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Abstract. Representing uncertainty and reasoning with dynamically
evolving systems are two related issues that are in the heart of many
information systems. In this paper we show that these tasks can be
successfully dealt with by incorporating distance semantics and non-
deterministic matrices. The outcome is a general framework for captur-
ing the principle of minimal change and providing a non-deterministic
view of the domain of discourse. We investigate some properties of the
entailment relations that are induced by this framework and demon-
strate their usability in some test-cases.

1. Introduction

Distance-based semantics is a common technique for reflecting the principle of
minimal change in different scenarios where information is dynamically evolving,
such as belief revision, integration of independent data sources, and planning sys-
tems. By nature, the underlying data in such cases is often incomplete or in-
consistent. Yet, this fact is not always representable in terms of standard truth
functions, and so other alternatives must be looked for. One such alternative is
to borrow the idea of non-deterministic computations from automata and com-
putability theory. This idea leads to a quest for structures, where the value as-
signed by a valuation to a complex formula might be chosen non-deterministically
from a certain (non-empty) set of options (see [1]). The advantage of combining
distance-based semantics and non-deterministic computations is demonstrated in
the following example:

Example 1 Suppose that a reasoner wants to discover some properties of an un-
known Boolean function (e.g., determine a sequence of inputs for which the output
is known). The reasoner may have some idea on the structure of an electronic cir-
cuit that implements the unknown function, but this information may be partial
or even unreliable. Two common problems in this respect are the following;:

e It might happen that the behaviour of an electronic gate in the circuit is not
coherent and therefore cannot be predicted (e.g., because of the presence
of disturbing noise sources on or off chip).
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e The reasoner may get conflicting evidence on the behaviour of the circuit
from different sources (e.g., due to unreliable indicators, adversary third
parties, erroneous communication among sources, etc.).

Situations like that of the first item can be handled by non-deterministic
structures, and distance-based considerations are helpful to narrow the gap among
contradictory sources as in the second item. However, any system aspiring to
general intelligence should be able to deal with both of these types of uncertainty
at the same time. For this, we introduce a general framework that combines non-
determinism with distance semantics, demonstrate its usefulness by applying it to
a number of case studies, and study some of the basic properties of the entailment
relations that are obtained.

2. Preliminaries
2.1. Distance-Based Semantics

Distance semantics is a cornerstone behind many paradigms of handling incom-
plete or inconsistent information, such as belief revision [2,3,4,5] database inte-
gration systems [6,7,8,9], and social choice theory [10,11]. In [12,13] this approach
is described in terms of entailment relations. The idea is simple: Given a distance
function d on a space of valuations, reasoning with a given set of premises I'
is based on those valuations that are ‘d-closest’ to T' (called the most plausible
valuations of T'). For instance, it is intuitively clear that valuations in which ¢
is true should be closer to I' = {p,—p,q} than valuations in which ¢ is false,
and so ¢ should follow from I'" while =g should not follow from T, although T is
not consistent. The formal details are given in [12,13] and are sketched in what
follows.

Suppose that L is a fixed propositional language with a finite set Atoms
of atomic formulas. We denote by I' a finite multiset of L-formulas, for which
Atoms(T") and SF(I) denote, respectively, the atomic formulas that occur in T and
the subformulas of T'. The set of models of T' (that is, the valuations that satisfy
every formula in I') is denoted mod(T").

Definition 2 A pseudo-distance on a set U is a total function d : U x U — R,
satisfying the following conditions:

o symmetry: for all v,p € U d(v, n) = d(u,v),
e identity preservation: for all v, u € U d(v,u) =0 iff v = p.
A pseudo-distance d is a distance (metric) on U if it has the following property:

e triangular inequality: for all v, u,o0 € U d(v, o) < d(v,pn) + d(p, o).

Example 3 It is easy to verify that the following two functions are distances on
the space Aatoms Of two-valued valuations on Atoms:

o The drastic distance: dy(v,p) =0 if v = p and dy (v, u) = 1 otherwise.



e The Hamming distance: dg (v, ) = |{p € Atoms | v(p) # u(p)} |.

Definition 4 A numeric aggregation function is total function f whose argument
is a multiset of real numbers and whose values are real numbers, such that: (i) f
is non-decreasing in the value of its argument, (i) f({z1,...,2,}) = 0iff 21 =
o =...x, =0, and (iii) f({z}) = z for every x € R.

Definition 5 Given a theory I' = {11, ...,%,}, a two-valued valuation v € Aatoms,
a pseudo-distance d and an aggregation function f, define:

min{d(v, p) | u € mod(a);)} if mod(1;) # 0,
1+ max{d(u1, u2) | p1, p2 € Aatoms;  Otherwise.
o dqr(v,T) = f({d(v,4¢n),...,d(v,¥n)}).

Note that in the two extreme degenerate cases, when ) is either a tautology
or a contradiction, all the valuations are equally distant from . In any other
case, the valuations that are closest to 1 are its models and their distance to
is zero. This also implies that dq,¢(v,I') = 0 iff v € mod(T") (see [13]).

° d(V, ’(/Jl) =

Definition 6 The most plausible valuations of T' (with respect to a pseudo distance
d and an aggregation function f) are defined as follows:

{V € Aatoms | Yy € Antoms 6d,f(V7 F) < 5d,f(,uar)} if ' # (Da
Agy(T) =

AAtoms otherwise.

Definition 7 Denote: I' =4 ¢, if Ag ;(T') C mod(z)). That is, conclusions should
follow from all of the most plausible valuations of the premises.

Example 8 Consider I" = {p, —p, ¢} together with the Hamming distance and the
summation function. By classical logic, everything follows from I', including —g.
In contrast, since Ag,, »(I') consists only of valuations in which g is true, we have
that T’ =g, 5 ¢ while T' &4, » —¢, as intuitively expected.

2.2. Non-Deterministic Matrices

According to the classical principle of assigning truth values to formulas, the truth
value assigned to a complex formula is uniquely determined by the truth values
of its subformulas. This approach is no longer appropriate in the real world, were
incomplete, imprecise or even inconsistent information is involved. To cope with
this, Avron and Lev [1] introduced the notion of non-deterministic matrices, in
which the value assigned by a valuation to a complex formula can be chosen non-
deterministically out of a certain nonempty set of options. Below, we recall the
basic definitions behind this approach.

Definition 9 A non-deterministic matriz (henceforth, Nmatriz) for a proposi-
tional language L is a tuple M = (V, D, O), where V is a non-empty set of truth
values, D is a non-empty proper subset of V., and for every n-ary connective ¢ of
L, O includes an n-ary function & from V" to 2¥ — {(}}.



Definition 10 An M-valuation is a function v : £ — V that satisfies the following
condition for every m-ary connective ¢ of £ and ¢1,...,9, € L:

V(O(wlv s 7wn)) € 5(’[)(1/)1), s 7v(wn))
We denote by A the space of all the M-valuations.

It is important to stress that in Nmatrices the truth-values assigned to
1, ..., ¥, do not uniquely determine the truth-value assigned to o(¢1, ..., 1y,), as
v makes a non-deterministic choice out of the set of options &(v(t1), ..., v(¥y)).
Thus, the non-deterministic semantics is non-truth-functional, as opposed to the
deterministic case.

Example 11 Let M = ({¢t, f}, {t}, O), where O consists of the following operators:

A
{t, /}
{r}
{r}
{r}

Let p,q € Atoms and vq,vs € Ay, such that vy (p) = v2(p) = 11(q) = 12(q) = t.
While v; and v» coincide on —p and —g¢, their value for p A ¢ may not be the same.

t{f}
[ At

S~ T S~ o+

s o o

Definition 12 A valuation v € Ay is a model of (or satisfies) a formula ¢ in M
(notation: v Eaq ¢) if v(¢p) € D. v is a model in M of a set T’ of formulas
(notation: v = T) if it satisfies every formula in T'. A formula ¢ is M-satisfiable
if it is satisfied by a valuation in Axq. t is an M-tautology if it is satisfied by
every valuation in A .

Notation 13 Let M be an Nmatrix for £, ¢ a formula, and IT" a set of formulas in
L. Denote: moda(¢) = {v € A | v(¢) € D} and mod s (T') = Nyger mod g ().

Definition 14 The consequence relation induced by the Nmatriz M is defined by:
I' = ¢ if mod (') € modpq (v).

We note, finally, that the use of Nmatrices has the benefit of preserving all the
advantages of logics with ordinary finite-valued semantics (in particular, decid-
ability and compactness in the propositional case), while Nmatrices are applicable
to a much larger family of logics (see [1,14]).

Henceforth, we concentrate on two-valued Nmatrices with V = {¢, f} and
D = {t}, and denote by M such an Nmatrix.
3. Distance-Based Semantics for Non-Deterministic Matrices

In this section we generalize distance-based semantics to the context of Nmatrices.
In doing so, we have to take into consideration some issues that follow from the



non-deterministic character of our framework. The main problem is that, unlike
the deterministic case, for computing distances between valuations it is no longer
sufficient to consider their values on atomic formulas, since two valuations for an
Nmatrix can agree on all the atoms of a formula, but still assign two different
values to that formula (see Example 11). It follows that for computing distances
between valuations one has to take into account also the truth-values assigned by
those valuations to complex formulas. This implies that even under the assump-
tion that the set of atoms is finite, there are infinitely many complex formulas to
consider. To handle this, the distances computations are context dependent, that
is: restricted to a certain set of relevant formulas. This allows us to generalize the
notion of distance-based semantics to non-deterministic matrices as described in
this section.

Definition 15 A contexrt C is a finite set of L-formulas that is closed under sub-
formulas. Now,

e The restriction to C of a valuation v € Ay is a valuation !¢ on C, such
that v1C() = v(x) for every ¢ in C.

e The restriction to C of Ay is the set Aﬁ = {v!¢ | v € Ay}, that is, Ak/(,?
consists of all the M-valuations on C.

Example 16 Consider the following functions on A}a’:(r) x AP,

M

1 otherwise

. dlSF(r)(V 1) = {0 if v(v) = p(y) for every ¢ € SF(T")
U K=

s
o dip O(v.n) = |{w € SFT) | () # u()}]
Proposition 17 d%]SF(r) and d?F(r) are distance functions on AﬁF(r).

Note 18 Recall that the language £ has a finite set Atoms of atomic formu-
las. Thus, the distance functions of Section 2.1 can be represented in the non-
deterministic case as distance functions on Aﬁt:’ms, where M, is the Nmatrix
for the language {—, A, VvV, —} with the classical interpretations of the connectives
(i.e., M, is similar to the classical deterministic matrix, except that its valuation
functions return singletons of truth-values instead of truth-values).

The next definition captures our intention to consider distances between par-
tial M-valuations (i.e., distances between M-valuations modulo a given context).

Definition 19 Let 24m = U{C:SF(F)|I‘€25} Alj\c,( and d a function on 24Mm x 28Mm
e The restriction of d to a context C is a function d‘ on AlACA X Alj\c/t, defined
for every v, € Alj\c,1 by d'¢(v, p) = d(v, ).
e d is a generic distance on A, if for every context C, d'¢ is a (pseudo)

. 1C
distance on A e

Example 20 Denote by Dom(v) the domain of a valuation v € 2 (that is, the
formulas ¢ in £ for which v(1)) is defined). Now, consider the following functions
on 2AMm x 28



0 ifv=yp
1 otherwise

{¢) € Dom(v) [ v(¥) # p(¥)}]  if Dom(r) = Dom(y)

o0 otherwise.

o dy(v,p) :{

o di(v.p) —{

The restrictions of the two functions to SF(I') are given in Example 16. By Propo-
sition 17, then, both of these functions are generic distances on A4 for every
Nmatrix M.

Note 21 In the notations of Example 20 (and Definition 19), the generic distances

on 2’Me considered in Definition 3, are denoted dlUAtoms and dio™.

Definition 22 A (distance-based, nondeterministic) setting for a language L, is a
triple S = (M, d, f), where M is a non-deterministic matrix for £, d is a generic
distance on 27 and f is an aggregation function.

The next three definitions are natural generalizations to the non-deterministic
case of Definitions 57, respectively.

Definition 23 Given a setting S = (M, d, f) for a language £, a valuation v € A 4,
and a set I' = {41, ...,¢,} of formulas in £, define:

o dISFO) (0, ) =

min{d"3F 0 (WS, WSFO) | e modp(vi)} i moda(vi) # 0,
1+ max{dlSF(F)(u%SF(F%M%SF(F)) | p1, 2 € Ap} otherwise.

o S5FO (1) = FUAISFO (w, 1), ..., d'SFO (,,)}).

Definition 24 Given a setting S = (M, d, f), the most plausible valuations of T
are defined as follows:

SF(r SF(T )
As(r) = { {7 EAm Vi € Ang 877 VD) < 07 D (1)} T A0,
Am otherwise.
Definition 25 For a setting S = (M, d, f), denote I'=s1) if Ag(T) C modaq(v).

To give some examples of reasoning with =g, we use the following notation:

Notation 26 Let I' be a set of formulas, such that SF(T') = {1, ¢9,..., 0¥, }. A
valuation VGAﬁF(F) is represented by {t1 : v(¥1), 02 : v(¥2),. .., 00 : V() }.

Example 27 Let S = (M, dy,X), where M is the Nmatrix considered in Exam-
ple 11. Let T' = {p, —p,q,~(p A q)}. Then:

As(T) = {

{p:t, p:foq:t, pAg:f, ~(pAq):t},
{p:f, pit,q:t, pAg:f, ~(pAg):t} [’

Thus, I' Esqg and T' =s—(p A q), while T frsp and T s —p.



Example 1, Revisited

Let’s consider again Example 1. Suppose that the reasoner’s information about
the circuit is given below:

in1

? — out

in3

The reasoner knows, then, the structure of the circuit and that it contains two
gates, one of which is an OR gate. In addition, the second gate does not behave
coherently when its two inputs are not equal. In this case, one can use an Nmatrix
M for the language £ = {—,V, —, O}, in which V, -, — are interpreted standardly,
and ¢ is evaluated as follows:

O] t f
e A {Lf)
fLALy A

Accordingly, a representation of the circuit above may be given by:
Ty = {out < (ing Ving) O ins}

The reasoner may also consult with several external sources for detecting (some
properties of ) the underlying function. Let’s suppose, for instance, that there are
two other sources whose indications are represented by the following theories:

Fl = {(—ﬂ:nl AN —|in2) — 0ut7 —|in3 — Out},

Iy = {(an V inz) — —out, ns — ﬁout},

Note that each source is consistent (M-satisfiable) with the reasoner’s belief as
represented by I'g, but taken altogether, the indications of the sources contra-
dict what the reasoner believes about the circuit. A proper way of integrating
the information above may be in the context of non-deterministic distance-based
semantics, using the following natural extension of Definitions 22 and 23:

Definition 28 An extended setting is a quadruple S = (M, d, f, g}, where (M, d, f)
is a setting (in the sense of Definition 22) and g is an aggregation function.? Given
aset I' ={Ty,...,['y} of n finite theories and a valuation v € Ay, define:

S S S
55F D, T) = g5, D, Ty, ..., 05T D W, T,

2Intuitively, f is used for computing distances inside each source, while g aggregates distances
among different sources.



The most plausible valuations of (the integration of the elements in) T are defined,

like before, by As(T) = {v € A | Vi € Apa 5550 (. () < 60570 (w, (D))}

The entailment relation that is induced by S is now defined as follows:

T Es o iff Ag(f) C mod (V).

Consider now the extended setting S = (M, dy, ¥, %). In our example, the
relevant distances of the valuations for I' = {I‘O,FL, Iy} are given below, where

¥ = (ing V ing) ¢ing, and 0(v,I';) abbreviates 55;(1‘)(1/, T;), for i = 0,1, 2.

>,
=
X
il
N

out o(v,To) | 6(v,T1) | 6(v,T2)

0 0 2

<
3

=
o~
3

¥

141
122)
V3
V4
Vs
Ve
v7
Vg
)
V1o
Vi1
V12
V13
V14
Vis
V16
vir
Vi
V19
V20
V21
V22
V23
V24

R THR TR TR TR SR R S o S SR SR S S S S SR SR S S o o R o
<.
“ﬁ*ﬁ.“ﬂ#ﬂ\&h\kﬁﬁﬁ*ﬁ\%\ﬁ*ﬁ\\%\ﬁﬂg
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= —_ OO R, OO, FFOFRFOOFFEFOFOOMFFO -
NOHR R OOFRFOOOOFRHFHFOOODOF,RFOOO
O OO HOORFONOOFFEFONOONRFEO
WHFHF F NN FF NN RFRFNNRFRFNNDNNDRFERRNDRFREDNDWRF =D

S R R R Sk Sk TR S S TR SR o b ok R oh oF oh oh oh o

Thus, out of the 24 possible valuations in this case, 12 are the most plausible ones.
The reasoner may conclude, then, that when all the three input lines have the
same value, the output line has the opposite value. This conclusion, which is not
consistent with the original belief of the reasoner about the circuit, exemplifies
how inconsistency is maintained in our framework. This is further addressed in
the next section.

4. Reasoning with =5

In this section, we consider some basic properties of the entailments that are
induced by our framework.® First, we show the relations between standard non-

3Due to a lack of space, some proofs are omitted or outlined.



deterministic entailments (Definition 14) and distance-based ones (Definition 25).
Below, unless otherwise stated, S = (M, d, f) is a general setting with an Nmartix
M, a pseudo distance d, and an aggregation function f.

Proposition 29 If T is M-satisfiable, then T E=x ¢ iff T |Es 9.
Proposition 29 immediately follows from the following result:
Proposition 30 I' is M-satisfiable iff As(T") = mod(T).

Proof. If As(T") = modaq(T) then since Ag(T") consists of minimal elements over
a finite set, it is never empty, and so mod™ (T") # (). Thus I' is M-satisfiable. The

converse follows from the fact that, as d'5F(" is a pseudo-distance on AﬁF(r),
d'SF O (v, 9) = 0 iff v f=pq ¥ and 655 (1, T) = 0 iff v f=pq T Thus,

vemodp(T) <= 65°F " (v,1) =0,
=t Ve Ay 0, 1) <6550 (1),
— velAg). O

Next, we check to what extent the entailment relations of our framework
are paraconsistent (that is, inconsistent information is tolerated in a non-trivial
way ), and non-monotonic (conclusions may be revised). Both these properties are
related to the question of handling contradictory information. A common way of
representing such information is by the standard negation operator.

Definition 31 We say that M = ({¢, f},{t}, O) is an Nmatrix with negation, if
there is a unary function = in O such that =(t) = {f} and =(f) = {t}.

Distance-based entailments that correspond to Nmatrices with negation pre-
serve the consistency of their conclusions:

Proposition 32 Let S = (M,d, f) be a setting, where M is with negation. Then
for every T' and every ¢, if T =g v then T s —p.

Proof. Suppose that there is a formula 1 such that I =5 ¢ and ' s —. Then
As(T) € moda (1) and Ag(T) C moda(—1)). But moda (1) N moda(—1p) = 0,
and so Ag(T') = (), a contradiction to the fact that Ag(T') # 0 for every T. O

Corollary 33 Let S = (M., d, f) be a setting such that M is with negation. Then
Es is non-monotonic.

Proof. Clearly, p s p and —p =s —p. By Proposition 32, on the other hand,
either p, —p f£s p or p,—p s —p (or both). Hence, the set of conclusions does
not monotonically grow with respect to the size of the premises, and so =g is
non-monotonic. O

Definition 34 A consequence relation = is weakly paraconsistent if for every the-
ory I' there is some 1 such that ' [~ 9.

4Note that the direction < follows from the fact that I' is M-satisfiable.



Corollary 35 For every setting S = (M, d, f) where M is with negation, |=s is
weakly paraconsistent.

Proof. Consider a theory I' and a formula . If " s 1) we are done. Otherwise,
by Proposition 32, T' fs —). O

Next we define a family of settings in which one can show stronger results.

Definition 36 A setting S = (M, d, f) is unbiased if for every vy,v5 € Apy, every
context C = SF(T'), and every ¢ € T, if v1(¢) = va(p) for every ¢ € C, then
dlc(ylaw) = dlc(l/27¢)'

Intuitively, unbiasedness means that distances between valuations and for-
mulas are not affected (biased) by irrelevant formulas (those that are not part of
the relevant context).

Example 37 Clearly, (M, dy,Y) is unbiased for every Nmatrix M. It is also easy
to verify that for any Nmatrix M and every aggregation function f, (M,dy, f)
is unbiased. More generally, it is possible to show that every uniform setting is
unbiased, where S = (M, d, f) is called uniform if for every context C = SF(T)
there is a kc > 0, such that for all ¢y € " and v € Ay,

dlC(V,'l/J) _ {0 ve mOdM(w)a

kc otherwise.

Unbiased settings satisfy a stronger notion of paraconsistency than that of
Corollary 35: As Proposition 39 shows, even if a theory is not consistent, it does
not entail any irrelevant non-tautological formula.

Definition 38 Two sets of formulas I'y and I'y are called independent (or disjoint),
if Atoms(I') N Atoms(I"") = 0.

Proposition 39 Let S = (M, d, f) be an unbiased setting. For every T' and every
¥ such that T and {1} are independent, T =g ¥ iff 1 is an M-tautology.

Proof. One direction is clear: if ¢ is an M-tautology, then for every v € Ag(T),
v(y) =t and so ' =g 9. For the converse, suppose that ¢ is not an M-tautology.
Then there is some M-valuation o, such that o(v) = f. Let v € Ag(T). If
v(yp) = f, we are done. Otherwise, since I" and {¢} are independent, there is an
M-valuation p such that u(p) = v(p) for every ¢ € SF(I') and pu(p) = o(p)
for ¢ € SF(¢)). Since S is unbiased, d*>F(N (v, v) = d'SF() (1, ) for every v € T.
Thus, 6i?fF(r)(V, )= 5(11’5;(”(;;,11) and p € Ag(T"). But p(y) = o(¢) = f and so
I s 9. O

Corollary 40 If S is unbiased, then =g is weakly paraconsistent.

Proof. Given a set I" of formulas, let p € Atoms\SF(I') (if there is no such an atom,
extend the language with a new atomic symbol p). As T and {p} are independent,
by Proposition 39, I" f~sp. O



Regarding the non-monotonic nature of the =g-entailments, it turns out that
in spite of Corollary 33, in unbiased settings one can specify conditions under
which the entailment relations have some monotonic characteristics. Next we con-
sider such cases. For this, we need the following property of aggregation functions:

Definition 41 An aggregation function is called hereditary, if f({z1,...,xn}) <
f{wy1, .-y yn}) entails that f({x1, ..., %0, 21, s 2m}) < FEYL, oo Yns 215 o0y Zm })-

Example 42 The aggregation function X is hereditary, while max is not.

The following proposition shows that in unbiased settings, in light of new
information that is unrelated to the premises, previously drawn conclusions should
not be retracted.’

Proposition 43 Let S = (M, d, f) be an unbiased setting in which f is hereditary.
IfT s 4, then T, ¢ =5 ¢ for every ¢ such that TU{y} and {¢} are independent.

The discussion above, on the non-monotonicity of =g, brings us to the ques-
tion to what extent these entailments can be considered as consequence relations.

Definition 44 A Tarskian consequence relation [16] for a language L is a binary
relation F between sets of formulas of £ and formulas of £ that satisfies the fol-
lowing conditions:

Reflexivity: if ¢ €I, then T' F 4.
Monotonicity: if T'F1p and I' C IV, then IV F .
Transitivity: if ') and IV,% F o, then T', TV - ¢.

As follows from Example 27 and Corollary 33, entailments of the form g5 are,
in general, neither reflexive nor monotonic. To see that transitivity may not hold
either, consider the propositional language and S = (M., d, f) for any d and f.°
If p, —p s g, transitivity is falsified since, by Proposition 29, p s —p — ¢ and
—p, —p — q Es q; Otherwise, if p, =p [Es ¢, then by Proposition 32, p, —p }£s —q,
and this, together with the facts that p =s -p — —¢ and —p,—p — —¢ Es ¢
(Proposition 29 again) provide a counterexample for transitivity.

In the context of non-monotonic reasoning, however, it is usual to consider the
following weaker conditions that guarantee a ‘proper behaviour’ of nonmonotonic
entailments in the presence of inconsistency (see, e.g., [15,17,18,19]):

Definition 45 A cautious consequence relation for £ is a relation |~ between sets
of L-formulas and L-formulas, that satisfies the following conditions:

Cautious Reflexivity: if I" is M-satisfiable and ¢ € T, then ' |~ 4.
Cautious Monotonicity [20]: if T |~ and T |~ ¢, then T, ¢ |~ ¢.
Cautious Transitivity [18]: if D vt and T, |~ ¢, then T |~ ¢.

5This type of monotonicity is kind of rational monotonicity, considered in detail in [15].
6 M, is the matrix considered in Note 18.



Proposition 46 Let S = (M, d, f) be an unbiased setting in which f is hereditary.
Then [Es is a cautious consequence relation.

Proof. A simple generalization to the non-deterministic case of the proof in [13].

(|
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