t, i�(indu
tion hypothesis) 8li2L(Body) valP��1(li)= t. Thus valP��1(Body)= t, whi
h
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larative semanti
s for extended logi
 programsimplies that �P��1(Body)2D, and so valP� (q)= t. Finally, if � is a limit ordinal,	P� (q)=max�kf	P� (q) j �<�g, where �k is the three-valued analogue of �k.33Thus, the assumption that 	P� (q)= t implies that 	P� (q)= t for some �<�. Bythe indu
tion hypothesis, then, valP� (q)= t. Thus valP� (q)=max�kfvalP� (l) j � <�g2ft;>g. But we have shown that valP� (q)2ft;?g, thus valP� (q)= t.� Suppose now that 	P(q)=f . Let f	P0 ;	P1 ; : : :g be the �k-monotoni
 iterativesequen
e of valuations used for 
onstru
ting 	P . We show that for every � andliteral l s.t. 	P� (l) = f , valP�� (l) = t. Assuming this, we are able to show that�P�(q) = 	P(q) in this 
ase as well, sin
e the fa
t that 	P(q) = f implies thatthere exists some � s.t. for every � � � 	P� (q) = f , and so by our assumption,valP�� (:q)= t. Note also that by Proposition 3.3, �P is the �k-least model of P,thus, sin
e 	P is a model of P, and sin
e f=	P(q)�k �P(q)2ft;?g, ne
essarily�P(q)=?. Thus, for every �, valP� (q)=?. Sin
e q does not appear in the headof 
lauses in P:, this means that for every �, valP�� (q) = ? as well. It follows,then, that for every ��� �P�� (q)=valP�� (q)� :valP�� (:q)=?� :t=f . One thus
on
ludes that �P�(q)=f=	P(q).For this 
ase of the proof it remains, therefore, to show that for every � anda literal l s.t. 	P� (l) = f , valP�� (l) = t. We show it by a trans�nite indu
tion on�. For � = 0 the 
ondition is va
uously met, sin
e 	P0 (l) =? for every l. For�=1, the fa
t that 	P1 (l)=f entails that l f appears in P. Sin
e P is a normalprogram, l must be an atom in this 
ase. Moreover, by our assumption on P,this is the only 
lause whi
h 
ontains l as its head, and so �P(l)=?. Thus l tappears in P:, and so valP�1 (l)= t. Suppose now that for some su

essor ordinal� > 1, 	P� (l) = f . By the 
onstru
tion of the 	Pj -s, and by our assumption onP, it follows that for the only 
lause of the form l Body that appears in P,	P��1(Body) = f . This means that there is some l0 2L(Body) s.t. 	P��1(l0) = f .By indu
tion hypothesis, then, valP���1(l0) = t. Now, 	P(l) �k 	P� (l) = f thus	P(l)=f . On the other-hand, using again the fa
t that �P is the �k-least modelof P and that 	P is a model of P, 	P(l)�k �P(l)2ft;?g. Hen
e �P(l)=?. Thismeans that l l0 appears in P:. But valP���1(l0)= t, and so �P���1(l0) is designated.Thus, valP�� (l)= t, as required. The proof for limit ordinals is the same as in theprevious item.� Finally, suppose that 	P(q)=?. Again, let f	P0 ;	P1 ; : : :g be the �k-monotoni
iterative sequen
e of valuations used for 
onstru
ting 	P . This time we show thatfor every � and literal l s.t. 	P� (l) =? we have that valP�� (l) =? as well. Thisimplies that �P�(q) = 	P(q) also in this 
ase, sin
e the fa
t that 	P(q) = ?implies that for every �, 	P� (q) =?, and so by our assumption, for every � wehave that valP�� (:q) =?. Note also that sin
e ?=	P(q)�k �P(q), ne
essarily�P(q) = ?, and so valP� (q) = ? for every �. Sin
e q does not appear in the33 I.e., �1 �k �2 i� for every atom p, �1(p) �k �2(p), where ? �k t and ? �k f .



O. Arieli / Para
onsistent de
larative semanti
s for extended logi
 programs 37head of 
lauses in P:, this means that for every �, valP�� (q) =? as well. Thus�P�(q)=valP�� (q)�:valP�� (:q)=?�:?=?. It follows that �P�(q)=?=	P(q).It remains to show that for every � and a literal l s.t. 	P� (l)=?, we havethat also valP�� (l) =?. Again, we show it by a trans�nite indu
tion on �. For� = 0 this is obviously true, sin
e by their de�nitions 	P0 and valP�0 are bothidenti
ally ?. For �=1, 	P1 (l)=? i� 	P1 (p)=? where p is the atomi
 part of l,i� either p does not appear in the head of any 
lause of P, or p Body2P andL(Body) 6= ;. In the �rst 
ase neither l nor l appear in the head of any 
lauseof P�, and in the se
ond 
ase if a 
lause of the form l Body appears in P�,then L(Body) 6=;. In both 
ases, therefore, valP�1 (l)=?. For a su

essor ordinal� > 1, 	P� (l) = ? means again that 	P� (p) = ?, where p is the atomi
 part ofl. This 
an happen if either p does not appear in the head of any 
lause of P(whi
h again implies that valP�� (l)=?, as in the basis of the indu
tion), or else| by our assumption on P | there is a single 
lause in P of the form p Bodyand 	P��1(Body) = ?. This means that 8l0 2 L(Body) 	P��1(l0) 2 ft;?g (and9l002L(Body) s.t. 	P��1(l00)=?). By what we have shown in the �rst 
ase of thisproof (in 
ase that 	P��1(l0) = t) and by the indu
tion hypothesis (in 
ase that	P��1(l0)=?), valP���1(l0)=? for every l02L(Body). Thus, �P���1(l0)=valP���1(l0)2f?; tg. In other words, �P���1(l0)2f?; fg so �P���1(l0) is not designated. Sin
e theonly 
lauses in whi
h :p may appear as their head are of the form :p l0, itfollows that valP�� (:p)=?. Sin
e p do not appear as a head of any 
lause in P:,we also have that valP�� (p) = valP� (p) �k �P� (p) �k �P(p) �k 	P(p) = ?. Hen
e,both valP�� (p) =? and valP�� (:p) =?. Thus, either if l = p or l = :p, we havethat valP�� (l)=?. The proof for limit ordinals is similar to the ones given in theprevious items.Referen
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