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Paraonsistent Delarative Semantisfor Extended Logi ProgramsOfer Arieli �Department of Computer Siene, The Aademi College of Tel-AvivAntokolsky 4, P.O.Box 16131, Tel-Aviv 61161, Israel.E-mail: oarieli�mta.a.ilWe introdue a �xpoint semantis for logi programs with two kinds of negation:an expliit negation and a negation-by-failure. The programs may also be prioritized,that is, their lauses may be arranged in a partial order that reets preferenesamong the orresponding rules. This yields a robust framework for representingknowledge in logi programs with a onsiderable expressive power. The delarativesemantis for suh programs is partiularly suitable for reasoning with unertainty,in the sense that it pinpoints the inomplete and inonsistent parts of the data, andregards the remaining information as lassially onsistent. As suh, this semantisallows to draw onlusions in a non-trivial way, even in ases that the logi programsunder onsideration are not onsistent. Finally, we show that this formalism maybe regarded as a simple and exible proess for belief revision.Keywords: Logi programming, Fixpoint semantis, Paraonsisteny, Multi-valuedlogis.AMS Subjet lassi�ation: Primary 68N17, 68T37; Seondary 03B50, 03B53.1. IntrodutionLogi programming is a ombination of logi as a representation languageand the theory of (onstrutive) automated dedution. However, it has longbeen laimed that standard logi programs are neither suÆiently expressive forformalizing various informal onsiderations (suh as making preferenes amongdi�erent assertions, exeption handling, ompletion of partial knowledge in a\rational" way, et.) nor they are apable of properly imitating ommon-sensereasoning. This was partly explained by the limited syntatial struture of suhprograms, whih in partiular does not support a proper representation of nega-tive information.Various formalisms have been onsidered in order to overome this limitation� This work was prepared while the author was visiting the Department of Computer Siene,University of Leuven, Belgium.



2 O. Arieli / Paraonsistent delarative semantis for extended logi programs(see, e.g., [1,25,27,31,37,38,42,48℄ and a survey in [10, Setion 3℄). Most of themdo so by extending the expressive power of the programs under onsideration(and, of-ourse, provide some appropriate semantis that aptures the \intended"meaning of the extended logi programs that are obtained). Two syntatialmodi�ations are usually onsidered in this ontext. First, negations may appearnot only in the bodies of the rules, but also in their heads. Seond, two di�erentoperators are used for representing two di�erent types of negative information.One kind of negation, denoted here by :, orresponds to an \expliit" negativedata. Its role, like that of negation in lassial logi, is to represent ounter-information. The other kind of negation, denoted here by not, may be assoiatedwith a more \impliit" way of representing negative data. It is usually used forexpressing the fat that the orresponding assertion annot be proved or veri�edon the basis of the available information. It is therefore usual to assoiate thisonnetive with \negation-as-failure" (to prove the orresponding assertion). Thedi�erent nature of the two kinds of negations is demonstrated by the followingexample:Example 1.1. Consider a rule that expresses the fat that \If someone is in-noent (s)he annot be guilty". This rule may be represented by the followingimpliation: :guilty(x) innoent(x)I.e., innoene must entail no guilt. On the other hand, a rule like the followingone: innoent(x) not guilty(x)is somewhat less strit. It may be understood as stating that \someone is innoentas long as it has not been proven that (s)he is guilty".It follows, then, that these two negation operators should be used in di�erentontexts. This is further illustrated by the following example (borrowed from[27℄):Example 1.2. Consider a rule that states that \a shool bus may ross railwaytraks if there is no rossing train". This rule may be represented by the followingimpliation: ross railway traks :train is ommingHowever, it should not be expressed as follows:ross railway traks not train is ommingThe reason for this is that the ondition in the latter lause holds in ases thatthere is no information available about a presene of a train. This is a weaker



O. Arieli / Paraonsistent delarative semantis for extended logi programs 3ondition than that of the former lause, whih is satis�ed only if there is anexpliit evidene that no train is approahing the railway traks.Clearly, extending logi programs with two kinds of negations and allowingthe appearane of negative data in the rule heads, have far-reahing impats onthe way knowledge is represented and proessed. For instane, query evaluationbeomes more aurate sine it is possible to distinguish between a query thatfails beause it does not sueed , and a query that fails in a stronger sense, thatits negation sueeds. Moreover, these extensions of standard logi programs o�ersome new opportunities that were not available before. A partiularly importantone (on whih we fous the attention in this paper) is the ability to represent andreason with unertain information. More spei�ally, in the representation levelthis means the ability to express the following kinds of knowledge:� Inonsistent belief. I.e., a representation of ontraditory data within the lan-guage (unlike, e.g., positive logi programs, the syntax of whih rules out anypossibility of representing ontraditions.1)� Partial knowledge. I.e., the ability to deal diretly with inomplete informa-tion by expliitly pointing to ases in whih the data (or the knowledge) isinomplete.� (Hierarhy of) exeptions. I.e., the ability to disregard some piee of informa-tion in the presene of another. More generally, preferring ertain rules overothers. Suh preferenes may be represented either in the program languageitself or in a \meta-language" (as an additional information, not neessarilyrepresented in a lausal form, and sometimes not even spei�ed by �rst-orderformulae).In what follows we shall see how all these di�erent types of knowledge are rep-resented in our framework. For the time being we remain on the intuitive leveland just note that the strong negation : will usually be useful for representingontraditory data, while the negation-by-failure operator not will be useful forrepresenting inomplete data. In addition, we will also allow some additionalinformation, expressed as a \meta-knowledge", whih exhibits preferenes of er-tain piees of information over others.A proper way of handling inomplete and inonsistent information meansalso an adequate formalism for proessing (i.e., reasoning with) this kind of data.The two main requirements in this respet are the following:1 Furthermore, even some formalisms that do allow negations in the lause bodies and heads(e.g., [27,31,42℄), treat atomi formulae and their negations as two di�erent ways of representingatomi information, so pratially a representation of inonsistent information is not fullysupported in this ase as well. We shall return to this issue in what follows.



4 O. Arieli / Paraonsistent delarative semantis for extended logi programs� Non-monotoniity. I.e., the ability to modify the set of onlusions in the lightof new data. This is an important property of any formalism that deals withpartial information and applies default assumptions to it.� Paraonsisteny [15℄. The semantis of inonsistent logi programs should notbe trivial, that is, inonsistent information should not entail every onlusion.The following examples demonstrate these properties:Example 1.3. Consider the following logi program, where p and q are twoatomi formulae, and t is a propositional onstant that orresponds to the las-sial truth value that represents true assertions.P = fq  t; p t; :p not :qgIntuitively, P may be understood suh that both p and q are known to be true, and:p is also true, provided that it annot be shown that the negation of q holds.In this interpretation P learly ontains inonsistent information regarding p.However, a paraonsistent formalism should not attah to P a trivial �xpointsemantis, sine some part of it (fq tg in our ase) is not related whatsoeverto any ontraditory information in P (and therefore it should have a onsistentinterpretation).2 Moreover, a plausible semantis for suh programs should makea lear distintion between the \robust" part of the program (i.e., those lausesthat are not based on any ontraditory information) and the \spoiled" one (i.e.,rules that are de�ned in terms of inonsistent data).Suppose now that a new datum arrives, and it indiates that if p holds then:q must hold as well. The new program is therefore the following:P 0 = P [ f:q  pgNow, the information regarding p beomes onsistent (as the ondition for on-luding :p does not hold anymore), while the data regarding q is now inonsistent.A non-monotoni formalism should adapt itself to the new situation. In parti-ular, while the query :p should sueed where P is the underlying program, itshould fail w.r.t. P 0.Example 1.4. A robust formalism for reasoning with unertainty should also beable to handle inomplete information in a plausible way. This is demonstratedby the following example: P = fq  t; p not pgThis time P ontains inomplete information regarding p. Unlike some formalismsthat do not provide any model for this program (e.g., the stable model semantis[26℄), we laim that a proper semantis for P should distinguish between the2Note that sine the data regarding p is inonsistent, the other two lauses ontain \unreliable"information, and thus may have inonsistent interpretations.



O. Arieli / Paraonsistent delarative semantis for extended logi programs 5meaningful data in P (fq tg), and the meaningless data (fp not pg). Notethat the well-founded semantis [47℄ does provide a plausible solution to thisase. In what follows (Setion 3.2) we shall use this property of the well-foundedsemantis for de�ning our way of handling inomplete information.Many of the well-known formalisms for giving semantis to extended logiprograms (e.g., [27,37℄) redue to triviality in the presene of ontraditory data,and so they are not paraonsistent. Our approah, on the other hand, aeptsontraditory data and tries to ope with it. As lassial logi is neither non-monotoni nor paraonsistent, this approah must be non-lassial in nature.3In our ase we use multiple-valued semantis in whih there are partiular truthvalues that orrespond to di�erent degrees of ontraditions and partial informa-tion. The use of multiple-valued logis for giving semantis to logi programs isdisussed and justi�ed in Setions 2.2 and 4.2.The rest of this paper is organized as follows: in the next setion we representour framework. In partiular, we onsider some semantial aspets suh as show-ing that Belnap four-valued struture [11,12℄ is partiularly suitable for represent-ing the kind of information we intend to deode in logi programs. In Setion 3 weintrodue our �xpoint theory, �rst for logi programs without negation-as-failure,and then for the general ase. In Setion 4 we further generalize our formalism toases in whih the logi programs under onsideration are prioritized, i.e., everylause has its own relative priority over the other lauses. For extending oursemantis to the prioritized ase we onsider a generalization of the four-valuedsemantial struture to a larger family of multiple-valued algebrai strutures,alled bilatties [20,28,29℄. The semantis that is obtained is then disussed andsome of its properties are illustrated. In Setion 5 we summarize the main prop-erties of our formalism (with respet to other related �xpoint semantis), andonlude.2. Preliminaries2.1. Logi programsIn what follows p; q; r denote atomi formulae, l; l1; l2; : : : denote literals (i.e.,atomi formulae that may be preeded by :), and e; e1; e2; : : : denote extendedliterals (i.e. literals that may be preeded by not). The omplement of a literall is denoted by l (that is, if l=p for some atom p then l=:p, and if l=:p thenl=p). As usual in the ontext of logi programming, we shall deal with formulaein a lausal form, as de�ned below:3 See, e.g., [5,6,11,12,32,34,39℄ for some non-lassial methods for reasoning with partial orontraditory information.



6 O. Arieli / Paraonsistent delarative semantis for extended logi programsDe�nition 2.1. Let n�m�0.� A positive lause is a formula of the form p p1; : : : ; pn 4� A standard lause is a formula of the form p p1; : : : ; pm; not pm+1; : : : ; not pn� A normal lause is a formula of the form p l1; : : : ; ln� A general lause is a formula of the form l l1; : : : ; ln� An extended lause is a formula of the form l  e1; : : : ; enGiven a lause l  e1; e2; : : : ; en, we say that l is the ause head , ande1; : : : ; en is the lause body (sometimes abbreviated by Body). The lause headis also alled the onlusion (of the lause), and eah element in the lause bodyis alled a ondition (of the lause). The set of the (extended) literals that appearin Body is denoted by L(Body).A (possibly in�nite) set P of extended (respetively: positive, standard,normal, general) lauses is alled an extended (respetively: positive, standard ,normal , general) logi program.2.2. Some semantial onsiderationsA. The underlying multi-valued strutureFirst, we should deide what underlying semantis is most suitable for ourintended formalism. It is well-aepted that two-valued semantis is an appro-priate semantial framework for positive logi programs. This is so sine everypositive logi program P has a unique least Herbrand model, whih is idential tothe least �xpoint of van-Emden and Kowalski's immediate onsequene operator[46℄ of P. It follows, therefore, that the \intended" semantis of positive logiprograms an be aptured within the two-valued setting.Things are getting more ompliated when negations may appear in thelause bodies. In suh ases a least two-valued model does not always exist(Consider, e.g., P = fp not pg), and there are ases in whih several minimaltwo-valued models exist (For instane, P = fp :q; q :pg has two minimalHerbrand models. In one of them p is true and q is false, and in the other one qis true and p is false). One ommon way to overome these problems is to on-sider a minimization w.r.t. a three-valued semantis: Fitting's operator [19,23℄,based on Kripke/Kleene 3-valued semantis [30℄ always yields a least �xpointwhen applied to normal logi programs, and this is also the ase with the three-valued well-founded semantis [47℄, applied to standard logi programs. Undersome further assumptions on the syntatial struture of the logi programs underonsideration, some other 2-valued and 3-valued �xpoint semantis are uniquely4 Suh formulae are also alled de�nite lauses.
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Figure 1. Belnap four-valued struture, FOURdetermined. For instane, as shown in [40,41℄, every standard logi program thatis weakly strati�ed [40℄ has a unique weakly perfet model [40℄, whih oinideswith its unique stable model [26℄ and its unique well-founded model [47℄.When negations may also appear in the lause heads, the logi programsmay be inonsistent, and so unless inonsisteny redues to triviality, neither 2-valued nor 3-valued models an apture the semantis of suh programs anymore.Briey, this is due to the fat that if P is some general (or extended) logiprogram, then an \appropriate" semantis for it should be able to distinguishamong the following four di�erent ases:1. p t 2 P, :p t 62 P2. p t 62 P, :p t 2 P3. p t 2 P, :p t 2 P4. p t 62 P, :p t 62 PAssuming that neither p nor :p appears in any lause head in P other thanthose mentioned above, one expets that in the former two ases p would have alassial value (t in the �rst ase and f in the seond ase), and in the latter twoases two other values should be attahed to p: one for denoting that the dataregarding p is inonsistent (as in ase 3 above), and the other for denoting thatthere is insuÆient information regarding p (as in ase 4 above).It follows that in order to apture these four di�erent ases on the seman-tial level, a semantial struture for general or extended logi programs shouldontain (at least) four di�erent elements. Probably the best-known struturewith this property is Belnap's FOUR (Figure 1).



8 O. Arieli / Paraonsistent delarative semantis for extended logi programsBelnap's algebrai struture was introdued in [11,12℄ as a semantial toolfor representing di�erent states of a reasoner's knowledge (or belief). This stru-ture onsists of four truth values: the lassial ones (t; f), a truth value (?)that intuitively represents lak of information, and a truth value (>) that mayintuitively be understood as representing ontraditions. These four elementsare simultaneously arranged in two partial orders. In one of them (denoted hereby �t), f is the minimal element, t is the maximal one, and ?;> are two in-termediate values that are inomparable. This partial order may be intuitivelyunderstood as representing di�erenes in the amount of truth of eah element. Wedenote by ^ and _ the meet and join operations w.r.t �t (hene, e.g., >_?= t).In the other partial order (denoted here by �k), ? is the minimal element, > isthe maximal one, and t; f are two intermediate values. This partial order intu-itively represents di�erenes in the amount of knowledge (or information) thateah element exhibits. We denote by 
 and � the meet and join operations w.r.t�k (hene, e.g., t�f =>). Another useful operator on FOUR is the negation(denoted here by :) that is order reversing w.r.t. �t and order preserving w.r.t.�k, i.e., :t=f , :f= t, :>=>, and :?=?.The various semantial notions are de�ned on FOUR as natural general-izations of similar lassial ones: a valuation � is a funtion that assigns a truthvalue in FOUR to eah atomi formula. In what follows we shall sometimeswrite � = fp : x; q : yg instead of �(p) = x, �(q) = y. Any valuation is extendedto omplex formulae in the obvious way. The set of the four-valued valuations isdenoted by V 4.D = ft;>g is the set of the designated elements of FOUR, i.e., the set ofelements in FOUR that represent true assertions. Hene, we say that a valuation� satis�es a formula  i� �( )2D. Note that D is a prime �lter in FOUR (w.r.t.both �t and �k) that onsists of the elements that are �k-greater than or equalto t. This orresponds to Belnap's observation that the designated elements ofFOUR should be those that are \at least true" (see [12, Page 36℄).A valuation that assigns a designated value to every lause in a logi pro-gram P is a model of P.Next we de�ne a useful partial order on the elements of V 4 in terms of thepartial order �k of FOUR:De�nition 2.2.a) A valuation �1 2 V 4 is k-smaller than another valuation �2 2 V 4 if for everyatomi formula p, �1(p) �k �2(p).b) A valuation � 2 V 4 is a k-minimal element in a set S�V 4 if there is no otherelement in S that is k-smaller than �. If there is a single k-minimal element



O. Arieli / Paraonsistent delarative semantis for extended logi programs 9in S, we shall sometimes all it the k-least element of S.It is easy to see that De�nition 2.2(a) indues a lattie struture on the set ofthe four-valued valuations: V4=(V 4;�k). Another useful way of (pre-)orderingthe elements in V 4 is the following:De�nition 2.3 [5,6℄.a) A valuation �1 2 V 4 is more onsistent than another valuation �2 2 V 4 iffp j �1(p)=>g � fp j �2(p)=>g.b) A valuation � 2 V 4 is a maximally onsistent element in a set S�V 4 if thereis no other element in S that is more onsistent than �. 5Clearly, the interesting ases of De�nitions 2.2(b) and 2.3(b) are obtainedwhen S is the set of the models of the logi program P under onsideration. Twoimportant sets of models are obtained in these ases: The k-minimal models ofP, and the maximally onsistent models of P. We shall reonsider these modelsin what follows.B. The meaning of the impliation onnetiveLet P be a general logi program. The onnetives that appear in the bod-ies or the heads of the lauses in P, i.e.: onjuntions (;)6 and negations (:),should be regarded, respetively, as the greatest lower bound and the order-reversing operation w.r.t. the �t-partial order of FOUR.7 This orresponds tothe natural extensions to the multiple-valued ase of the 2-valued de�nitions ofthese onnetives. However, as has already been observed in [10,27℄, the implia-tion onnetive  of the program's lauses should not be taken as the materialimpliation  -, where p  - q � p _ :q. This is so sine, for instane, the in-tuitive meaning of f:p t; p :qg is di�erent than the intuitive meaning off:p t; q :pg,8 thus a plausible semantis for P annot be `ontrapositive'w.r.t.  and :. Moreover, in the multi-valued setting, the material impliation - is not suitable for representing entailment anymore. This is mainly due to thefollowing reasons:1. p -p does not always hold in the four-valued setting, sine exluded-middleis not a four-valued tautology (Note that �(p_:p)=? when �(p)=?).5 In [5,6℄ a valuation with the same property is alled a most onsistent element of S. Here wehave hanged the terminology, so that it would not suggest uniqueness.6 Commas are used here also as a separator among lauses in the same program. This will notause any ambiguity.7We shall disuss the semantis of the negation as failure operator (not) in a later stage.8 Intuitively, in the former program there is no expliit information on the validity of q, and soq should not have a designated value, while in the latter program the ondition in the rulethat de�nes q is satis�ed, and so this time q should be assigned t.



10 O. Arieli / Paraonsistent delarative semantis for extended logi programs2.  - does not have a dedutive nature in FOUR. For instane, the fat thatevery four-valued model of some onjuntion Body is also a model of a literal ldoes not imply that l -Body is true in every four-valued valuation (Consider,e.g., the ase in whih Body= l).We therefore onsider an alternative de�nition for the impliation onne-tive, aording to whih it does funtion as an entailment in the four-valuedsetting:De�nition 2.4 [5,8℄. Let x; y 2 FOUR. De�ne:x y = (x if y2Dt otherwiseNote that on ft; fg the material impliation and the new impliation areidential, and both of them are generalizations of the lassial impliation. How-ever, unlike the material impliation, the impliation onnetive de�ned in 2.4does preserve both properties of entailment that were mentioned above.In what follows we therefore use the impliation onnetive of De�nition2.4 for representing the entailment of the program's lauses. Note that the se-mantis of this impliation is in aordane with the following standard way ofunderstanding entailment in logi programs:Proposition 2.5. For every valuation �2V 4 we have that �(l  Body)2D i�either �(l)2D or �(Body) 62D.Proof. Immediately follows from De�nition 2.4.2.3. The language and its extension to the �rst-order aseThe language of the logi programs onsidered here is based on the implia-tion onnetive  , the meaning of whih was disussed in the previous setion,onjuntion that orrespond to the �t-join operator in FOUR, two negationoperators : and not, and four propositional onstants t, f, , u, that are respe-tively assoiated with the elements t, f , >, ? in FOUR. We therefore remain,basially, on the propositional level. However, as �rst-order lauses are onsid-ered as universally quanti�ed, �rst order logi programs may be handled withinour framework as well. We do so by onsidering their ground instanes; everynon-grounded lause is viewed as representing the orresponding set of groundlauses, formed by substituting every variable that appear in this lause withevery possible element of the orresponding domain. Formally, let � be a ground



O. Arieli / Paraonsistent delarative semantis for extended logi programs 11substitution from the variables of every lause C in P to the individuals of theset of the losed terms H of P. Then we shall onsider programs of the formPH = f�(C) j C 2P; � :var(C)!Hg:In what follows we shall abbreviate P for PH .3. Paraonsistent delarative semantis for logi programsWe are now ready to introdue our �xpoint semantis for logi programs.First, we treat general logi programs (i.e., programs without negation-as-failure),and then we onsider extended logi programs.3.1. Semantis for general logi programsDe�nition 3.1. Given a general logi program P, de�ne for every i � 1 andevery literal l the following valuations:�P0 (l) = ?.valPi (l) = (t if there is a lause l  Body 2 P s.t. �Pi�1(Body) 2 D, 9? otherwise.�Pi (l) = valPi (l)� :valPi (l). 10For a limit ordinal � we de�ne:valP� (l) = max�kfvalP� (l) j �<�g, �P� (l) = valP� (l)� :valP� (l).Also, for every propositional onstant x 2 ft; f; ; ug that is assoiated with anelement x2ft; f;>;?g in FOUR, we de�ne �Pi (x) = valPi (x) = x (i = 0; 1; : : :).The basi operator used here for handling ontraditory information is the�k-join, �. As it is noted in [21,24℄, this operator may be assoiated with a\gullibility" (\aept all") funtion that omputes the ombined knowledge ofits arguments. The hoie of this operator may be intuitively justi�ed, then, bythe need to do the following: (a) reord ases in whih there is an evidene for aspei� assertion and for the omplementary assertion as the same time, and (b)pinpoint the ontraditory knowledge (or belief).Note also that for every i, �Pi behaves as expeted w.r.t. negation: sine forevery x; y 2 FOUR, :(x� y) = :x� :y, we have that:�Pi (l) = :(valPi (l)� :valPi (l)) = :valPi (l)� valPi (l) = �Pi (l):9 �Pj is de�ned on onjuntive formulae in the usual way: �Pj (Body)=Vli2L(Body) �Pj (li). Thus,�Pj (Body) 2 D i� 8li2L(Body) �Pj (li)2D.10 Reall that l is the omplement of l, and � is the �k-join operation in FOUR.



12 O. Arieli / Paraonsistent delarative semantis for extended logi programsProposition 3.2. The sequene �P0 ; �P1 ; �P2 ; : : :, de�ned in 3.1 for a general logiprogram P, is �k-monotoni in V4.Proof. Sine the set D of the designated values is upwards-losed w.r.t. �k, iteasily follows from De�nition 3.1 that for a given general logi program P, thesequenes fvalPi g and f�Pi g are both �k-monotoni in i.By Knaster-Tarski theorem [45℄, it follows from Proposition 3.2 that thesequene f�Pi g has a �k-least �xpoint. Denote this �xpoint by �P . An induedonsequene relation j�� may now be de�ned as follows: P j��  i� �P( ) 2 D(Thus, a query  follows from a logi program P if �P( ) is designated).Proposition 3.3. Let P be a general logi program. Then �P is the k-minimalfour-valued model of P. Moreover, it is at least as onsistent as any other modelof P,11 and the onsequene relation indued by it is paraonsistent.Proof. See Appendix A.Corollary 3.4. Let P be a general logi program. Then �P is the k-least modeland a maximally onsistent model of P.Proof. Immediately follows from Proposition 3.3 and its proof.Being the k-least model of P, �P minimizes the amount of knowledge thatis pre-supposed, i.e. it does not assume anything that is not really known. Thisproperty is further disussed in Remark 3.6 below. Moreover, the last orollaryalso indiates that �P minimizes the amount of inonsistent belief in the set oflauses.12 This is in aordane with the intuition that while one has to dealwith onits in a nontrivial way, ontraditory data orresponds to inadequateinformation about the real world, and therefore it should be minimized (see also[6℄ for a disussion on maximally onsistent models of general theories).Note that the last orollary does not imply that �P is the only maximallyonsistent model of P. Indeed, onsider for instane the following program:P = fp t; :p t; p qgBeside �P = fp :>; q :?g, P has two other maximally onsistent models, namelyfp :>; q : tg and fp :>; q : fg. However, by Corollary 3.4 we have the followingresult that shows that �P provides the most ompat way of representing themost onsistent knowledge:11 In the sense that the set of the atoms that are assigned > by �P does not properly ontainany similar set of another model of P.12 Reall De�nition 2.3.



O. Arieli / Paraonsistent delarative semantis for extended logi programs 13Corollary 3.5. �P is the k-least model among the maximally onsistent modelof P.Remark 3.6. Syntatially, normal logi programs are speial ases of generallogi programs. Still, there are semantial di�erenes between a set of rulesviewed as a normal program, and the same set of rules viewed as a general (orextended) program. For instane, most of the semantis for normal logi programsassign f to any atom that does not appear in (any lause head in) the program.However, in general or extended logi programs this an be inferred from generalrules that are stated in the program itself (e.g., by adding rules for losed wordassumption; see Example 3.14a below), and so the absene of an atom p from ageneral logi program indiates that p does not hold. Hene, if nothing is statedregarding :p as well, in the orresponding semantis p should be unknown.13For another example on the semantial di�erenes, onsider the following(general) program: P = fp :q; q  tg:Treated as a normal program, some of the 2-valued and the 3-valued �xpointsemantis for P assign t to q and f to p. Aording to those semantis thehead of a lause program is assoiated with its orresponding lause bodies, andtherefore the truth value attahed to a lause head should be the same as the(least upper-bound of) the value(s) of its lause body(ies). This, however, is notthe ase in our semantis, whih assigns t to q and ? to p. This is justi�ed by thefat that P is now onsidered as a general logi program, and so had one wantedto identify the information regarding p with that of its lause body, (s)he shouldhave added to P also the onverse impliation (in trms of p), i.e., :p  q.14 Inthe absene of suh lause our four-valued semantis orretly indiates that oneshould not onlude here that p is false! 15One again, this example demonstrates our slogan: our semantis alwaysassumes as minimal knowledge as reasonably possible. Thus, if one wishes tointrodue more assumptions (e.g., to apply Clark's ompletion [14,33℄ to spei�prediates), (s)he just has to add the appropriate lauses. In the absene of suhinformation the program may have other meaning than those that are imposed bysome of the 2-valued or 3-valued semantis for normal logi programs. Moreover,sine it is not always possible to distinguish in standard or normal logi programsamong the various possibilities o�ered by general (or extended) logi programs,suh re�nements sometimes annot even be aptured by the 2-valued or the 3-valued semantis for standard/normal logi programs!13 See also a remark on this matter in [27, Pages 591{592℄.14 Indeed, as shown in Example B.3 in Appendix B, our 4-valued �xpoint semantis of P[f:p qg assigns t to q and f to p.15 This is so sine the ondition of the rule that de�nes p does not hold, and so one annot inferanything meaningful about p.



14 O. Arieli / Paraonsistent delarative semantis for extended logi programsIn the rest of this setion we show that in ertain ases it is possible torestore from our 4-valued �xpoint formalism some other 2-valued or 3-valued�xpoint formalisms, if so one wishes.Proposition 3.7. Let P be a positive logi program, and let P' be the positiveprogram obtained from P by replaing every impliation onnetive by a materialimpliation. Denote by �Pf=? the valuation that is obtained from �P by hangingthe ?-assignments to f -assignments (I.e., for every atom p, if �P(p) = ? then�Pf=?(p)=f). Then:1. P and P 0 have the same lassial models (and thus the same least Herbrandmodel), and2. �Pf=? is the (unique) 2-valued minimal Herbrand model of P and P'.Proof. See Appendix A.The proess of restoring Fitting's �k-minimal 3-valued Kripke/Kleene se-mantis for normal logi programs [19℄ is somewhat more ompliated than theproess of restoring the 2-valued semantis of positive logi programs, desribedin Proposition 3.7 above. Note, however, that if P is a normal logi program, thefollowing properties hold:1. For every atom p, �P(p)2ft;?g.Proof. For every i and p, vali(p)2ft;?g, and sine P is a normal program,vali(:p)=?. Thus, for every i, �Pi (p)=vali(p)2ft;?g, and so �P(p)2ft;?gas well.2. �P�k	P , where 	P is the �k-least �xpoint of Fitting's operator for P.Proof. By the fat that 	P is a model of P and �P is the �k-least model ofP.16It follows, therefore, that �P an be viewed as an \approximation" of 	P : if�P assigns t to some atomi formulae, then so is 	P , and if �P assigns ? to someatom, then 	P assigns either ? or f to this atom. Thus, in order to restore from�P Fitting's 3-valued �xpoint semantis for P, it is possible to apply Fitting'soperator on �P (rather than to start the iterations with a valuation that assigns? to every atom), and then to proeed until a �xpoint is reahed. This �xpointoinides with Fitting 3-valued Kripke/Kleene semantis for P.An alternative way of omputing Fitting's 3-valued semantis from our 4-valued semantis is desribed in Appendix B.16 Note that aording to our semantis, the set of models of P ontains the set of models w.r.t.Fitting's semantis. Thus (as illustrated in Remark 3.6), although 	P is the �k-least modelin Fitting's semantis, it is not neessarily the �k-least one in our ase.



O. Arieli / Paraonsistent delarative semantis for extended logi programs 153.2. Semantis for extended logi programsIn this setion we extend the �xpoint semantis for general logi programs,onsidered in the previous setion, to extended logi programs. So now, in addi-tion to the expliit negation (:), the negation-as-failure operator (not) may alsoappear in the lauses bodies.One way of understanding not in the four-valued setting is the following: ifwe don't know anything about p, i.e. we annot prove either p or :p, then weannot say anything about not p as well. Otherwise, if p has a designated valuein the intended semantis (i.e., p is provable), then not p does not hold, and if pdoes not have a designated value (i.e., it is not provable), then not p holds. Itfollows, then, that not t = f , not > = f , not f = t, and not ? = ?.17This interpretation of not is a natural generalization to the four-valued aseof the way not is interpreted by the well-founded semantis [47℄. We thus givesemantis to logi programs in whih not may appear in the lause bodies byusing a transformation, whih is similar to that of the well-founded semantis,for reduing extended logi programs to general logi programs. Then we usethe mahinery of the previous setion for giving semantis to the general logiprograms that are obtained. Below we formalize this idea.De�nition 3.8. Let � be a four-valued valuation. The set S� of literals that isassoiated with � is the smallest set that satis�es the following onditions: 18if �(l)= t then l2S� ; if �(l)=f then l2S� ; if �(l)=> then fl; lg�S� :Obviously, one an de�ne the onverse transformation as well. A four-valuedvaluation �S may be onstruted from a set S of literals as follows: for everyatom p, �S(p) = 8>><>>:t if p2S and :p 62Sf if p 62S and :p2S> if p2S and :p2S? if p 62S and :p 62S17 It is interesting to note that in this interpretation, not may be represented as a onjuntionof two other negation operators: not p = :p^�p, where �p is an abbreviation of p!f , i.e.,�p=f if p2D, and �p= t if p 62D.18 Suh sets are sometimes alled answer sets (for �). We shall not use this terminology here,sine it is usual to require that if an answer set ontains a pair of omplementary literals,then it should ontain every literal. Sine our formalism does not redue to triviality in thepresene of inonsistent information, this requirement should obviously not hold here.



16 O. Arieli / Paraonsistent delarative semantis for extended logi programsDe�nition 3.9. Let P be an extended program and let S be a set of literals.The redution of P w.r.t. S is the general logi program P #S, obtained from Pas follows:1. Eah lause that has a ondition of the form not l for some l2S, is deletedfrom P.2. Every ourrene of not l, where l2S, is eliminated from the (bodies of the)remaining lauses.193. Every ourrene of not l in the (bodies of the) remaining lauses is replaedby the propositional onstant u.20Now we are ready to de�ne our �xpoint semantis for extended logi pro-grams. Reall that �P denotes the �xpoint semantis for a general logi programP.De�nition 3.10. A valuation �2 V 4 is a plausible model of an extended logiprogram P, if it oinides with the �xpoint semantis of the general logi programobtained by reduing P w.r.t. the set that is assoiated with �. In other words,� is a plausible model of P i� � = �P#S� :Remark 3.11. If the only negation operator that appears in P is :, then P isa general logi program, and so its unique plausible model is �P . It follows, inpartiular, that the notion of plausible models of extended logi programs is ageneralization of the de�nition of �xpoint semantis for general logi programs.Proposition 3.12. A plausible model of P is indeed a model of P.Proof. Let � = �P#S� be a plausible model of P. Sine P #S� is a general logiprogram, by Proposition 3.3 � is a model of P #S�. But by the semantis of notand the de�nition of redution it is lear that if M is a model of P #SM then Mis also a model of P. One onludes, then, that � is a model of P.As it is shown in Example 3.14 below, an extended logi program may havemore than one plausible model, and so one may use di�erent preferene riteriafor hoosing the best models among the plausible ones. In the ase of generallogi programs we have hosen �k-minimization as the riterion for preferringthe \best" model among the �xpoint valuations. This was justi�ed by the fatthat general logi programs may ontain ontraditory data, and so we want to19 If a lause body beomes empty by this transformation, we treat this body as if it onsists ofthe propositional onstant t.20 Note that for this l, neessarily l 62S and l 62S.



O. Arieli / Paraonsistent delarative semantis for extended logi programs 17minimize the redundant information as muh as possible. In the present ase werather use the opposite methodology: sine the negation-as-failure operator isassoiated with inomplete information, we are dealing here with a lak of data,so this time we should try to restrit the e�et of the negation-as-failure operatoronly to those ases in whih indeed there is not enough data available. It follows,therefore, that now we should seek for a maximal knowledge (among the plausiblemodels). 21De�nition 3.13. � is an adequate model of P if it is a �k-maximal elementamong the plausible models of P. 22Example 3.14. Below we onsider our semantis for some inonsistent and/orinomplete logi programs.1. P = f:p not pg.Intuitively, P represents a losed word assumption (CWA, [43℄) regardingp: in the absene of any evidene for p, assume that :p holds. P has twoplausible models �1=fp :?g and �2=fp :fg. But �2>k�1, and so �2 is theadequate model of P.2. (Example 1.4, revisited) P = fp not p; q  tg.The adequate model of P here is fp :?; q : tg. This indeed seems to be theonly reasonable interpretation here (see the disussion in Example 1.4), andit oinides with the well-founded model [47℄ (for standard logi programs) ofP. Two-valued semantis, suh as Gelfond-Lifshitz stable model semantis[26℄, do not provide any model for P.3. (Example 1.3, revisited) P = fq  t; p t; :p not :qg.The adequate model here is fp :>; q : tg. It reets our expetation that sine:q does not follow from P, the knowledge about p is ontraditory. Note thataording to the semantis given in [27,37℄, P does not have any model, sineit ontains ontraditory information.We postpone to a later stage (Setion 5) some further disussions on ade-quate models and other formalisms for giving semantis to extended logi pro-grams. First we omplete the presentation of our formalism also for the prioritizedase.21 Informally, we use here a \min/max strategy": knowledge minimization on the ontraditoryomponents of the program, and knowledge maximization on its inomplete omponents.22 I.e., � is a plausible model of P, and there is no other plausible model of P that is stritly�k-bigger than �. Note also that by Proposition 3.12, � is indeed a model of P.



18 O. Arieli / Paraonsistent delarative semantis for extended logi programs4. Prioritized logi programs4.1. MotivationAs Proposition 3.3 and Corollary 3.4 imply, the four-valued �xpoint seman-tis onsidered in the previous setion has several appealing properties. However,there might be ases in whih one would like to re�ne the inferene mehanismindued by this �xpoint. To see this, onsider the following example.Example 4.1 (Tweety dilemma). Consider the following well-known program:P = 8><>: fly(x) bird(x) :reptile(x) bird(x)bird(x) penguin(x) :fly(x) penguin(x)bird(Tweety) t penguin(Tweety) t 9>=>;The �xpoint semantis of P is the following:�P(bird(Tweety)) = t, �P(penguin(Tweety)) = t,�P(reptile(Tweety)) = f , �P(has feathers(Tweety)) = ?,�P(fly(Tweety)) = >.While the truth values that are assigned to bird(Tweety), penguin(Tweety),reptile(Tweety) and has feathers(Tweety) orrespond to the intuitive expe-tations in this ase,23 one usually tends to onlude from P that Tweety annoty. However, this onlusion is based on some further, impliit knowledge, thatis not represented in the program. Suh knowledge is, e.g., the fat that the rule\birds an y" has exeptions that should \override" the default rule. Anotherkind of knowledge that is not enoded in this program is the fat that the infor-mation that Tweety is a penguin is more spei� than the statement that it is abird, therefore the former data should have a higher priority than the latter one,in ase of \ollisions" between the two.The above inaurate onlusion about the ying ability of Tweety is there-fore an outome of the limited way that knowledge is represented here, rather thana onsequene of a shortoming of the reasoning proess. A general method toimprove knowledge representation is to provide a way to prefer a ertain data overthe other. In example 4.1, for instane, suh mehanism will allow us to indiatethat the lause that states that \penguins annot y" should get a preedeneover the one that states that \birds an y".Several methodologies for making suh preferenes have been proposed inthe literature. In [31℄, for instane, rules with negative onlusions are viewed as23 The assignment of ? to has feathers(Tweety) is justi�ed by the fat that nothing is mentionedin the program about the property \has feathers".



O. Arieli / Paraonsistent delarative semantis for extended logi programs 19representing exeptions of rules with the positive ounterparts as their onlu-sions. As suh, the former rules are given higher priorities over the latter rules.Thus, for instane, in the semantis of [31℄ for P=fq  t; p t; :p not :qg,p is false (f. Example 3.14, Item 3).Aording to the formalism proposed by Pereira et al. in [38℄, preferenes ofdi�erent rules are enoded within the language itself. Aording to this approahthe onit regarding the ying ability of Tweety in Example 4.1 is resolved bystating that birds an y unless they are \abnormal birds". Thus, in the programof that example, fly(x) bird(x) should be replaed by the following two rules:fly(x) bird(x); not abnormal bird(x)abnormal bird(x) bird(x);:fly(x)In the same paper, Pereira et al. also propose to assoiate a di�erent 'label'to eah program rule, and to insert this label as another ondition to the bodyof the rule. This enables an easy way to represent a hierarhy of rules in thelanguage itself. For instane, the fat that under the onditions spei�ed in Bodyone should apply a rule labeled by l1 instead of a rule labeled by l2, is enodedby the following speial preferene rule: :l2  Body; l1.The formalisms mentioned above, although being elegant ones, have theirown limitations. First, they rule out any representation of ontraditions in thereasoner's belief. Suh ontraditions do our in pratial problems, and it maybe useful to use a methodology to trae them and to represent their e�et. Seond,as already observed in [38℄, beause of the inherent asymmetry in the represen-tation of the hierarhy of exeptions, eah time that exeptions to exeptions arespei�ed, some rules in the program should be hanged. Third, the rule labelingand the need to maintain the preferenes and the exeptions with speial addi-tional rules, require a lot of overhead; in pratial ases this might yield awkwardprograms, in whih it would be diÆult to grasp the essene from the whole data.Here we onsider another way of making preferenes among programslauses, whih has a more quantitative nature. The idea is to attah, in a meta-language, di�erent priorities to di�erent lauses. We do so by assigning to everylause a `on�dene fator' that reets its relative priority over the other lauses.For this, we onsider algebrai strutures that generalize Belnap's four-valuedstruture. In partiular, we extend the four-valued semantis to a more generalsemantis that is based on arbitrarily many truth values. In the next setion wereview the basi notions that are related to these strutures, and in Setion 4.3we use them for giving semantis to prioritized (extended) logi programs.



20 O. Arieli / Paraonsistent delarative semantis for extended logi programs4.2. Bilatties and logial bilatties { An overviewDe�nition 4.2 [28,29℄. A bilattie is a struture B = (B;�t;�k;:) suh that Bis a nonempty set ontaining at least two elements, (B;�t) and (B;�k) are om-plete latties, and : is a unary operation on B that has the following properties:(i) if x �t y then :x �t :y, (ii) if x �k y then :x �k :y, (iii) ::x = x.The original motivation of Ginsberg [29℄ for using bilatties was to providea uniform approah for a diversity of appliations in arti�ial intelligene. In par-tiular, he treated �rst order theories and their onsequenes, truth maintenanesystems, and formalisms for default reasoning. The algebrai struture of bilat-ties has been further investigated by Fitting [21,24℄ and Avron [9℄. In a seriesof paper Fitting has also shown that bilatties are very useful tools for providingsemantis for logi programs. He proposed an extension of Smullyan's tableaux-style proof method to bilattie-valued programs, and showed that this method issound and omplete with respet to a natural generalization of van-Emden andKowalski's operator [20,22℄. Fitting also introdued a multi-valued �xpoint op-erator for providing bilattie-based stable models and well-founded semantis forlogi programs [23℄. A well-founded semantis for logi programs that is basedon a spei� bilattie (denote here by NINE, see Figure 2 below) is also onsid-ered in [16℄. Bilatties have also been found useful for model-based diagnostis[29℄, omputational linguistis [36℄, reasoning with inonsistent knowledge-bases[5,44℄, and proessing of distributed knowledge [35℄.As in the four-valued ase, we shall ontinue to denote by ^;_;: the meet,join, and the involution operations w.r.t. �t, and by 
;� the meet and thejoin operations w.r.t. �k. The �t-maximal (respetively, �t-minimal) elementis denoted by t (respetively, f), and the �k-maximal (respetively, �k-minimal)element is denoted by > (respetively, ?).De�nition 4.3 [5℄. Let B=(B;�t;�k;:) be a bilattie.a) A bi�lter of B is a nonempty proper subset D�B, suh that:(i) x^y2D i� x2D and y2D, (ii) x
y2D i� x2D and y2D.b) A bi�lter D is alled prime, if it also satis�es the following onditions:(i) x_y2D i� x2D or y2D, (ii) x�y2D i� x2D or y2D.Clearly, for every prime bi�lter D we have that t;>2D, while f;?62D.De�nition 4.4 [5℄. A logial bilattie is a pair (B;D), in whih B is a bilattieand D is a prime bi�lter of B.The basi semantial notions of the four-valued ase an easily be extendedto the bilattie-valued ase. For instane, given a logial bilattie (B;D), the no-



O. Arieli / Paraonsistent delarative semantis for extended logi programs 21tions of valuations, models, et. are the same as in the four-valued ase. The def-inition of the impliation onnetive  also remains the same: for every x; y;2Bthe value of x y is x if y2D, and it is t otherwise. The only di�erene is thatinstead of taking D = ft;>g as the set of the designated values, we now allowthat any prime bi�lter in B would be the set of the designated values.The minimal logial bilattie is FOUR with D= ft;>g. Next we desribea general way of onstruting logial bilatties with arbitrarily many elements:De�nition 4.5 [29℄. Let (L,�L) be a omplete lattie. The struture L� L =(L�L, �t, �k, :) is de�ned as follows:� (x1; y1) �t (x2; y2) i� x1 �L x2 and y1 �L y2,� (x1; y1) �k (x2; y2) i� x1 �L x2 and y1 �L y2,� :(x; y) = (y; x).A pair (x; y)2L�L may intuitively be understood so that x represents theamount of belief for some assertion, and y is the amount of belief against it.De�nition 4.6. Let (x; y)2L� L. Denote: [(x; y)℄T = x and [(x; y)℄F = y.Example 4.7. Let T WO= (f0; 1g; 0 < 1g be the lassial (two-valued) lattie.Then in the notations of De�nition 4.5, Belnap's bilattie FOUR is isomorphito T WO�T WO by the following isomorphism: t orresponds to (1; 0), f orre-sponds to (0; 1), ? orresponds to (0; 0), and > orresponds to (1; 1).Proposition 4.8 [20,29℄. For every omplete lattie (L,�L), the struture L�Lis a bilattie.Proof. (Outlines) Given a lattie L with a meet operation u and a join operationt, the bilattie operators are de�ned as follows:(x1; y1)_(x2; y2)=(x1tx2; y1uy2); (x1; y1)^(x2; y2)=(x1ux2; y1ty2);(x1; y1)�(x2; y2)=(x1tx2; y1ty2); (x1; y1)
(x2; y2)=(x1ux2; y1uy2);:(x; y)=(y; x).It is easy to verify that for every two elements x; y;2L�L, x _ y (respetively,x ^ y) is the least upper bound (respetively, the greatest lower bound) of xand y w.r.t. the �t-partial order (De�nition 4.5). Similarly, x� y (respetively,x
 y) is the least upper bound (respetively, the greatest lower bound) of x andy w.r.t. the �k-partial order (De�nition 4.5), and : satis�es all the properties ofa negation operator (De�nition 4.2).Proposition 4.9 [5℄. Let (L,�L) be a omplete lattie with a maximal element,



22 O. Arieli / Paraonsistent delarative semantis for extended logi programsm. Then the smallest24 (prime) bi�lter in L�L is of the form f(m;x) j x2Lg.We shall denote this bi�lter by DL�L.Corollary 4.10. Let (L,�L) be a omplete bounded lattie. Thena) (L�L;DL�L) is a logial bilattie.b) Every omplete bounded lattie indues a logial bilattie.Proof. Part (a) follows from Propositions 4.8 and 4.9. Part (b) follows frompart (a).4.3. Bilattie-based semantis for prioritized logi programsFor giving semantis to prioritized logi programs, we have found it usefulto onentrate on bilatties of the form f0; 1; : : : ;mg�f0; 1; : : : ;mg. We shalldenote these bilatties by Bm.As in the non-prioritized ase, we start by onsidering a semantis for prior-itized programs without negation-as-failure, and then onsider the general ase.De�nition 4.11. An m-prioritized general logi program is a set of quantitativegeneral lauses, i.e., a set of formulae of the form l n Body, where l is a literal,Body is a onjuntion of literals, and n is a number between 1 and m.The quantitative values of the lauses (the n's) may be intuitively under-stood as representing \on�dene fators" or \threshold values" of (the belief in)the orresponding lauses. The idea is that a head of a quantitative lause isevaluated only if there is a \suÆient" evidene in favor of the lause's body, andthe evidene for the omplement of the lause head does not exeed the lause'sthreshold value. Next we formalize this intuition:De�nition 4.12. Given a logial bilattie (Bm;D) and an m-prioritized generallogi program P, onsider for every literal l and i�1 the following funtions:�P0 (l) = valP0 (l) = ?.thresholdPi (l) = lub�kf�Pi�1(Body) j l n Body 2 Pg. 25beliefPi (l) = lub�kf�Pi�1(Body) j l n Body 2 P; [thresholdPi (l)℄T � ng. 26valPi (l) = lub�k(valPi�1(l); beliefPi (l)).24 With respet to set inlusion.25 If there is no lause of the form l n Body in P, de�ne thresholdPi (l)=?.26 If no lause of the form l n Body appears in P, or [thresholdPi (l)℄T > maxfn j l n Body2Pg,de�ne beliefPi (l)=?.



O. Arieli / Paraonsistent delarative semantis for extended logi programs 23�Pi (l) = ([valPi (l)℄T ; [valPi (l)℄T ).For a limit ordinal � we de�ne:thresholdP� (l) = lub�kfthresholdP� (l) j �<�g.beliefP� (l) = lub�kfbeliefP� (l) j �<�g.valP� (l) = lub�kfvalP� (l) j �<�g.�P� (l) = ([valP� (l)℄T ; [valP� (l)℄T ).Again, for every propositional onstant x that orresponds to an element x2Bmwe de�ne, for every i�0, �Pi (x) = valPi (x) = x.In eah iteration we therefore ompute, for eah literal, its `threshold value',whih is the least upper bound (w.r.t. �k) of the values attahed to the relevantlause bodies at the previous iteration.27 Then we ompute the amount of the`belief' in a ertain literal l during the urrent iteration. Again, the required valueis obtained by onsidering the relevant lause bodies, but this time we take intoaount only those lauses with a `suÆiently high' on�dene fator, i.e., thoselauses with l as their head, and with a on�dene value that is not smaller thanthe threshold value of l's omplement. Now, valPi (�) is a �k-monotoni funtionthat is based on these belief values, and �nally | as in the four-valued ase |we use valPi (�) for onstruting the �k-monotoni sequene of valuations �Pi thatyields, eventually, the �xpoint semantis for P.Remark 4.13. As in the four-valued ase, for every i and l, �Pi (l) = :�Pi (l).As the next proposition shows, the semantis for non-prioritized programs(De�nition 3.1) is a partiular ase of the semantis for prioritized programs(De�nition 4.12).Proposition 4.14. Let P be a general logi program, and let P 0 be the 1-prioritized logi program obtained from P by assigning the quantitative fatorn=1 to every general lause in P. Then, for every i, �Pi (de�ned in 3.1) is thesame as �P 0i (de�ned in 4.12).Proof. See Appendix A.As in the four-valued ase, the partial order �k on B an be used for de�ninga partial order on the set V B of the B-valued valuations: a valuation �1 2 V B is27 This value may be intuitively understood as an `a priori' belief in the literal under onsidera-tion, sine the on�dene fators of the lauses are not taken into aount in the alulationof this value.



24 O. Arieli / Paraonsistent delarative semantis for extended logi programsk-smaller than another valuation �2 2 V B (notation: �1 <k �2) if �1(p) �k �2(p)for every atom p. The pair VB = (V B;�k) is learly a lattie. Moreover,Proposition 4.15. Let P be an m-prioritized general logi program, and letB = f0; 1; : : : ;mg � f0; 1 : : : ;mg. The sequene �P0 ; �P1 ; �P2 ; : : : is �k-monotoniin VB.Proof. By De�nition 4.12, for every �>� and every literal l, valP� (l)�k valP� (l).Thus �P� (l)�k �P� (l), and so �P� �k �P� .Again, by Knaster-Tarski theorem [45℄, it follows that f�Pi g has a �k-least�xpoint. We denote it by �P .The following result is an immediate onsequene of Proposition 4.14.Proposition 4.16. Let P be a general logi program, and let P 0 be the 1-prioritized program obtained from P by setting n = 1 as the quantitative fatorof every general lause in P. Then �P (the �k-least �xpoint of the �Pi -sequene,de�ned in 3.1) is the same as �P 0 (the �k-least �xpoint of the �P 0i -sequene,de�ned in 4.12).We now generalize our formalism to m-prioritized extended logi programs.We do so in a way whih is ompletely analogous to the way we generalized the�xpoint semantis for non-prioritized general logi programs to non-prioritizedextended logi programs. I.e., we use a transformation like that of the well-founded semantis to eliminate the negation-as-failure operators from the lausebodies. What remains are m-prioritized general logi programs, to whih we givesemantis in the way desribed above. The following de�nitions formalize thisproess.De�nition 4.17. Anm-prioritized extended logi program is a set of quantitativeextended lauses, i.e.: a set of formulae of the form l n Body, where l is a literal,Body is a onjuntion of extended literals, and n is a number between 1 and m.De�nition 4.18. Let P be an m-prioritized extended logi program.a) A valuation �2V 4 is a plausible model of P, if it oinides with the �xpointsemantis of the m-prioritized general logi program, obtained by reduing Pw.r.t. the set that is assoiated with �. I.e., � = �P#S� .b) An adequate model of P is a �k-maximal plausible model of P.By Proposition 4.14 and De�nition 4.18 we have the following result:



O. Arieli / Paraonsistent delarative semantis for extended logi programs 25Proposition 4.19. Let P be an extended logi program, and let P 0 be the 1-prioritized extended logi program obtained from P by assigning the quantitativefator n=1 to every extended lause in P. Then:a) � is a plausible model of P (aording to De�nition 3.10) i� it is a plausiblemodel of P 0 (aording to De�nition 4.18).b) � is an adequate model of P i� it is an adequate model of P 0.4.4. Tweety dilemma, revisitedConsider again the logi program for Tweety dilemma, given in Example4.1. The orresponding 1-prioritized program is the following:P1 = 8>>><>>>: fly(x) 1 bird(x) :reptile(x) 1 bird(x)bird(x) 1 penguin(x) :fly(x) 1 penguin(x)bird(Tweety) 1 t penguin(Tweety) 1 t 9>>>=>>>;Sine P1 is a \at" program (eah lause is assigned the same priority), then byProposition 4.16 its �xpoint semantis oinides with that of the non-prioritizedase. In partiular, we still have that �P1(fly(Tweety)) = >. However, now it ispossible to give di�erent priorities to di�erent lauses. As we have noted duringthe previous disussion on this example, the lause fly(x) 1 bird(x) desribesonly a default property of birds, while the other lauses of the program desriberules that do not have exeptions. We therefore attah to fly(x) 1 bird(x) alower priority (on�dene fator) than the other assertions. The logi programthat is obtained is the following:P2 = 8>>><>>>: fly(x) 1 bird(x) :reptile(x) 2 bird(x)bird(x) 2 penguin(x) :fly(x) 2 penguin(x)bird(Tweety) 2 t penguin(Tweety) 2 t 9>>>=>>>;The orresponding bilattie, NINE = f0; 1; 2g � f0; 1; 2g is displayed in Figure 2(see also [5,6,44℄). We abbreviate its elements by the following notations:?=(0; 0) df=(0; 1) dt=(1; 0) f=(0; 2) t=(2; 0)d>=(1; 1) of=(1; 2) ot=(2; 1) >=(2; 2)Note that NINE has two prime bi�lters: Dt = fx j x �k tg and Ddt =fx j x �k dtg. Consequently, two orresponding logial bilatties may be on-sidered: NINEt = (NINE;Dt) and NINEdt = (NINE;Ddt). As Dt � Ddt, theformer logial bilattie may be used for a more skeptial reasoning proess, whilethe latter one provides a more liberal approah for a query evaluation (we shall
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Figure 2. NINEdemonstrate this distintion in what follows).Table 1 presents the proess of onstruting �P2 .Table 1iterative onstrution of �P2funtion bird :bird penguin :penguin fly :fly reptile :reptilethreshold1 t ? t ? ? ? ? ?belief1 t ? t ? ? ? ? ?val1 t ? t ? ? ? ? ?�1 t f t f ? ? ? ?threshold2 t ? t ? t t ? tbelief2 t ? t ? ? t ? tval2 t ? t ? ? t ? t�2 t f t f f t f tIt is easy to see that for every i�2, �P2i+1=�P2i , thus the �k-least �xpoint ofP2 is the following:�P2(bird(Tweety)) = t, �P2(penguin(Tweety)) = t,�P2(reptile(Tweety)) = f , �P2(has feathers(Tweety)) = ?,�P2(fly(Tweety)) = f .So the intuitive onlusion regarding the ying ability of Tweety is obtained, andthe other literal onlusions remain as in the non-prioritized ase, as expeted.It is interesting to note that our approah supports a very exible proessof belief revision. To see this, suppose that another datum arrives, and we are



O. Arieli / Paraonsistent delarative semantis for extended logi programs 27informed that Tweety might y after all. Suppose further that our resoure isnot so sure about this information, or that this resoure is not a reliable one.There are two options to express this unertainty in our program: one way isto attah to the new information a low priority. Alternatively, we an put anattenuation fator in the lause body. The impat of the former option is thatin ase of onits we prefer the omplementary information and ignore the newdata altogether, while the e�et of the latter option is that we always onsider thenew data, but give it a lower weight when we draw our onlusions. Aordingto the seond option, the modi�ed program may be the following: 28P3 = P2 [ f fly(Tweety) 2 dt gTable 2 desribes the iterative onstrution of �P3 .Table 2iterative onstrution of �P3funtion bird :bird penguin :penguin fly :fly reptile :reptilethreshold1 t ? t ? dt ? ? ?belief1 t ? t ? dt ? ? ?val1 t ? t ? dt ? ? ?�1 t f t f dt df ? ?threshold2 t ? t ? t t ? tbelief2 t ? t ? dt t ? tval2 t ? t ? dt t ? t�2 t f t f of ot f tAgain, after two iterations we reah a �xpoint, in whih �P3(fly(Tweety)) =of . The interpretation of this result depends on the logial bilattie under on-sideration (i.e., the hoie of the prime bi�lter in NINE):� In NINEot the �xpoint values of fly(Tweety) and of :fly(Tweety) are bothdesignated. This means that the new datum, although being somewhat un-reliable, auses an inonsistent belief regarding the ying ability of Tweety.Nevertheless, the fat that fly(Tweety) is assigned of rather than > reetsthe fat that P3 ontains more evidene in favour of :fly(Tweety) rather thanin favour of fly(Tweety).� InNINE t the �xpoint value of :fly(Tweety) is designated, while the �xpointvalue of fly(Tweety) is not. This means that despite the new datum weatually still believe that Tweety annot y. However, beause of the newinformation, we are less ertain than before (thus fly(Tweety) is assigned ofrather than f).28 Where dt is a propositional onstant that orresponds to the truth value dt inNINE (intuitivelyunderstood as \true by default").



28 O. Arieli / Paraonsistent delarative semantis for extended logi programs5. Some onluding remarksWe onlude with a summary of the main properties of the formalisms on-sidered here, and some further remarks regarding related semantis.Reasoning with inomplete and inonsistent dataOne of the main drawbaks of some of the �xpoint semantis for extendedlogi program (like those of [27℄ and [37℄) is that they are redued to trivialityin the presene of ontraditions. As suh, these formalisms inherit one of thewell-known shortomings of lassial logi. We do believe that sine inonsistentknowledge an and may be represented by extended logi programs, a plausiblesemantis for suh programs should be able to handle inonsistent situations ina non-trivial way. That is, one should be able to draw meaningful onlusions(and rejet others) despite the inonsisteny. The �xpoint semantis onsideredhere has suh apabilities: it pinpoints the inonsistent and the inomplete partsof the data, and regards the rest of the information as lassially onsistent.Consider, for instane, the following program, whih is an extended variantof the program onsidered in Example 1.3 (see also item 3 of Example 3.14):P = ( p t q not q :p not :r1r1 t r2 not :r1 :r3 r1; r2 )This program provides a omplete information regarding the truth or the falsityof ri, i=1; 2; 3. Moreover, the information regarding these atoms is not a�etedby either p, q, or their negations. The fat that the data regarding q is inompleteand the data regarding p is inonsistent should be loalized (i.e., restrited onlyto those literals whose de�nitions depend on p or q), and it should not a�et thevalues of the ri's. Thus, the inonsistent data in P should not spoil the wholepiee of information that is represented by this program. The �xpoint semantisthat was onsidered here follows these guidelines; the unique plausible model forP (and so its adequate model) is the following:�P = f p :>; q :?; r1 : t; r2 : t; r3 :f g:It follows that the omplete information in P (the one that onerns with ri,i=1; 2; 3) is preserved. In addition, the reasoner may realize that the data aboutp is ontraditory, and the data about q is inomplete.Relating negative data to its positive ounterpartAnother major di�erene between the semantis introdued here and someother semantis for extended logi programs (e.g, [25,27,31,42℄) onerns with theway a negative data is related to its positive ounterpart. While the formalisms



O. Arieli / Paraonsistent delarative semantis for extended logi programs 29of [25,27,31,42℄ treat p and :p as two di�erent atomi formulae, we preserve therelation between an atomi formula and its negated atom. To see the importaneof this, onsider the following program (also onsidered in [10, Example 3.3.6℄and [37, Example 1℄):P = f p not q q  not p :p t gAording to the approahes that treat :p as (a strange way of writing) an atomiformula, the well-founded semantis would assign here t to :p, ? to p, and ?to q. So even though P is lassially onsistent, the distintion between p and:p auses a ounter-intuitive result here. In ontrast, our approah yields a se-mantis that seems to reet the intuitive expetation in this ase: the adequatemodel of P (whih is also the only plausible model of P is this ase) assigns f top and t to q.For another example, onsider the following logi program [37, Example 6℄:P = f r  not q q  not p p not p :q  t gThe unique plausible model of P (and so its adequate model) is fp :?; q :f; r : tg(whih is the same as the one that is obtained in [37℄). By onsidering :q as anew atom, this program would have a single extended stable model, in whih :qis true and all the other atomi formulae (p; q; r) are unknown. This seems to bea ounter-intuitive result in this ase, sine one expets here that r would followfrom P.Paraonsistent and oherent approahes to inonsistenyThe formalisms that we have desribed here for giving semantis to extendedlogi programs are paraonsistent in nature. I.e., they aept ontraditionswithin the theory and try to ope with them. Another ommon approah tohandle ontraditions (sometimes alled oherent or onservative [13,48℄) �rstdetets and eliminates the inonsistent part of the theory. Then, when onsistenyis restored, some lassial formalism is used for drawing plausible onlusionsfrom the \reovered" data. In [31℄, for instane, lauses with negative literalsin their heads are getting higher priorities than lauses with positive literalsin their head. The latter ones are ignored in ase of ontraditions with theirnegated ounterparts. This approah assures a ontraditions-free semantis [31,Theorem 2℄. In [38℄ ontraditions are exluded already in the level of knowledgerepresentation, sine lauses for default rules have the form l  Body; not l.Thus, in order to derive l, one has to verify �rst that its omplement, l, is notprovable. Other oherent formalisms for managing inonsistent information areonsidered, e.g., in [2{4,7,13,18℄.



30 O. Arieli / Paraonsistent delarative semantis for extended logi programsBelief revisionThe need to alter the set of onlusions aording to an input that is fre-quently modi�ed is not an unusual phenomenon in ommon-sense reasoning ingeneral and logi programming in partiular. Thus, the plausibility of di�erentformalisms in these areas is often determined by the way they handle revised in-formation. To see that onsider, e.g., the following example (anonymous author):\A man fell from a plane. Fortunately, he was wearing a parahute. Unfor-tunately, the parahute didn't open. Fortunately, he fell from the plane at alow altitude over a large haystak. Unfortunately, there was a pithfork in thehaystak. Fortunately, he missed the pithfork. Unfortunately, he missed thehaystak : : :".After eah sentene in this example there is a tendeny to jump bak and forthbetween opposite onlusions regarding the ultimate fate of the skydriver. InTweety dilemma, onsidered in Setion 4.4, we faed the same phenomenon whenwe had to hange our mind several times regarding Tweety's ability to y in lightof the new data that had arrived. Indeed, in the notations used in that setion,� fly(Tweety) follows from P2 n fpenguin(Tweety) 2 tg,� fly(Tweety) does not follow from P2,� fly(Tweety) does not follow from P2 [ ffly(Tweety) 2 dtg when the under-lying semantis is indued by NINEt (i.e., by a skeptial reasoning), but itdoes follow from P2 [ ffly(Tweety) 2 dtg when the underlying semantis isindued by NINEot (i.e., by a more liberal reasoning).As demonstrated in Setion 4.4, the exibility of the proess for belief re-vision in our ase is reeted both on the semantial level (di�erent hoies oflogial bilatties yield di�erent onlusions), and on the syntatial level (by en-haning the expressive power of the logi programs under onsideration, thusallowing various ways to represent knowledge, either in the program languageitself, or in a meta-language that reets the reasoner's preferenes).AknowledgementsI would like to thank Maurie Bruynooghe, Mar Deneker, and the anony-mous reviewers for their helpful omments. This work was supported by thevisiting postdotoral fellowship FWO Flanders.



O. Arieli / Paraonsistent delarative semantis for extended logi programs 31AppendixA. ProofsProposition 3.3. Let P be a general logi program. Then �P is the k-minimalfour-valued model of P. Moreover, it is at least as onsistent as any other modelof P, and the onsequene relation indued by it is paraonsistent.Proof. This proposition ontains several laims. We divide the proof aord-ingly.1. �P is a model of P:Suppose not. Then there is a lause l Body in P s.t. �P(Body)2D while�P(l) 62 D. In partiular, there is an � s.t. for every � � �, �P� (Body) 2 Dwhile �P� (l) 62D. But sine �P� (Body)2D, for every �>�, valP� (l) = t,29 whihimplies that �P� (l)�k t, and so �P� (l) 2D. This ontradits the assumptionthat �P� (l) 62D.2. �P indues a paraonsistent onsequene relation:Consider, e.g., P = fp t; :p tg. Here �P(p) => while �P(q) =? forevery atom q 6=p. Thus P 6j�� q for every atom q 6=p, whih means that trivialreasoning from an inonsistent set of premises is not allowed.3. �P is �k-smaller than any other model of P:For a valuation � denote Sat(�)=fl j �(l)2Dg. Let � be the �xpoint ordinalof �P (i.e., the minimal � s.t. �P�0 = �P� for every �0��� �). We show thatfor every model M of P, Sat(�P� )� Sat(M). This immediately implies that�P�kM , sine in this ase, for every atom p, we have that� If �P(p)=>, then sine � is the �xpoint ordinal of �P , �P� (p)=>. Henep;:p2Sat(�P� ). By our assumption this implies that p;:p2Sat(M), andso M(p)=> as well.� If �P(p) = t, then again by the de�nition of �, p 2 Sat(�P� ), and so p 2Sat(M). Thus M(p)2ft;>g, whih implies that M(p)�k �P(p).� If �P(p) = f , then �P� (p) = f and sine �P� (:p) = :�P� (p), we have that:p2Sat(�P� ). By our assumption, then, :p2Sat(M), thusM(:p)2ft;>g.It follows that M(p)=:M(:p)2ff;>g and so M(p)�k �P(p).� If �P(p)=? then learly M(p)�k �P(p).It remains to show, therefore, that for every modelM of P, Sat(�P� )�Sat(M).We show this by a trans�nite indution on �.29 for suessor ordinals this follows from the de�nition of valP� (l), and for limit ordinals thisfollows from the fat that for every l0, valP� (l0)2ft;?g.



32 O. Arieli / Paraonsistent delarative semantis for extended logi programsThe ase �=0 is obvious, sine Sat(�P0 ) = ft; g.30 For a suessor ordinal� > 0, let l 2 Sat(�P� ). Then �P� (l) 2 ft;>g, and so valP� (l) � :valP� (l) 2ft;>g. This means that either valP� (l) 2 ft;>g, or :valP� (l) 2 ft;>g (i.e.,valP� (l)2 ff;>g). But sine for every literal l0, valP� (l0)2 ft;?g, this meansthat in our ase neessarily valP� (l) = t. Hene, there is a general lause ofthe form l Body, for whih �P��1(Body)2ft;>g. Thus, for every li2Body,li2Sat(�P��1). By the indution hypothesis, for every li2Body, li2Sat(M),and so M(Body)2ft;>g as well. But M is a model of P, and so neessarilyM(l)2ft;>g, i.e. l2Sat(M).If � is a limit ordinal and l2Sat(�P� ), then by the same arguments as above,valP� (l)= t. This implies that there exists an ordinal �<�, for whih valP� (l)=t as well. Thus l2Sat(�P� ), and by the indution hypothesis we are done.4. �P is at least as onsistent as any other model of P:Denote again by � the �xpoint ordinal of �P , and let Sat(�)=fl j �(l)2Dg.Suppose that �P(p) = > for some atom p. Then p;:p 2 Sat(�P), and sop;:p2Sat(�P� ). By the proof of the previous item, for every model M of P,Sat(�P� )�Sat(M). Thus p;:p2Sat(M), and so M(p)=> as well.Proposition 3.7. Let P be a positive logi program, and let P' be the positiveprogram obtained from P by replaing every impliation onnetive by a materialimpliation. Denote by �Pf=? the valuation that is obtained from �P by hangingthe ?-assignments to f -assignments. Then:1. P and P 0 have the same lassial models (and thus the same least Herbrandmodel), and2. �Pf=? is the (unique) 2-valued minimal Herbrand model of P and P'.Proof. The �rst laim simply follows from the fat that the impliation onne-tive of De�nition 2.4 is the same as the material impliation on ft; fg. Regardingthe other part, note �rst that sine only atomi formulae appear in the lausesheads, for every atom p and for every i we have that valPi (:p)=?, and therefore�Pi (p) = valPi (p)2 ft;?g. It follows that �P assigns only values in ft;?g to theatomi formulae (and so, for every literal l, �P(l)2ft; f;?g). Now, let p Bodybe a lause in P. Sine P is positive, then �P(Body) = t i� all the atoms inBody are assigned t by �P , i� all the atoms in Body are assigned t by �Pf=?, i��Pf=?(Body) = t. Similarly, �P(Body) 2 ff;?g i� there is an atomi formula inBody that is assigned either ? or f by �P , i� there is an atomi formula in Body30 Reall that t and  are the propositional onstants that are assoiated with t and >, respe-tively (and so they are elements of Sat(�) for every �).



O. Arieli / Paraonsistent delarative semantis for extended logi programs 33that is assigned f by �Pf=?, i� �Pf=?(Body) = f . It follows that for every lause Cin P, �P(C)2D i� �Pf=?(C)2D. Thus �Pf=? is a 2-valued model of P.It remains to show that �Pf=? is �t-minimal among the lassial models ofP. Indeed, this follows from the fat that �P is �k-smaller than any other modelof P (Proposition 3.3), and so the set of atomi formulae that are assigned t by�P does not properly ontain any orresponding set of a lassial model of P.31Thus, the set of atomi formulae that are assigned t by �Pf=? does not properlyontain any orresponding set of a lassial model of P either, and so �Pf=? is a �t-minimal model among the lassial models of P. Sine P has the same lassialmodels as those of P 0 (item 1 of this proposition), we onlude that �Pf=? is also a�t-minimal model among the lassial models of P 0. But being positive, P' hasonly one �t-minimal lassial model (whih is its least Herbrand model), and so�Pf=? oinides with this model.Proposition 4.14. Let P be a general logi program, and let P 0 be the 1-prioritized logi program obtained from P by assigning the quantitative fatorn=1 to every general lause in P. Then, for every i, �Pi (de�ned in 3.1) is thesame as �P 0i (de�ned in 4.12).Proof. First, as noted in Example 4.7, the bilattie B=f0; 1g�f0; 1g that givessemantis to the 1-prioritized program P 0 is isomorphi to the bilattie FOURused in Setion 2 to give semantis to the \at" (non-prioritized) program P. Inwhat follows we shall use both representations to denote the same elements.By the de�nition of the �t-operations and the �k-operations in the bilattief0; 1g�f0; 1g, we have that 32�Pi (l) = valPi (l)� :valPi (l) = ([valPi (l)℄T ; [valPi (l)℄F )� ([valPi (l)℄F ; [valPi (l)℄T )= (max([valPi (l)℄T ; [valPi (l)℄F ); max([valPi (l)℄F ; [valPi (l)℄T )).But sine valPi (�)2ft;?g=f(1; 0); (0; 0)g, we have that [valPi (�)℄F = 0, thus�Pi (l) = ([valPi (l)℄T ; [valPi (l)℄T ).Sine �P 0i (l) = ([valP 0i (l)℄T ; [valP 0i (l)℄T ), it remains to show that for every i and l,[valPi (l)℄T = [valP 0i (l)℄T . We shall onsider here the ase in whih i is a suessorordinal, leaving the other ase to the reader.Indeed, reall that all the lauses in P 0 are assigned the maximal on�denefator (whih is 1 in our ase), and so for every i and l, [thresholdPi (l)℄T � 1. Itfollows, then, that31 Indeed, if M is a lassial model of P and p is an atom s.t. �P(p) = t while M(p) 6= t, thenM(p)=f , and so �P 6�kM .32 See the proof of Proposition 4.8 for the de�nitions of the relevant operations.



34 O. Arieli / Paraonsistent delarative semantis for extended logi programsvalP 0i (l) = lub�k(valP 0i�1(l); beliefP 0i (l))= lub�k(valP 0i�1(l); lub�kf�P 0i�1(Bodyj) j l 1 Bodyj 2 P 0g).Using again the fat that �P 0i (l) = ([valP 0i (l)℄T ; [valP 0i (l)℄T ), we have that[valP 0i (l)℄T = max([valP 0i�1(l)℄T ; maxf[�P 0i�1(Bodyj)℄T j l 1 Bodyj 2 P 0g)= max([�P 0i�1(l)℄T ; maxf[�P 0i�1(Bodyj)℄T j l 1 Bodyj 2 P 0g).Sine in our ase B=f0; 1g�f0; 1g, it follows that[valP 0i (l)℄T =1 if 9(l 1 Body) 2 P 0 and �P 0i�1(Body) 2 Df0;1g�f0;1g,[valP 0i (l)℄T =0 otherwise.On the other hand, by the de�nition of valPi ,[valPi (l)℄T =1 if valPi (l)= t, if 9(l Body) 2 P and �Pi�1(Body) 2 DFOUR,[valPi (l)℄T =0 otherwise.It follows, therefore, that [valPi (l)℄T = [valP 0i (l)℄T , as required.B. Embedding in Fitting's semantisIn what follows we onsider some ases in whih our 4-valued semantis maybe transformed into Fitting's 3-valued semantis.De�nition B.1. Given a normal logi program P, onsider the following generallogi program:P� = P [ f:p l j p Body 2 P; �P(p) = ?; l 2 L(Body)g [f:p t j p f 2 P; �P(p) = ?g.Intuitively, P� is obtained from P by adding rules that expliitly formalizewhat is impliitly assumed by Fitting's semantis. For instane, in Fitting'ssemantis the meaning of p f is that p is false. Here, sine negations may alsoappear in the lause heads, we must also expliitly delare that we mean that :pshould hold, and so we add the statement :p t.Proposition B.2. Let P be a normal logi program in whih eah atomi for-mula appears at most one in a lause head. Let also 	P be Fitting �xpointsemantis for P. Then 	P=�P� .Example B.3.1. Let P = fp  qg. Aording to Fitting's semantis this is an abbreviationof P 0 = fp  q; q  fg (an atom that ours in P but does not appear



O. Arieli / Paraonsistent delarative semantis for extended logi programs 35in any lause head in P is onsidered as false, see [19, Setion 5℄). Fitting'sleast �xpoint semantis for P 0 assigns f to p and q. Now, by De�nition B.1,(P 0)� = fp  q; q  f; :p  :q; :q  tg. It is easy to verify that ourfour-valued semantis for (P 0)� also assigns f to both p and q.2. Let P = fp  pg. Then P� = fp  p; :p  :pg. This is a naturalextension of P to an extended logi program that states that both p and itsnegation depend only on themselves. Clearly, then, 	P = �P� = fp : ?g.3. Consider again the logi program P of Remark 3.6. By De�nition B.1 we havethat P� = fp  :q; :p  q; q  tg. By Proposition B.2, our four-valuedsemantis for P� is the same as that of Fitting 3-valued �xpoint operator forP. Both of them assign t to q and f to p.Remark B.4. The requirement in Proposition B.2 that every atomi formulashould not appear more than one in a lause head is indeed neessary. Tosee that onsider, e.g., the following program:P = fq  p; q  :r; r  tg:Then P�=P [ f:q :p; :q rg, and while 	P(q) =	P(p)_	P(:r) =?, wehave that �P�(q)=f .Proof of Proposition B.2. By De�nition B.1, P� = P [ P: whereP: = f:p l j p Body 2 P; �P(p) = ?; l 2 L(Body)g [f:p t j p f 2 P; �P(p) = ?g.� Suppose �rst that for some atom q, 	P(q) = t. We show that in this ase�P(q)= t as well. Assuming this, then by the de�nition of P:, :q annot appearin the head of any lause of P:, and so :q annot appear in the head of any lauseof P�. It follows, then, that for every �, valP�� (:q)=?, and so �P�� (q)=valP�� (q)2ft;?g. Thus �P�(q) 2 ft;?g. On the other hand, if P1 �P2 then �P2 �k �P1 ,thus �P�(q)�k �P(q)= t. It follows, then, that �P�(q)= t, and so �P�(q)=	P (q)in this ase.To omplete the proof for the �rst ase it remains therefore to show that forevery atom q, if 	P(q)= t then �P(q)= t as well. Let f	P0 ;	P1 ; : : :g be the �k-monotoni iterative sequene of valuations used for onstruting 	P . Sine :qdoes not appear in any lause head in P, we have that for every � valP� (:q)=?,and so �P� (p) = valP� (q) = t. Thus, for showing that if 	P(q) = t then �P(q) = t,it is suÆient to show that for every � and atom q s.t. 	P� (q) = t, valP� (q) = tas well. We show this by a trans�nite indution on �. For �= 0 we have that	P0 (q)= valP� (q)=?, so the ondition is vauously met. For �=1, 	P1 (q)= t i�q t2P i� valP1 (q)= t. For a suessor ordinal �>1, 	P� (q)= t i� there is a lauseof the form q Body in P and 	P��1(Body)= t, i� 8li2L(Body) 	P��1(li)= t, i�(indution hypothesis) 8li2L(Body) valP��1(li)= t. Thus valP��1(Body)= t, whih



36 O. Arieli / Paraonsistent delarative semantis for extended logi programsimplies that �P��1(Body)2D, and so valP� (q)= t. Finally, if � is a limit ordinal,	P� (q)=max�kf	P� (q) j �<�g, where �k is the three-valued analogue of �k.33Thus, the assumption that 	P� (q)= t implies that 	P� (q)= t for some �<�. Bythe indution hypothesis, then, valP� (q)= t. Thus valP� (q)=max�kfvalP� (l) j � <�g2ft;>g. But we have shown that valP� (q)2ft;?g, thus valP� (q)= t.� Suppose now that 	P(q)=f . Let f	P0 ;	P1 ; : : :g be the �k-monotoni iterativesequene of valuations used for onstruting 	P . We show that for every � andliteral l s.t. 	P� (l) = f , valP�� (l) = t. Assuming this, we are able to show that�P�(q) = 	P(q) in this ase as well, sine the fat that 	P(q) = f implies thatthere exists some � s.t. for every � � � 	P� (q) = f , and so by our assumption,valP�� (:q)= t. Note also that by Proposition 3.3, �P is the �k-least model of P,thus, sine 	P is a model of P, and sine f=	P(q)�k �P(q)2ft;?g, neessarily�P(q)=?. Thus, for every �, valP� (q)=?. Sine q does not appear in the headof lauses in P:, this means that for every �, valP�� (q) = ? as well. It follows,then, that for every ��� �P�� (q)=valP�� (q)� :valP�� (:q)=?� :t=f . One thusonludes that �P�(q)=f=	P(q).For this ase of the proof it remains, therefore, to show that for every � anda literal l s.t. 	P� (l) = f , valP�� (l) = t. We show it by a trans�nite indution on�. For � = 0 the ondition is vauously met, sine 	P0 (l) =? for every l. For�=1, the fat that 	P1 (l)=f entails that l f appears in P. Sine P is a normalprogram, l must be an atom in this ase. Moreover, by our assumption on P,this is the only lause whih ontains l as its head, and so �P(l)=?. Thus l tappears in P:, and so valP�1 (l)= t. Suppose now that for some suessor ordinal� > 1, 	P� (l) = f . By the onstrution of the 	Pj -s, and by our assumption onP, it follows that for the only lause of the form l Body that appears in P,	P��1(Body) = f . This means that there is some l0 2L(Body) s.t. 	P��1(l0) = f .By indution hypothesis, then, valP���1(l0) = t. Now, 	P(l) �k 	P� (l) = f thus	P(l)=f . On the other-hand, using again the fat that �P is the �k-least modelof P and that 	P is a model of P, 	P(l)�k �P(l)2ft;?g. Hene �P(l)=?. Thismeans that l l0 appears in P:. But valP���1(l0)= t, and so �P���1(l0) is designated.Thus, valP�� (l)= t, as required. The proof for limit ordinals is the same as in theprevious item.� Finally, suppose that 	P(q)=?. Again, let f	P0 ;	P1 ; : : :g be the �k-monotoniiterative sequene of valuations used for onstruting 	P . This time we show thatfor every � and literal l s.t. 	P� (l) =? we have that valP�� (l) =? as well. Thisimplies that �P�(q) = 	P(q) also in this ase, sine the fat that 	P(q) = ?implies that for every �, 	P� (q) =?, and so by our assumption, for every � wehave that valP�� (:q) =?. Note also that sine ?=	P(q)�k �P(q), neessarily�P(q) = ?, and so valP� (q) = ? for every �. Sine q does not appear in the33 I.e., �1 �k �2 i� for every atom p, �1(p) �k �2(p), where ? �k t and ? �k f .



O. Arieli / Paraonsistent delarative semantis for extended logi programs 37head of lauses in P:, this means that for every �, valP�� (q) =? as well. Thus�P�(q)=valP�� (q)�:valP�� (:q)=?�:?=?. It follows that �P�(q)=?=	P(q).It remains to show that for every � and a literal l s.t. 	P� (l)=?, we havethat also valP�� (l) =?. Again, we show it by a trans�nite indution on �. For� = 0 this is obviously true, sine by their de�nitions 	P0 and valP�0 are bothidentially ?. For �=1, 	P1 (l)=? i� 	P1 (p)=? where p is the atomi part of l,i� either p does not appear in the head of any lause of P, or p Body2P andL(Body) 6= ;. In the �rst ase neither l nor l appear in the head of any lauseof P�, and in the seond ase if a lause of the form l Body appears in P�,then L(Body) 6=;. In both ases, therefore, valP�1 (l)=?. For a suessor ordinal� > 1, 	P� (l) = ? means again that 	P� (p) = ?, where p is the atomi part ofl. This an happen if either p does not appear in the head of any lause of P(whih again implies that valP�� (l)=?, as in the basis of the indution), or else| by our assumption on P | there is a single lause in P of the form p Bodyand 	P��1(Body) = ?. This means that 8l0 2 L(Body) 	P��1(l0) 2 ft;?g (and9l002L(Body) s.t. 	P��1(l00)=?). By what we have shown in the �rst ase of thisproof (in ase that 	P��1(l0) = t) and by the indution hypothesis (in ase that	P��1(l0)=?), valP���1(l0)=? for every l02L(Body). Thus, �P���1(l0)=valP���1(l0)2f?; tg. In other words, �P���1(l0)2f?; fg so �P���1(l0) is not designated. Sine theonly lauses in whih :p may appear as their head are of the form :p l0, itfollows that valP�� (:p)=?. Sine p do not appear as a head of any lause in P:,we also have that valP�� (p) = valP� (p) �k �P� (p) �k �P(p) �k 	P(p) = ?. Hene,both valP�� (p) =? and valP�� (:p) =?. Thus, either if l = p or l = :p, we havethat valP�� (l)=?. The proof for limit ordinals is similar to the ones given in theprevious items.Referenes[1℄ J.J.Alferes, H.Herre, and L.M.Pereira, Partial models of extended generalized logi pro-grams, in: Pro. 1st International Conferene on Computational Logi (CL'2000), LetureNotes in Arti�ial Intelligene 1861 , eds. J.Lloyd et al., Springer-Verlag, 2000, pp. 149{163.[2℄ J.J.Alferes, J.A.Leite, L.M.Pereira, H.Przymusinska and T.C.Przymusinski, Dynami up-dates of non-monotoni knowledge base, Journal of Logi Programming 45 (2000) 43{70.[3℄ O.Arieli, Four-valued logis for reasoning with unertainty in prioritized data, in: Infor-mation, Unertainty, Fusion, eds. B.Bouhon-Meunier, R.R.Yager and L.A.Zadeh, KluwerAademi Publishers, 1999, pp. 293{304.[4℄ O.Arieli, An algorithmi approah to reover inonsistent knowledge-bases, Pro. 7th Eu-ropean Workshop on Logis in Arti�ial Intelligene (JELIA'00), Leture Notes in Arti�-ial Intelligene 1919 , eds. M.Ojeda-Aiego, I.P.de Guzman, G.Brewka and L.M.Pereira,Springer-Verlag, 2000, pp. 148{162.[5℄ O.Arieli and A.Avron, Reasoning with logial bilatties, Journal of Logi, Language, andInformation 5(1) (1996) 25{63.[6℄ O.Arieli and A.Avron, The value of the four values, Arti�ial Intelligene 102(1) (1998)97{141.
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