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Abstract

The index coding problem is concerned with the amount of information that a sender has
to transmit to multiple receivers in a way that enables each of them to retrieve its requested
data relying on prior side information. For linear index coding, the problem is characterized
by the minrank parameter of a graph that represents the side information map of the receivers.
Previous work has shown that it is NP-hard to determine the minrank parameter of graphs.
In this work, we study the computational complexity of the minrank parameter on perturbed
instances, obtained from worst-case instances by a random extension of the side information
available to the receivers. This setting is motivated by applications of index coding, in which
the side information is accumulated via repeated transmissions that suffer from loss of data
due to noisy communication or storage capacity. We prove that determining the minrank pa-
rameter remains computationally hard on perturbed instances. Our contribution includes an
extension of several hardness results of the minrank parameter to the perturbed setting as well
as a general technique for deriving the hardness of the minrank parameter on perturbed in-
stances from its hardness on worst-case instances.

1 Introduction

Index coding is a canonical problem in the area of network information theory. It is concerned with
the design of coding schemes for broadcasting information to multiple receivers relying on their
prior side information. Since its introduction in 1998 by Birk and Kol [6], it provides a simple and
yet rich framework for research on coding-on-demand communication problems motivated by
various applications, e.g., network and satellite communication, distributed storage and caching,
device-to-device relaying, and interference management (see, e.g., [2]).

The index coding problem involves n receivers R1, . . . , Rn and a sender that holds an n-symbol
message x ∈ Σn over some alphabet Σ. Every receiver Ri is interested in the ith symbol xi of x and
has some side information on x, comprising a subset of the symbols xj with j ∈ [n] \ {i}. The side
information map is naturally represented by a digraph G = ([n], E), which contains a directed
edge (i, j) if the side information of the receiver Ri includes xj. When the side information map is
symmetric, we view G as an undirected graph. The sender wishes to broadcast a short message to
the receivers in a way that enables each of them to retrieve its symbol. An index code for G over Σ
of length ` is an encoding function E : Σn → Σ` such that for every message x ∈ Σn and for every
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i ∈ [n], the receiver Ri is able to decode xi given E(x) and the side information available to it.
Given a digraph G that represents the side information of the receivers and given an alphabet Σ,
the index coding problem asks to design an index code for G over Σ of as short as possible length.
For example, if G is a complete graph and the alphabet Σ is binary, it suffices to broadcast to the
receivers the xor of the bits of x, hence the minimal length of an index code in this case is 1.

To demonstrate the applicability of the index coding problem, let us consider the following
scenario described in [4]. Suppose that a server disseminates a sequence of data blocks over a
broadcast channel to a set of caching clients. After the main transmission, each client holds some
subset of the transmitted blocks, whereas the other blocks are lost due to intermittent reception or
limited storage capacity. Assuming that the data blocks are large and that the amount of metadata
per block is independent of its size, each client can use a slow backward channel to inform the
server about the indices of the blocks available in its cache. Then, the goal is to minimize the
length of the additional information needed to be transmitted in order to enable the clients to
discover their required blocks. In certain cases, several rounds of transmissions are made until
all clients receive the required data. During these rounds, the clients might extend their available
information (see, e.g., [20]).

A special case of the index coding problem that has received a considerable amount of attention
in the literature is that of linear index coding, where the alphabet Σ is a field F and the encoding
function E is linear over F. It was shown by Bar-Yossef, Birk, Jayram, and Kol [4] that the minimal
length of a linear index code for a digraph G over a field F is precisely characterized by a quantity
called minrank, denoted by minrkF(G) (see Definition 2.1). The latter was originally introduced
by Haemers [13] in the study of the Shannon capacity of graphs and has applications for various
areas of theoretical computer science, e.g., circuit complexity [21], communication complexity [19],
and randomized computation [15]. The behavior of the minrank of random graphs was studied
over various fields in [14, 12, 1]. Note that for certain instances of the index coding problem, a
non-linear index code can be much shorter than any linear index code [7]. Nevertheless, the study
of linear index codes is of great interest due to the simplicity and the efficiency of their encoding
and decoding procedures.

The characterization of the linear index coding problem via the minrank parameter motivates
its study from a computational perspective. A result of Peeters [18] asserts that for every field
F, it is NP-hard to decide whether the minrank of a given graph over F is at most 3. For the
non-symmetric case, it was shown by Dau, Skachek, and Chee [9] that it is NP-hard to decide
whether the minrank of a given digraph over the binary field F2 is at most 2. This is in contrast
to (undirected) graphs, whose minrank over any field is at most 2 if and only if their complement
is bipartite, a property that can be checked in polynomial time. Assuming certain variants of
Khot’s unique games conjecture [16], it was shown by Langberg and Sprintson [17] that, for all
integers k2 > k1 ≥ 3 and over every finite field, it is NP-hard to distinguish graphs with minrank
at most k1 from graphs with minrank at least k2. In fact, by combining the approach of [17] with
a result of [10], it follows that this hardness result holds even for a super-constant k2 (namely, for
k2 = Ω(log log n), where n stands for the number of vertices). In the recent paper [8], it was shown
that for every sufficiently large integer k and for every finite field F, it is NP-hard to distinguish
graphs with minrank at most k from graphs with minrank at least 2(1−o(1))·k/2. Note that the latter
hardness result relies only on the assumption P 6= NP.
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1.1 Hardness of Linear Index Coding on Perturbed Instances

The hardness results stated above imply that it is unlikely that there exists a polynomial-time algo-
rithm for determining the minrank of a given graph over a given field. However, those hardness
results refer to the worst-case complexity of the problem. In this paper, we study the stability of the
hardness of the minrank parameter to random perturbations. Namely, we consider the question of
whether the minrank parameter remains computationally hard when a worst-case instance is ran-
domly perturbed. This question is motivated by applications of the index coding problem where
the side information of the receivers is extended in a random manner. For example, suppose that
a sender and a collection of receivers are given a side information map, and due to the compu-
tational hardness of the minrank parameter, they are unable to efficiently design an appropriate
economical linear index code. To handle this situation, the sender broadcasts the whole informa-
tion to the receivers, where due to noisy communication or storage limitation, only a subset of
the transmitted information becomes available to each receiver. Then, the objective is to design a
short linear index code with respect to the side information accumulated by the receivers.

For concreteness, suppose that we are given a digraph G = ([n], E) that represents the side
information currently available to the n receivers. Suppose further that the sender broadcasts
the entire message x ∈ Fn to the n receivers and that the ith receiver gets every symbol xj with
j ∈ [n] \ {i} independently with some probability p ∈ (0, 1). After this transmission, the updated
side information map is represented by a digraph G̃ obtained from G by adding every non-edge
of G with probability p.1 We refer to the digraph G̃ as a perturbed instance of G and study the
complexity of determining the minrank over a field F of such perturbed instances. To do so, we
employ an approach for proving hardness results on perturbed instances developed by Bennett,
Reichman, and Shinkar [5]. This approach was used in [5] for several classical NP-hard problems
(e.g., independence number, chromatic number, vertex cover, Hamilton cycle, subset sum, and
constraint satisfaction).

We prove several hardness results on the minrank parameter of perturbed instances. Our first
result shows that the hardness result of [9] on the minrank parameter of digraphs over F2 holds
for perturbed instances, as stated below.

Theorem 1.1. Unless NP = RP, for every constant p ∈ (0, 1), there is no polynomial-time algorithm that
given a digraph G and a digraph G̃ obtained from G by adding every non-edge of G independently with
probability p, decides whether minrkF2(G̃) ≤ 2 with high success probability over the choice of G̃.

Our next result shows that the hardness result of [18] on the minrank parameter of graphs
holds for perturbed instances, as stated below.

Theorem 1.2. Unless NP = RP, for every constant p ∈ (0, 1) and for every field F, there is no polynomial-
time algorithm that given a graph G and a graph G̃ obtained from G by adding every non-edge of G in-

1A noisy transmission of the message x to the receivers allows the ith receiver to get its required symbol xi. In this
case, the ith receiver is already satisfied, hence its vertex can be omitted from the updated side information graph. It
would thus be natural to consider the random graph G̃ obtained from G by first removing every vertex with probability
p and then adding every non-edge between remaining vertices with probability p. For simplicity of presentation, and
to be more aligned with the framework of [5], we consider throughout this work the model in which the ith receiver
learns from the transmission only symbols xj with j ∈ [n] \ {i}. Note, however, that the statements of Theorems 1.1
and 1.2 hold with respect to the model that allows removal of vertices as well.
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dependently with probability p, decides whether minrkF(G̃) ≤ 3 with high success probability over the
choice of G̃.

Note that the hardness result of Theorem 1.2 further holds when the bound on the minrank is
required to hold over all fields F simultaneously.

The proofs of Theorems 1.1 and 1.2 rely on reductions that are robust to random perturbations
(see Section 2.3). Following the approach applied in [5] in the context of the 3-colorability problem,
a main component of these reductions is the notion of blowup of graphs (or digraphs), defined as
follows. For a graph G and for an integer R, the R-blowup of G is the graph obtained from G
by replacing every vertex of G by an independent set of size R and every edge of G by the R2

edges connecting the vertices associated with its endpoints. Our analysis shows, roughly speak-
ing, that if R is sufficiently large then the R-blowup operation makes the minrank parameter of the
complement stable to random perturbations. The proof of Theorem 1.1 uses the characterization
of [9] for digraphs with minrank at most 2 over F2 (see Lemma 3.3). The proof of Theorem 1.2
involves a gadget graph that was used in the hardness proof of [18] (see Section 3.2.1) along with
a concentration result on the clique number of random graphs (see Theorem 2.4)

Finally, we provide a general technique for deriving hardness results on the minrank param-
eter of perturbed instances with perturbation probability 1/2 from standard worst-case hardness
results. For this method to be applicable, the assumed worst-case hardness should hold for a
polynomially large gap, namely, for distinguishing between graphs with minrank at most k from
graphs whose minrank is Ω(k3) (in contrast to the limited gaps given in [18] and in [9]). For a
precise statement, see Proposition 3.18. In the analysis, we study the typical effect of a random
perturbation on the minrank of graphs, borrowing a technique of [5] (see Lemma 3.17). As appli-
cations, we show that the worst-case hardness results on the minrank parameter given in [17] and
in [8] yield hardness results on perturbed instances.

2 Preliminaries

Throughout the paper, we omit all floor and ceiling signs whenever they are not crucial. All loga-
rithms are in base 2, unless otherwise specified. Undirected graphs are referred to as graphs, and
directed graphs are referred to as digraphs. All the considered graphs and digraphs are simple.

2.1 Minrank

The minrank parameter, introduced in [13], is defined as follows.

Definition 2.1 (Minrank). Let G = (V, E) be a digraph on the vertex set V = [n], and let F be a field.
We say that a matrix M ∈ Fn×n represents G if Mi,i 6= 0 for every i ∈ V, and Mi,j = 0 for every distinct
vertices i, j ∈ V such that (i, j) /∈ E. The minrank of G over F is defined as

minrkF(G) = min{rankF(M) | M represents G over F}.

The definition is naturally extended to graphs by replacing every edge with two oppositely directed edges.

It was shown in [4] that for every side information digraph G and for every field F, the smallest
length of a linear index code for G over F is minrkF(G).
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The chromatic number of a graph G, denoted by χ(G), is the smallest integer k needed for a
proper k-coloring of G, i.e., a coloring of its vertices with k colors such that every two adjacent
vertices are assigned distinct colors. For every graph G and for every finite field F, it holds that

log|F| χ(G) ≤ minrkF(G) ≤ χ(G). (1)

Indeed, for the first inequality, let G be a graph on the vertex set V = [n], set k = minrkF(G),
and let M ∈ Fn×n be a matrix that represents G and satisfies rankF(M) = k. The matrix M can
be written as M = AT · B for two matrices A, B ∈ Fk×n. Observe that for every two adjacent
vertices i, j ∈ V in G, the ith and jth columns of A are distinct, because the inner product of the
ith column of B with the former is nonzero whereas its inner product with the latter is zero. This
implies that by assigning to every vertex i ∈ V the ith column of A, we get a proper coloring of
G, hence χ(G) ≤ |F|k, implying the required bound. For the second inequality, consider a proper
k-coloring of a graph G on the vertex set V = [n], and let M ∈ Fn×n be the 0, 1 matrix whose value
in the (i, j) entry is 1 if and only if the vertices i and j belong to the same color class. Observe that
M represents G and that rankF(M) ≤ k, hence minrkF(G) ≤ k.

2.2 Computational Complexity

In what follows, we describe the notions from the area of computational complexity used through-
out this paper. For more details, we refer the reader to [3, Chapters 2 and 7].

Let Σ be some alphabet, and let A = (AYES, ANO) be a pair of disjoint subsets of Σ∗. The
computational problem associated with A (in short, the problem A) is that of distinguishing AYES

from ANO, that is, deciding whether a given instance x ∈ AYES ∪ ANO lies in AYES or in ANO. In
the former case, x is referred to as a YES instance, and in the latter as a NO instance. When the
sets AYES and ANO do not cover Σ∗, the problem A is referred to as a promise problem to express
the fact that an instance of the problem is promised to lie in AYES ∪ ANO. A reduction from a
problem A = (AYES, ANO) to a problem B = (BYES, BNO) is a mapping f from the instances of A
to instances of B, such that for every instance x of A, it holds that if x ∈ AYES then f (x) ∈ BYES,
and if x ∈ ANO then f (x) ∈ BNO.

The complexity class NP is the class of all problems that can be verified by a polynomial-time
algorithm. A problem B is NP-hard if for every A ∈ NP, there exists a polynomial-time reduction
from A to B. For any 0 ≤ α < β ≤ 1, let BPP(α, β) denote the complexity class that consists of
all problems A = (AYES, ANO) for which there exists a randomized algorithm with polynomial
time that accepts every x ∈ AYES with probability at least β and accepts every x ∈ ANO with
probability at most α. The complexity classes BPP and RP are defined by BPP = BPP( 1

3 , 2
3 ) and

RP = BPP(0, 1
2 ). It is well known that if NP ⊆ BPP then NP = RP.

2.3 Robustness of NP-hardness

We turn to describe the notion of robust reductions, introduced in [5], which is used to prove
hardness results on perturbed instances. Let A = (AYES, ANO) and B = (BYES, BNO) be two
promise problems. For every instance y of B, consider a distribution noise(y), and suppose that
given an instance y it is possible to sample from noise(y) in polynomial time. Let f be a mapping
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from the instances of A to instances of B, and let ε ≥ 0. We say that f is a noise-robust reduction with
error ε from A to B if for every instance x of A, it holds that

1. if x ∈ AYES, then f (x) ∈ BYES and noise( f (x)) ∈ BYES with probability at least 1− ε, and

2. if x ∈ ANO, then f (x) ∈ BNO and noise( f (x)) ∈ BNO with probability at least 1− ε.

The promise problem B is said to be NP-hard under a noise-robust reduction with error ε if there exists
a polynomial-time noise-robust reduction with error ε from an NP-hard problem to B. The notion
of hardness under noise-robust reductions is useful for proving hardness results on perturbed
instances, as described by the following proposition (see [5, Proposition 1.3]).

Proposition 2.2. Let B = (BYES, BNO) be a promise problem, and let ε, α ≥ 0 be fixed constants satisfying
ε + α < 1/2. For every instance y of B, consider a distribution noise(y), such that given y it is possible to
sample from noise(y) in polynomial time. Suppose that B is NP-hard under a noise-robust reduction with
error ε. Then, unless NP = RP, there is no polynomial-time algorithm that given an instance y of B and a
sample y′ ∼ noise(y), decides whether y′ ∈ BYES or y′ ∈ BNO with success probability at least 1− α over
the choice of y′.

Proof: Suppose that there exists a polynomial-time noise-robust reduction f with error ε from an
NP-hard problem A to B. For the contrapositive, suppose that there exists a polynomial-time algo-
rithm, denoted by Alg, that given an instance y of B and a sample y′ ∼ noise(y), decides whether
y′ ∈ BYES or y′ ∈ BNO with success probability at least 1− α over the choice of y′. Consider the
randomized algorithm that given an instance x of A applies the reduction f to obtain an instance
y = f (x) of B, picks at random an instance y′ ∼ noise(y), and runs Alg on the pair (y, y′). The
running time of this algorithm is clearly polynomial.

We turn to analyze the success probability. For every input x, with probability at least 1− ε

over the choice of y′, it holds that if x ∈ AYES then y′ ∈ BYES and if x ∈ ANO then y′ ∈ BNO, and
Alg succeeds on (y, y′) with probability at least 1− α. By the union bound, the probability that the
algorithm fails on x is at most ε + α < 1/2, hence the algorithm succeeds with the complement
probability, which is at least some constant larger than 1/2. By standard amplification, it follows
that A can be solved by a randomized polynomial-time algorithm with high success probability,
hence NP ⊆ BPP, which yields that NP = RP.

2.4 Random Graphs and Subgraphs

Definition 2.3. For a graph or a digraph G = (V, E) and for p ∈ [0, 1], let Gp,e = (V, E′) denote
a random subgraph of G on the vertex set V where each edge of E is included in E′ independently with
probability p.

For the complete graph Kn on the vertex set [n], we denote its random subgraph (Kn)p,e by the
standard notation G(n, p). We need the following result on the distribution of the clique number
of G(n, p) (for a proof, see, e.g., [11, Theorem 7.3 and Equation (7.7)]).

Theorem 2.4. For every fixed p ∈ (0, 1), there exists a constant ap > 0, such that the probability that
there exists a clique of size at least ap · log n in the random graph G(n, p) is at least 1− e−Ω(n2/ log5 n).
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3 Proofs of Results

3.1 Digraphs with Minrank at Most Two

In this section we prove the following hardness result. Here, for a digraph D = (V, E), the com-
plement D of D is the digraph on V with edge set {(u, v) ∈ V ×V | u 6= v, (u, v) /∈ E}.

Theorem 3.1. Unless NP = RP, for all constants p ∈ (0, 1) and β > 1
2 , there is no polynomial-time

algorithm that given a digraph D and a random subgraph D′ ∼ D1−p,e decides whether minrkF2(D′) ≤ 2
with success probability at least β over the choice of D′.

Notice that if D′ ∼ D1−p,e then the digraph D′ is obtained from D by adding each of its non-edges
independently with probability p, hence Theorem 3.1 confirms Theorem 1.1. The proof employs a
characterization of Dau et al. [9] for digraphs with minrank at most 2 over F2, which is based on
the notion of fair colorings of digraphs.

3.1.1 Fair Colorability

The notion of fair 3-colorability is defined as follows (see [9, Definition IV.5 and Lemma IV.6]).

Definition 3.2. A digraph D = (V, E) is fairly 3-colorable if there exists a partition of its vertex set
into three sets V = V1 ∪ V2 ∪ V3, such that for every vertex u ∈ Vi with i ∈ [3], it holds that the set
ND(u) = {v ∈ V | (u, v) ∈ E} of the out-neighbors of u in D is contained in Vj for some j ∈ [3] \ {i}.
We refer to such a partition as a fair 3-coloring of D with V1, V2, V3 as color classes.

The following result of [9] relates the minrank of a digraph over F2 to the fair 3-colorability of
its complement.

Lemma 3.3 ([9, Theorem IV.7]). For every digraph D, it holds that D is fairly 3-colorable if and only if
minrkF2(D) ≤ 2.

We also need the following special case of a result of [9], which was combined there with
Lemma 3.3 above to obtain the hardness of the minrank of digraphs over F2.

Theorem 3.4 ([9, Theorem V.1]). The problem of deciding whether a given digraph is fairly 3-colorable is
NP-hard.

3.1.2 Proof of Theorem 3.1

Fix a constant p ∈ (0, 1). By Proposition 2.2, it suffices to show that the problem of deciding
whether a given digraph D satisfies minrkF2(D) ≤ 2 is NP-hard under a noise-robust reduction
with error o(1), where noise(D) refers to the distribution D1−p,e and the o(1) term tends to zero as
the input size grows. In fact, by considering the complement digraph, it follows from Lemma 3.3
that it suffices to show such a reduction for the problem of deciding whether a given digraph is
fairly 3-colorable, whose NP-hardness is given by Theorem 3.4. We present a noise-robust reduc-
tion from this problem to itself.

7



The reduction. For a given digraph G = (V, E) with n vertices, the reduction outputs the R-
blowup D of the digraph G, where R = c · n for some constant c = c(p) to be determined later.
Namely, every vertex v ∈ V of G is replaced in D by a set Iv of R vertices, and every directed edge
(u, v) ∈ E of G is replaced in D by all the R2 possible directed edges from the vertices of Iu to those
of Iv. Notice that the reduction can be implemented in polynomial time.

Correctness. Let G = (V, E) be an input digraph with n vertices, and let D be its R-blowup for
the R defined by the reduction. Let D′ be a random subgraph of D distributed like D1−p,e.

We first claim that if G is fairly 3-colorable then D′ is fairly 3-colorable with probability 1. To see
this, consider a fair 3-coloring of G and observe that it induces a fair 3-coloring of D by assigning
the color of every vertex v ∈ V in G to the vertices of Iv in D. This implies that every subgraph of
D is fairly 3-colorable, hence the random subgraph D′ is fairly 3-colorable with probability 1.

For the soundness proof, let us consider the event E defined as follows.

Definition 3.5. Let E denote the event that for every choice of R
3 -subsets I′u ⊆ Iu for the vertices u ∈ V,

the following holds. For every vertex u ∈ V, there exists a vertex w ∈ I′u such that for every v ∈ NG(u),
there exists an edge in D′ from w to some vertex in I ′v.

We turn to show that the event E occurs with high probability over the choice of D′. Note that
the o(1) term tends to zero as n tends to infinity.

Lemma 3.6. The event E occurs with probability 1− o(1).

Proof: Let u ∈ V be a vertex of G, and set d = |NG(u)|. Let Au denote the event that there exists
a choice of R

3 -subsets I′v ⊆ Iv for v ∈ {u} ∪ NG(u), for which no vertex w ∈ I′u satisfies that for
every v ∈ NG(u), there exists an edge in D′ from w to some vertex in I′v. Fix a choice of R

3 -subsets
I′v ⊆ Iv for the vertices v ∈ {u} ∪ NG(u). Observe that for every fixed pair of vertices w ∈ I′u and
v ∈ NG(u), the probability that D′ does not include an edge from w to any vertex in I′v is pR/3. This
implies that the probability that D′ includes for every v ∈ NG(u) an edge from w to some vertex
in I′v is

(1− pR/3)d ≥ 1− d · pR/3.

Hence, the probability that no vertex w ∈ I′u satisfies this condition does not exceed

(d · pR/3)R/3.

By the union bound over the choices of the sets I′v for v ∈ {u} ∪ NG(u), it follows that the proba-
bility of the event Au is at most(

R
R/3

)d+1

· (d · pR/3)R/3 ≤ 2R·(d+1) · 2(log d)·R/3 · pR2/9

≤ 24Rn/3 · 2(log p)·R2/9 ≤ 2−Ω(n2),

where the second inequality follows by d < n and the third by the fact that R = c · n for a
sufficiently large constant c, say, c = −24/ log p. Using again the union bound, it follows that
the probability that there exists a vertex u ∈ V for which the event Au occurs does not exceed
n · 2−Ω(n2) ≤ 2−Ω(n2). This implies that the event E occurs with probability 1− o(1), and we are
done.
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The following lemma shows that whenever the event E holds, so does the soundness of the
reduction.

Lemma 3.7. If the digraph D′ is fairly 3-colorable and the event E occurs, then G is fairly 3-colorable.

Proof: Suppose that D′ is fairly 3-colorable and that the event E occurs. Consider a fair 3-coloring
of D′, and recall that |Iu| = R for every u ∈ V. Since the given coloring uses three colors, for every
vertex u ∈ V, there exists an R

3 -subset I′u ⊆ Iu such that the vertices of I′u share a common color.
Since the event E occurs, for every vertex u ∈ V, there exists a vertex in I′u that is connected by
an edge in D′ to some vertex in I′v for every v ∈ NG(u). Since the given 3-coloring of D′ is fair,
this implies that all the vertices of the sets I′v with v ∈ NG(u) share a common color, and this color
is different from the color of the vertices of I′u. Therefore, by assigning to every vertex u ∈ V the
color of the vertices of I′u in D′, we obtain that G is fairly 3-colorable, as required.

Equipped with the above lemmas, we complete the soundness proof of the reduction. Suppose
that G is not fairly 3-colorable. By Lemma 3.7, the digraph D′ is not fairly 3-colorable unless the
event E does not occur. By Lemma 3.6, the probability that E does not occur is o(1), so with
probability 1− o(1) over the choice of D′, it holds that D′ is not fairly 3-colorable, as desired. In
addition, the digraph D itself forms a sample from D′ for which the event E occurs, hence it is not
fairly 3-colorable. This completes the proof of Theorem 3.1.

3.2 Graphs with Minrank at Most Three

In this section we prove the following hardness result.

Theorem 3.8. Unless NP = RP, for all constants p ∈ (0, 1) and β > 1
2 and for every field F, there is

no polynomial-time algorithm that given a graph G and a random subgraph G′ ∼ G1−p,e decides whether
minrkF(G′) ≤ 3 with probability at least β over the choice of G′.

Notice that if G′ ∼ G1−p,e then the graph G′ is obtained from G by adding each of its non-edges
independently with probability p, hence Theorem 3.8 confirms Theorem 1.2. The proof borrows a
gadget graph that was used by Peeters [18] in his hardness proof for the minrank parameter. We
start by presenting this gadget and some of its properties.

3.2.1 A Gadget Graph

For two given vertices u and v, the gadget graph Pu,v consists of six vertices: the vertices u, v and
four additional vertices, denoted a, b, c, d. It includes two triangles whose vertices are {a, b, u}
and {c, d, v} and a matching that connects the vertices a, b, u to the vertices v, c, d respectively (see
Figure 1).

The following lemma summarizes two simple properties of Pu,v given in [18].

Lemma 3.9 ([18]). The gadget graph Pu,v, given in Figure 1, satisfies the following properties.

1. There exists a proper 3-coloring of Pu,v that assigns to u and v the same color, and there exists a proper
3-coloring of Pu,v that assigns to u and v distinct colors.
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Figure 1: The gadget graph Pu,v

2. Let M be a matrix that represents the complement of the graph Pu,v over a field F with rankF(M) ≤ 3.
Then, M has one of the following two patterns, where each ? stands for a nonzero element of F.



u a b c d v

u ? 0 0 ? 0 0
a 0 ? 0 0 ? 0
b 0 0 ? 0 0 ?

c ? 0 0 ? 0 0
d 0 ? 0 0 ? 0
v 0 0 ? 0 0 ?





u a b c d v

u ? 0 0 0 0 ?

a 0 ? 0 ? 0 0
b 0 0 ? 0 ? 0
c 0 ? 0 ? 0 0
d 0 0 ? 0 ? 0
v ? 0 0 0 0 ?


.

We next prove the following lemma that extends an argument of [18].

Lemma 3.10. Let H = (V, E) be a graph, and let M be a matrix that represents its complement H over a
field F such that rankF(M) ≤ 3. Let A1, . . . , At ⊆ V be t sets of vertices, such that

1. for every i ∈ [t], the rows of M that correspond to the vertices of Ai are pairwise proportional (i.e.,
equal up to a scalar multiplication over F),

2. for every i ∈ [t] and for every distinct u, v ∈ Ai, the graph H contains a Pu,v gadget, and

3. for every distinct i, j ∈ [t], there exist vertices u ∈ Ai and v ∈ Aj for which the graph H contains a
Pu,v gadget.

Then, there exist three (not necessarily distinct) rows in M such that for every i ∈ [t], the rows of M that
correspond to the vertices of Ai are proportional to one of them.

Proof: For every i ∈ [t], let Vi denote the subspace spanned by the rows of M that correspond to
the vertices of Ai. By assumption, we have dim(Vi) = 1.

We first claim that for every i ∈ [t], the values of every row of M in the coordinates that
correspond to vertices of Ai are either all zero or all nonzero. If |Ai| = 1, then this trivially holds.
Otherwise, let u and v be two vertices of Ai. By assumption, the graph H contains a Pu,v gadget.
Using rankF(M) ≤ 3, Item 2 of Lemma 3.9 implies that the restriction of the matrix M to the
vertices of this gadget has one of the two patterns given by the lemma. In fact, since the rows of
M that correspond to u and v are proportional, this gadget must fit the right-hand pattern. Now,
observe that the rows of the vertices u, a, b of this gadget span the entire row space of M, and that
this subspace does not include a vector whose value in the coordinate of u is zero and whose value
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in the coordinate of v is not (or vice versa). Hence, the values of every row of M in the coordinates
of Ai are either all zero or all nonzero.

Now, for every i ∈ [t], let Ui denote the subspace spanned by the rows of M whose values
in the coordinates that correspond to the vertices of Ai are zeros. Note that the subspace Vi is
nonzero on all the coordinates that correspond to vertices of Ai, hence Vi is not contained in Ui.

We claim that for every i, j ∈ [t], either Vi ⊆ Uj or Vi = Vj. Indeed, for distinct i, j ∈ [t], the
assumption of the lemma implies that the graph H contains a Pu,v gadget for some vertices u ∈ Ai

and v ∈ Aj. By combining the assumption rankF(M) ≤ 3 with Item 2 of Lemma 3.9, the restriction
of the matrix M to the vertices of this gadget has one of the two patterns given by the lemma. For
each of them, it follows that the rows of M whose value in the coordinate of u is zero span a
subspace of dimension at least 2, hence dim(Ui) ≥ 2. Since Vi is not contained in Ui, using again
the fact that rankF(M) ≤ 3, it follows that dim(Ui) = 2. Furthermore, if the restriction of M to the
vertices of Pu,v corresponds to the left-hand pattern given in Lemma 3.9, then the value of the row
of v in the coordinate of the vertex u is zero, hence all its values in the coordinates that correspond
to vertices of Ai are zeros, and thus Vj ⊆ Ui. If, however, it corresponds to the right-hand pattern,
then it follows that Vi = Vj.

Finally, suppose that Vi and Vj are distinct subspaces for some i, j ∈ [t]. The above discussion
implies that every subspace Vk which is different from both Vi and Vj satisfies Vk ⊆ Ui ∩Uj. Since
Vi and Vj are distinct, it follows that Ui and Uj are also distinct (because Vi is contained in Uj

but not in Ui), so by combining dim(Ui) = dim(Uj) = 2 with rankF(M) ≤ 3, it follows that
dim(Ui ∩ Uj) = 1, hence Vk = Ui ∩ Uj. This implies that there are no more than three distinct
subspaces Vi for i ∈ [t], hence there exist three rows in M as required by the lemma.

3.2.2 Proof of Theorem 3.8

Fix a constant p ∈ (0, 1) and a field F. By Proposition 2.2, it suffices to show that the problem
of deciding whether a given graph G satisfies minrkF(G) ≤ 3 is NP-hard under a noise-robust
reduction with error o(1), where noise(G) refers to the distribution G1−p,e and the o(1) term tends
to zero as the input size grows.

The reduction. We reduce from the 3-colorability problem. Let G = (V, E) be an instance of this
problem. Set n = |V| and R = 2c·(log n)1/2

for some constant c = c(p) to be determined later. The
reduction outputs a graph H defined as follows. For every vertex u ∈ V, define a set

Cu = {(u, i) | i ∈ [R]}

of R vertices. We refer to Cu as the cloud of the vertex u and define C = ∪u∈VCu. For every two
vertices u, v ∈ V that are adjacent in G, we add to H all the R2 possible edges between the vertices
of Cu and those of Cv. Finally, for every two distinct vertices (u, i), (v, j) ∈ C, including the case
u = v, we add to H the gadget graph P(u,i),(v,j) (see Section 3.2.1). Note that for every such gadget,
we add to the graph four new vertices and nine edges. Notice that the definition of R implies that
the reduction can be implemented in polynomial time.

Correctness. Let G = (V, E) be an input graph with n = |V|, let H be the graph defined by the
above reduction, and let H′ be a random subgraph of H distributed like H1−p,e.
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We first claim that if G is 3-colorable then minrkF(H′) ≤ 3 with probability 1. To see this,
consider a proper 3-coloring of G, and for every u ∈ V, assign the color of u to all the vertices of
the cloud Cu in H. Since every two adjacent vertices in G receive distinct colors, it follows that the
endpoints of the edges of H that connect vertices of distinct clouds receive distinct colors as well.
Further, by Item 1 of Lemma 3.9, for every two distinct vertices (u, i), (v, j) ∈ C, the 3-coloring can
be properly extended to the other four vertices of the gadget P(u,i),(v,j). It thus follows that H is
3-colorable, implying that its subgraph H′ is 3-colorable with probability 1. This yields, using (1),
that minrkF(H′) ≤ χ(H′) ≤ 3 with probability 1, as desired.

For the soundness proof, let us consider the event E defined as follows.

Definition 3.11. Let E denote the event that for some integer r ≥ 3, there exists a choice of r-subsets
C′u ⊆ Cu for the vertices u ∈ V such that

1. for every u ∈ V and for every distinct (u, i), (u, j) ∈ C′u, all the edges of the gadget P(u,i),(u,j) of H
are included in H′, and

2. for every choice of r
3 -subsets C′′u ⊆ C′u for the vertices u ∈ V, it holds that for every distinct u, v ∈ V,

there exist vertices (u, i) ∈ C′′u and (v, j) ∈ C′′v for which all the edges of the gadget P(u,i),(v,j) of H
are included in H′, and in addition, if (u, i) and (v, j) are adjacent in H, then the edge that connects
them is included in H′.

We turn to show that the event E occurs with high probability over the choice of H′.

Lemma 3.12. The event E occurs with probability 1− o(1).

Proof: It will be convenient to assume here that the random subgraph H′ of H is chosen in two
stages. In the first stage, every edge of the gadgets P(u,i),(u,j) with u ∈ V and i, j ∈ [R], i.e., gadgets
that correspond to pairs of vertices in the same cloud, is removed independently with probability
p. In the second stage, every other edge of H, that is, every edge that connects vertices from
distinct clouds in H or from gadgets P(u,i),(v,j) with distinct u, v ∈ V, is removed independently
with probability p. Note that the graph obtained after these two stages is distributed like H1−p,e

Consider first the subgraph of H obtained after the first stage. For every u ∈ V, let Fu denote
the graph on the vertex set [R], in which every two distinct vertices i, j ∈ [R] are adjacent if all
the edges of the gadget P(u,i),(u,j) of H survive in the first stage. Since every such gadget has nine
edges, it follows that the graph Fu is distributed like G(R, q) where q = (1− p)9. By Theorem 2.4,
for some constant a = a(p) > 0 and for r = a · log R = a · c ·

√
log n, the probability that there is no

clique of size r in Fu does not exceed e−Ω(R2/ log5 R). By the union bound, the probability that there
exists u ∈ V for which there is no such clique in Fu is at most n · e−Ω(R2/ log5 R) = o(1), where the
o(1) bound follows from the definition of R (recall that R = 2Θ((log n)1/2)). Hence, with probability
1− o(1), there exists a choice of r-subsets C′u ⊆ Cu for u ∈ V satisfying Item 1 of Definition 3.11.

Consider now the subgraph H′ obtained after the second stage. We turn to show that with
high probability the above sets C′u for u ∈ V, whose choice is independent of the removal of edges
in the second stage, satisfy Item 2 of Definition 3.11. To see this, fix two distinct vertices u, v ∈ V,
and let Au,v denote the event that there exist sets C′′u ⊆ C′u and C′′v ⊆ C′v of size |C′′u | = |C′′v | = r

3
for which no pair of vertices (u, i) ∈ C′′u and (v, j) ∈ C′′v satisfies that all the edges of P(u,i),(v,j) in H
as well as the edge that connects them, if exists in H, are included in H′. Fix a choice of such sets
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C′′u and C′′v of size r
3 , and observe that for every (u, i) ∈ C′′u and (v, j) ∈ C′′v , the probability that all

of the aforementioned edges are included in H′ is either (1− p)9 or (1− p)10. It thus follows that
the probability that no such pair of vertices satisfies this condition is at most (1− (1− p)10)r2/9.
By the union bound, the probability of the event Au,v does not exceed(

r
r/3

)2

· (1− (1− p)10)r2/9.

Using again the union bound, the probability that for some pair of distinct vertices u, v ∈ V the
event Au,v occurs is at most(

n
2

)
·
(

r
r/3

)2

· (1− (1− p)10)r2/9 ≤ n2 · 22r · e−(1−p)10·r2/9 = o(1),

where the o(1) bound follows from the definition of r = a · c ·
√

log n, assuming that the constant
c = c(p) in the definition of R is sufficiently large. By applying again the union bound, we obtain
that with probability 1 − o(1), there exists a choice of r-subsets C′u ⊆ Cu for u ∈ V satisfying
Items 1 and 2 of Definition 3.11, hence with such probability, the event E occurs.

The following lemma shows that whenever the event E holds, so does the soundness of the
reduction.

Lemma 3.13. If the graph H′ satisfies minrkF(H′) ≤ 3 and the event E occurs, then G is 3-colorable.

Proof: Suppose that the random subgraph H′ of H satisfies minrkF(H′) ≤ 3, and let M be a matrix
that represents H′ over F and satisfies rankF(M) ≤ 3. Suppose further that the event E occurs,
and let C′u ⊆ Cu be the choice of r-subsets for the vertices u ∈ V guaranteed by Definition 3.11.
By Item 1 of this definition, for every u ∈ V, the graph H′ includes a gadget P(u,i),(u,j) for every
distinct vertices (u, i) and (u, j) in C′u. Hence, for every u ∈ V we can apply Lemma 3.10 to the
r sets {(u, i)} with (u, i) ∈ C′u, to obtain that there are three rows in M such that every row of
M associated with a vertex of C′u is proportional to one of them. In particular, there exists a set
C′′u ⊆ C′u of size |C′′u | = r

3 such that the rows of M that correspond to the vertices of C′′u are pairwise
proportional.

Now, by Item 2 of Definition 3.11, for every distinct u, v ∈ V there exist vertices (u, i) ∈ C′′u
and (v, j) ∈ C′′v such that H′ includes a gadget P(u,i),(v,j). Hence, we can apply Lemma 3.10 to the
n sets C′′u with u ∈ V to obtain that there are three rows in M, denoted w1, w2, w3, such that every
row of M associated with a vertex of C′′u for some u ∈ V is proportional to one of them. Consider a
partition of V into three sets V1, V2, V3, where Vi is a set of vertices u ∈ V for which the rows of M
that correspond to the vertices of C′′u are proportional to wi. We claim that no edge of G connects
two vertices from the same part of this partition, hence G is 3-colorable. Indeed, let u and v be
adjacent vertices in G. Then, by Item 2 of Definition 3.11, there exists an edge in H′ that connects
some vertex (u, i) ∈ C′′u and some vertex (v, j) ∈ C′′v . This implies that the (u, i) entry of the row of
M that corresponds to the vertex (v, j) is zero, whereas its (v, j) entry is nonzero. Hence, the rows
of M that correspond to the vertices of C′′u and to those of C′′v are not proportional, yielding that u
and v lie in different parts of the partition.
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Equipped with the above lemmas, we complete the soundness proof of the reduction. Suppose
that G is not 3-colorable. By Lemma 3.13, the graph H′ satisfies minrkF(H′) ≥ 4 unless the event
E does not occur. By Lemma 3.12, the probability that E does not occur is o(1), so with probability
1− o(1) over the choice of H′, it holds that minrkF(H′) ≥ 4. In addition, the graph H itself forms
a sample from H′ for which the event E occurs, hence it satisfies minrkF(H) ≥ 4. This completes
the proof of Theorem 3.8.

3.3 The Minrank of Perturbed Graphs

In this section we study the behavior of the minrank parameter on perturbed graphs with per-
turbation probability 1/2. The proofs follow ideas applied in [5] in the context of the chromatic
number of graphs. Let us start with the following lemma.

Lemma 3.14. For a graph G = (V, E), let E = E1 ∪ E2 be a partition of its edge set into two sets, and
consider the graphs G1 = (V, E1) and G2 = (V, E2). Then, for every field F, it holds that

minrkF(G) ≤ minrkF(G1) ·minrkF(G2).

Proof: Set k1 = minrkF(G1) and k2 = minrkF(G2), and let M1 and M2 be matrices of rank k1 and
k2 over F that represent the graphs G1 and G2 respectively. Let M be the matrix defined by

Mi,j = (M1)i,j · (M2)i,j

for all vertices i and j. The matrix M represents the graph G over F. Indeed, the values on the
diagonal are all nonzero. Further, every distinct non-adjacent vertices i, j in G are adjacent in G,
and are thus adjacent in G1 or in G2. It follows that the (i, j) entry is zero in at least one of the
matrices M1 and M2, hence it is zero in M as well. Finally, it is well known and easy to check that
M is a principal sub-matrix of the Kronecker product M1 ⊗M2, hence

rankF(M) ≤ rankF(M1 ⊗M2) = k1 · k2.

This implies that minrkF(G) ≤ k1 · k2, as required.

As a consequence, we obtain the following bound on the expectation of the minrank parameter
of perturbed graphs with perturbation probability 1/2.

Lemma 3.15. Let F be a field, and let G be a graph with k = minrkF(G). Then, the random subgraph
G′ ∼ G1/2,e satisfies

E
[
minrkF(G′)

]
≥
√

k.

Proof: For a graph G = (V, E), consider the two random subgraphs G1 and G2 on V, such that
every edge of G is chosen uniformly and independently to be included either in G1 or in G2.
Observe that both G1 and G2 are distributed like G1/2,e and thus like G′. This implies that

E
[
minrkF(G′)

]
=

1
2
· E
[
minrkF(G1) + minrkF(G2)

]
≥ E

[√
minrkF(G1) ·minrkF(G2)

]
≥ E

[√
minrkF(G)

]
=
√

k,

where the second inequality follows from Lemma 3.14. This completes the proof.
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We next obtain a lower bound on the typical minrank parameter of perturbed graphs (rather
than on their expected minrank). We use the following lemma that was derived in [5] from a result
in additive combinatorics.

Lemma 3.16 ([5, Lemma 3.1]). For an integer m and for α ∈ (0, 1], let A be a collection of subsets of [m]

such that |A| = α · 2m. Then, there exist three sets A1, A2, A3 ∈ A such that |A1 ∪ A2 ∪ A3| ≥ m− 4/α3.

Equipped with Lemma 3.16, we prove the following.

Lemma 3.17. For a field F, an integer k, and α ∈ (0, 1), let G = (V, E) be a graph that satisfies

minrkF(G) > k3 + 8/(1− α)3.

Then, the random subgraph G′ ∼ G1/2,e satisfies

Pr
[
minrkF(G′) > k

]
> α.

Proof: We prove the contrapositive. Suppose that the random subgraph G′ ∼ G1/2,e satisfies
minrkF(G′) > k with probability at most α. Put m = |E|, and let A denote the collection of all
subsets E′ ⊆ E for which the minrank over F of the complement of the graph (V, E′) is at most k.
Since the edge set of G′ is chosen uniformly over all the subsets of E, our assumption implies that
|A| ≥ (1− α) · 2m. By Lemma 3.16, it follows that there exist three sets E1, E2, E3 ∈ A for which it
holds that |E1 ∪ E2 ∪ E3| ≥ m− 4/(1− α)3.

Let V ′ be the set of vertices v ∈ V for which all the edges of G that are incident with v belong to
E1 ∪ E2 ∪ E3. For each i ∈ [3], put Gi = (V, Ei), and let G′i = (V ′, E′i) denote its induced subgraph
on the vertex set V ′. Since Ei ∈ A, it follows that minrkF(G′i) ≤ minrkF(Gi) ≤ k. By Lemma 3.14,
the minrank over F of the complement of the graph (V ′, E′1 ∪ E′2 ∪ E′3) does not exceed k3. Further,
in the induced subgraph of G on V \ V ′, every vertex lies on an edge of E \ (E1 ∪ E2 ∪ E3), hence
|V \V ′| ≤ 8/(1− α)3. This implies that minrkF(G) ≤ k3 + 8/(1− α)3, and we are done.

By combining Lemma 3.17 with Proposition 2.2 applied with the identity reduction, one can
derive hardness results on the minrank parameter of perturbed instances with perturbation prob-
ability 1/2 from worst-case hardness with a sufficiently large gap between YES and NO instances.
This is stated in the following proposition.

Proposition 3.18. Suppose that for some integers k2 > k1 and for some field F, it is NP-hard to decide
whether a given graph G satisfies minrkF(G) ≤ k1 or minrkF(G) ≥ k2. Then, unless NP = RP, there is
no polynomial-time algorithm that given a graph G and a random subgraph G′ ∼ G1/2,e decides whether
minrkF(G′) ≤ k1 or minrkF(G′) ≥ Ω(k1/3

2 ), with high success probability over the choice of G′.

We finally combine Proposition 3.18 with known worst-case hardness results on the minrank
parameter to obtain the following consequences.

• Let F be a fixed finite field, and let k be a sufficiently large integer. It was shown in [8] that it is
NP-hard to decide whether a graph G satisfies minrkF(G) ≤ k or minrkF(G) ≥ 2(1−o(1))·k/2.
By Proposition 3.18, we obtain that unless NP = RP, there is no polynomial-time algorithm
that given a graph G and a random subgraph G′ ∼ G1/2,e decides whether minrkF(G′) ≤ k
or minrkF(G′) ≥ 2(1−o(1))·k/6, with high success probability over the choice of G′.
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• Let F be a fixed finite field. It was shown in [17] that assuming certain variants of the unique
games conjecture, for all integers k2 > k1 ≥ 3, it is NP-hard to decide whether a given graph
G satisfies minrkF(G) ≤ k1 or minrkF(G) ≥ k2. By Proposition 3.18, we obtain that under
the same conjectures and assuming that NP 6= RP, for all integers k2 > k1 ≥ 3, there is
no polynomial-time algorithm that given a graph G and a random subgraph G′ ∼ G1/2,e

decides whether minrkF(G′) ≤ k1 or minrkF(G′) ≥ k2, with high success probability over
the choice of G′. We remark that this statement can also be derived by combining a hardness
result on the chromatic number of perturbed instances, which follows from [5, Lemma 3.9],
with the relations between these graph parameters given in (1).
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[11] A. Frieze and M. Karoński. Introduction to Random Graphs. Cambridge University Press, 2015.

[12] A. Golovnev, O. Regev, and O. Weinstein. The minrank of random graphs. IEEE Trans. Inform.
Theory, 64(11):6990–6995, 2018. Preliminary version in RANDOM’17.

[13] W. H. Haemers. On some problems of Lovász concerning the Shannon capacity of a graph.
IEEE Trans. Inform. Theory, 25(2):231–232, 1979.

[14] I. Haviv and M. Langberg. On linear index coding for random graphs. In Proc. of the IEEE
Int. Symposium on Information Theory (ISIT’12), pages 2231–2235, 2012.

[15] I. Haviv and M. Langberg. H-wise independence. Chic. J. Theor. Comput. Sci., 2019, 2019.
Preliminary version in ITCS’13.

[16] S. Khot. On the power of unique 2-prover 1-round games. In Proc. of the 34th Annual ACM
Symposium on Theory of Computing (STOC’02), pages 767–775, 2002.

[17] M. Langberg and A. Sprintson. On the hardness of approximating the network coding capac-
ity. IEEE Trans. Inform. Theory, 57(2):1008–1014, 2011. Preliminary version in ISIT’08.

[18] R. Peeters. Orthogonal representations over finite fields and the chromatic number of graphs.
Combinatorica, 16(3):417–431, 1996.
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