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Abstract

We present and study the Contribution-Selection algorithm (CSA),

a novel algorithm for feature selection. The algorithm is based on the

Multi-perturbation Shapley Analysis (MSA), a framework which relies

on game theory to estimate usefulness. The algorithm iteratively es-

timates the usefulness of features and selects them accordingly, using

either forward selection or backward elimination. It can optimize vari-

ous performance measures over unseen data such as accuracy, balanced

error rate and area under receiver-operator-characteristic curve. Em-

pirical comparison with several other existing feature selection meth-

ods shows that the backward elimination variant of CSA leads to the

most accurate classification results on an array of datasets.

1 Introduction

Feature selection refers to the problem of selecting input variables, otherwise

called features, that are relevant to predicting a target value for each instance

in a dataset. Feature selection can either be used to rank all potentially rele-

vant input variables or to build a good classifier, and each task may lead to a

different methodological approach (Blum & Langley, 1997; Kohavi & John,

1997). Feature selection has several potential benefits: defying the curse of di-

mensionality to enhance the prediction performance, reducing measurement

and storage requirements, reducing training and prediction times, providing
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better understanding of the process that generated the data and allowing

data visualization. This paper focuses on the first issue, namely selecting

input variables in an attempt to maximize the performance of a classifier on

previously unseen data. Clearly, this would not necessarily produce the most

compact set of features.

Feature selection is a search problem, where each state in the search space

corresponds to a subset of features. Exhaustive search is usually intractable,

and methods to explore the search space efficiently must be employed. These

methods are often divided into two main categories: filter methods and sub-

set selection methods. The algorithms in the first category rank each feature

according to some measure of association with the target, such as mutual

information, Pearson correlation or χ2 statistic, and features with high rank-

ing values are selected. A major disadvantage of filter methods is that they

are performed independently of the classifier, and it is not guaranteed that

the same set of features is optimal for all classifiers. In addition, most fil-

ter methods disregard the dependencies between features, as each feature is

considered in isolation.

The second category, the subset selection methods, includes two types

of algorithms: a) embedded algorithms that select the features through the

process of generating the classifier, e.g. regularization methods such as Graft-

ing (Perkins, Lacker, & Theiler, 2003), Gram-Schmidt methods such as Stop-

piglia, Dreyfus, Dubois, and Oussar (2003); Rivals and Personnaz (2003) or

methods specific for Support Vector Machines such as Weston et al. (2000);
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Guyon, Weston, Barnhill, and Vapnik (2002); b) wrapper algorithms which

treat the induction algorithm as a black box, and interact with it in order

to perform a search for an appropriate features set using search algorithms

such as genetic algorithms or hill climbing (Kohavi & John, 1997). Although

wrapper methods are successful in feature selection, they may be computa-

tionally expensive, because they require the retraining of a classifier on data

with a large number of features. For a survey of the current methods in

feature selection see Guyon and Elisseeff (2003).

In this paper we recast the problem of feature selection in the context of

coalitional games, a notion from game theory. This perspective yields an it-

erative algorithm for feature selection, the Contribution-Selection algorithm

(CSA), intent on optimizing the performance of the classifier on unseen data.

The algorithm combines both the filter and wrapper approaches, where the

features are reranked on each step by using the classifier as a black box. The

ranking is based on the Shapley value (Shapley, 1953), a well known con-

cept from game theory, to estimate the importance of each feature for the

task at hand, specifically taking into account interactions between features.

Due to combinatorial constraints the Shapley value cannot be calculated pre-

cisely and is estimated by the Multi-perturbation Shapley Analysis (MSA)

(Keinan, Sandbank, Hilgetag, Meilijson, and Ruppin (2004, 2005)). Further-

more, since the classifier is trained and tested extensively, the classifier used

by CSA must be fast both in training and in testing phases. This requirement

can be moderated by parallel processing.
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Throughout the paper we use the following notations. Three disjoint sets

containing i.i.d. sampled instances of of the form (xk, yk) are denoted by T,

V and S representing the training set, validation set and test set respectively,

where xk ∈ Rn denotes the k’th instance, and yk is the target class value

associated with it. Given an induction algorithm and a set of features S ⊆
{1, ..., n}, fS(x) stands for a classifier constructed from the training set using

the induction algorithm, after its input variables were narrowed down to the

ones in S. Namely, fS(x) labels each instance of the form (xi1 , ...xi|S|), ij ∈ S,

1 ≤ j ≤ |S| with an appropriate class value. The task of feature selection is

to choose a subset S of the input variables that maximizes the performance

of the classifier on the test set. In what follows we shall focus on optimizing

classifier accuracy, although we could as easily optimize other performance

measures such as the area under the receiver operator chracteristic, balanced

error rate etc.

The rest of this paper is organized as follows: Section 2 introduces the

necessary background from game theory and justifies the usage of game the-

ory concepts for the task of feature selection. It also provides a detailed

description of the CSA algorithm; Section 3 provides an empirical compar-

ison of CSA with several other feature selection methods on artificial and

real world datasets, accompanied by an analysis of the results, showing that

the backward elimination version of CSA is significantly superior to other

feature selection methods considered; Section 4 discusses the empirical re-

sults and provides further insights to the success and failure of the backward
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elimination version of the CSA algorithm. Section 5 summarizes the results

obtained.

2 Classification as a Coalitional Game

Cooperative game theory introduces the concept of “coalitional games”, in

which a set of players is associated with a real function, that denotes the

payoff achieved by different sub-coalitions in a game. Formally, a coalitional

game is defined by a pair (N, v) where N = {1, . . . , n} is the set of all players

and v(S), for every S ⊆ N , is a real number associating a worth with the

coalition S. Game theory further pursues the question of representing the

contribution of each player to the game by constructing a value function,

which assigns a real-value to each player. The values correspond to the

contribution of the players in achieving a high payoff.

The contribution value calculation is based on the Shapley value (Shap-

ley, 1953). An intuitive example of the potential use of the Shapley value is a

scenario of a production machine in a factory which is composed of numerous

components. During its yearly operation, the machine undegoes various mal-

functions from time to time. In each such malfunction, the normal activity of

a subset of its components may be shut down, resulting in a certain reduction

in the machine’s productivity and output. Based on this annual data of these

multi-component failures and their associated production drops, the Shapley

Value provides a fair and efficient way to distribute the responsibility for
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the machine’s failure among its individual components, identifying the ones

needed the most attention and maintenance, while considering their possible

intricate functional interactions. In reference to feature selection, the ma-

chine is analogous to the predictor and its components to the classification

features. The task of feature selection then involves the identification of the

features contributing most to the classification in hand.

The Shapley value is defined as follows. Let the marginal importance of

player i to a coalition S, with i /∈ S, be

∆i(S) = v(S ∪ {i})− v(S). (1)

Then, the Shapley value is defined by the payoff

Φi(v) =
1

n!

∑
π∈Π

∆i(Si(π)) (2)

where Π is the set of permutations over N , and Si(π) is the set of players

appearing before the ith player in permutation π. The Shapley value of a

player is a weighted mean of its marginal value, averaged over all possible

subsets of players.

Transforming these game theory concepts into the arena of feature selec-

tion, in which one attempts to estimate the contribution of each feature in

generating a classifier, the players are mapped to the features of a dataset

and the payoff is represented by a real-valued function v(S), which measures

the performance of a classifier generated using the set of features S.

The usage of Shapley value for feature selection may be justified by its

axiomatic qualities:
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Axiom 1 (Normalization or Pareto optimality) For any game (N, v) it holds

that
∑
i∈N

Φi(v) = v(N)

In the context of feature selection, this axiom implies that the performance

on the dataset is divided fully between the different features.

Axiom 2 (Permutation invariance or symmetry) For any (N, v) and per-

mutation π on N it holds that Φi(v) = Φπ(i)(πv)

This axiom implies that the value is not altered by arbitrarily renaming or

reordering the features.

Axiom 3 (Preservation of carrier or dummy-property) For any game (N, v)

such that v(S ∪ {i}) = v(S) for every S ⊆ N it holds that Φi(v) = 0

This axiom implies that a dummy feature that does not influence the classi-

fier’s performance indeed receives a contribution value 0.

Axiom 4 (Additivity or aggregation) For any two games (N, v) and (N, w)

it holds that Φi(v + w) = Φi(v) + Φi(w) where (v + w)(S) = v(S) + w(S)

This axiom applies to a combination of two different payoffs based on the

same set of features. For a classification task these may be, for example,

accuracy and area under the receiver operator characteristic curve or false

positive rate and false negative rate. In such case, the Shapley value of a

feature which measures its contribution to the combined performance mea-

sure is just the sum of the corresponding Shapley values. The linearity of
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the Shapley value is a consequence of this property. Namely, if the payoff

function v is multiplied by a real number α then all Shapley values are scaled

by α namely Φi(αv) = αΦi(v). In other words, multiplying the performance

measure by a constant does not change the ranking of the features, a vital

property for any scheme that ranks features by their ’importance’.

Since it was introduced, the Shapley value has been successfully applied

to many fields. One of the most important applications is with cost allo-

cation, where the cost of providing a service should be shared among the

different receivers of that service (Shubik, 1962; Roth, 1979; Billera, Heath,

& Raanan, 1978). This use of the Shapley value has received recent atten-

tion in the context of sharing the cost of multicast routing (Feigenbaum,

Papadimitriou, & Shenker, 2001). In epidemiology, the Shapley value has

been utilized as a means to quantify the population impact of exposure fac-

tors on a disease load (Gefeller, Land, & Eide, 1998). Other fields where the

Shapley value has been used include, among others, politics (starting from

the strategic voting framework introduced by Shapley and Shubik (1954)), in-

ternational environmental problems and economic theory (see Shubik (1985)

for discussion and additional references).

2.1 Estimating Features Contribution Using MSA

The calculation of the Shapley value requires summing over all possible sub-

sets of players, which is impractical in typical feature selection problems.

Keinan et al. (2005) have presented an unbiased estimator for the Shapley
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value 1 by uniformly sampling permutations from Π. Still, the estimator con-

siders both large and small features sets to calculate the contribution values.

In our feature selection algorithm, we use the Shapley value heuristically to

estimate the contribution value of a feature for the task of feature selection.

Since in most realistic cases we assume that the size d of significant inter-

actions between features is much smaller than the number of features, n,

we will limit ourselves to calculating the contribution value from permuta-

tions sampled from the whole set of players, with d being a bound on the

permutation size:

ϕi(v) =
1

|Πd|
∑
π∈Πd

∆i(Si(π)) (3)

where Πd is the set of sampled permutations on subsets of size d.

Limiting the extent of interactions taken into account is not uncommon in

feature selection methods: Most filter methods are equivalent to using d = 1

where no feature interactions are taken into account. Explicit restriction

on the level of interactions characterizes also several ensemble methods, e.g.

Random Forests (Breiman, 2001), where d ' √
n is usually suggested.

The usage of bounded sets coupled with the method for the Shapley value

estimation, yields an efficient and robust way to estimate the contribution of

a feature to the task of classification. For a detailed discussion of the MSA

framework and its theoretical background see Keinan et al. (2004, 2005).

1The estimation in Keinan et al. (2005) is used in a different context - to analyze
the functional contribution in artificial and biological networks; however, the method to
estimate the Shapley value is valid for our purpose as well.
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The MSA toolbox can be downloaded from http://www.cns.tau.ac.il/msa/.

2.2 The Contribution-Selection Algorithm

The Contribution-Selection algorithm (CSA) is iterative in nature, and can

either adopt a forward selection or backward elimination approach. Its back-

ward elimination version, which overall yields better prediction accuracy (see

Section 3.2) is described in detail in Figure 1. In the backward elimination

version, using the subroutine contribution, the CSA ranks each feature ac-

cording to its contribution value, and then eliminates e features with the

lowest contribution values (using the subroutine elimination). It repeats the

phases of calculating the contribution values of the currently remaining fea-

tures and eliminating new features, until the contribution values of all can-

didate features exceed a contribution threshold ∆. Forward selection CSA

works in a similar manner, selecting on each iteration s features with high-

est contribution values, as long as their contribution values exceed a some

threshold.

The algorithm, without further specification of the contribution subrou-

tine, is a known generalization of filter methods. However, the main idea

of the algorithm is that the contribution subroutine, unlike common filter

methods, returns a contribution value for each feature according to its role

in improving the classifier’s performance, which is generated using a specific

induction algorithm, and in conjunction with other features. Using the no-

tation in Section 2 and assuming that one maximizes the accuracy level of
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Contribution-Selection-Algorithm-Backward-Elimination(F ; t, d, ∆, e)

1. c := F

2. for each f ∈ F\c

2.1. Sample permutations set {π1, ..., πt} over F\c
2.2. Cf := contribution(f , c ; d) = 1

t

∑t
j=1 ∆f (Sf (πj))

3. if maxf Cf < ∆

3.1. c := c \ elimination({Cf} ; e, ∆)

3.2. goto 2

else

3.3. return c

Figure 1: The Contribution-Selection algorithm in its backward elimination
version. F is the input set of features. t, d, ∆ and e are hyperparamters:
t = |Πd| is the number of permutations sampled (see Equation 3), d is the
maximal permutation size for calculating the contribution values, ∆ is a con-
tribution value threshold and e is the number of features eliminated in each
phase. The variable c represents the set of candidate features for selection.
The contribution subroutine calculates the contribution value of feature f
according to Equation 3 where f corresponds to the i’th player. The elim-
ination subroutine eliminates at most e features with lowest contribution
values that do not exceed ∆. In the forward selection version, the elimi-
nation subroutine is replaced with an selection subroutine which selects s
features in each phase and the halting criterion is changed accordingly.
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the classifier, the contribution subroutine for backward selection calculates

the contribution values ϕi by Eq. 1 and 3 where the payoff function v(S)

is simply the validation accuracy of the base classifier fS(x) trained on the

training set T,

v(S) =
|{x|fS(x) = y, (x, y) ∈ V }|

|V | .

The case S = φ is handled by returning the fraction of majority class

instances. The maximal permutation size d has an important role in deciding

the contribution values of the different features, and should be selected in a

way that ensures that different combinations of features that interact together

are inspected. Its impact is demonstrated in Section 3.

The number of eliminated features e for the elimination subroutine con-

trols the redundancies of the eliminated features; the higher e is, the more

likely that correlated features with redundant contribution will be eliminated.

Although e = 1 minimizes the redundancy dependencies of the features, in-

creasing e accelerates the algorithm’s convergence, and further provides some

regularization as has been verified experimentally. The algorithm’s halting

criterion depends on ∆, which designates a trade-off between the number

of selected features, and the performance of the classifier on the validation

set. With the backward elimination version, choosing ∆ = 0 means that

CSA eliminates features as long as there exist features that are unlikely to

improve the classifier’s performance. Increasing ∆ has the opposite effect

on the size of the final set of features. The naive halting criterion that ter-
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minates feature elimination when no further performance gain is expected,

namely when the exclusion of no feature enhances the performance, is en-

tirely different. For example, during CSA backward elimination there are

occasionally features with negative contribution values that once eliminated,

there is no performance improvement. Still the removal of such features tends

to increase the generalization of the classifier by the mere reduction of its

complexity. Indeed, testing this naive halting criterion has verified that it

leads to considerably inferior performance levels.

3 Results

3.1 Experiments with Artificial Data

In order to demonstrate the algorithm’s behavior, we generated a dataset

which consists of 9 features. The first three features are binary. The target

labels are taken as the parity function of these three features. The other

six features are correlated with the target by setting them to the target

values and adding a random value taken from the normal distribution with

expectancy 0 and standard deviation σ = 1. A simple calculation shows

that the correlation between each of these six features and the target is
√

(1 + σ2)−1 ' 0.71, and the correlation between the sum of these features

and the target is
√

(1 + σ2/6)−1) ' 0.92. The mean accuracy of a classifier

that outputs the sign of the sum of these six features is 0.84, which will be

considered a baseline accuracy (the accuracy of C4.5 classifier that uses all
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nine features is 0.82). The dataset consists of 200 training examples and 100

test examples.

Using this dataset, we inspected the features selected and the performance

of several feature selection methods. We used Random Forests (Breiman,

2001), mutual information, Pearson correlation, regular backward wrapper

method (eliminating one feature at a time), regular forward wrapper method

(selecting one feature at a time) and CSA in both backward elimination and

forward selection using C4.5 as base learner. CSA was run with s = 1, e = 1,

d = 3 and t = 20. 2 No optimization was performed on these hyperpa-

rameters. In all ranking methods (Random Forests, mutual information and

Pearson correlation) the first three features were ranked as least informa-

tive features. As expected, the accuracy obtained by using these methods

did not exceed the baseline accuracy 0.84. Forward selection CSA together

with backward wrapper and forward wrapper did not select any of the first

three most relevant features. Yet, backward elimination CSA chose the three

features for classification, and achieved 100% accuracy. The reason for this

behavior is that the other six features were too confusing for the classifier

with most algorithms. With decision trees, the first three features will al-

ways be used in deep nodes of the tree, due to the greedy criterion used by

decision tree algorithm to select a feature for node splitting. Therefore, the

inclusion or removal of any one of these features will have less influence on

2While CSA evaluated 540 permutations, this toy example can be solved by an exhaus-
tive search requiring only 29 − 1 = 511 evaluations.
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Figure 2: Behavior of backward selection CSA on the artificial dataset. (A)
The accuracy of the backward selection CSA changes with respect to n, the
number of training set instances. (B) The average number of features selected
as a function of n.

the classifier’s accuracy than any of the six features linearly correlated with

the target.

We further tested the behavior of CSA with respect to the number of

training instances, n. To this end, we produced training sets of different

values of n and ran the algorithm on each sample. For each value of n five

different training sets were sampled and scored, and the average accuracy

and average number of features selected were computed. The results for the

backward selection CSA with are described in Figure 2. As can be seen,

for n & 140 many instances of the backward elimination CSA identify the 3

salient features and achieve perfect categorization of the test examples.
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3.2 Experiments with Real-world Data

To test CSA empirically we ran a number of experiments on seven real-world

datasets with number of features ranging from 278 to 20,000 (Table 1):

• Following Koller and Sahami (1996) we constructed the Reuters1

dataset from the Reuters-21578 document collection (Reuters, 1997).

The dataset consists of articles from the categories coffee (99 doc-

uments), iron-steel (137 documents) and livestock (54 documents).

These topics do not have many overlapping words, making the task

of classification easier. As a preprocessing step, we removed all words

that appeared less than 3 times. Each article was then encoded into

a binary vector, where each element designates whether the word ap-

peared in the document or not.

• The Reuters2 dataset was constructed, similarly to the Reuters1 dataset,

only from the categories gold (68 documents), gross national product

(124 documents) and reserves (136 documents). These topics are more

similar, and contain many overlapping words, making the task of clas-

sification harder. For both of the Reuters datasets, our splits are not

identical to the one in Koller and Sahami (1996), and contain fewer

documents, because we could not obtain the exact same dataset.

• The Arrhythmia database from the UCI repository (Blake & Merz,

1998). The task for this database is to distinguish between normal

and abnormal heartbeat. We used a version of the data which was
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slightly modified by Perkins et al. (2003): features that were missing in

most of the instances were removed. The dataset contains 237 positive

instances and 183 negative instances. It can be found in http://nis-

www.lanl.gov/∼simes/data/jmlr03.

• The Internet Advertisements database from the UCI repository (Blake

& Merz, 1998). It was collected for research on identifying advertise-

ments in web pages (Kushmerick, 1999). The features in the database

describe different attributes in a web page, such as the domain which

it was downloaded from, the domain which referred to it and its size.

There are two classes: each instance is either an advertisement or not

an advertisement. The dataset contains 2581 positive instances, and

419 negative instances.

• The Dexter dataset from the NIPS 2003 workshop on feature selec-

tion (Guyon, 2003). The Dexter dataset is a two-class text categoriza-

tion dataset constructed from a subset of the Reuters dataset, using

documents from the category in corporate acquisitions. The dataset

is abundant with irrelevant features; for the exact details of how the

dataset was constructed see Guyon (2003). The dataset contains 300

positive instances, and 300 negative instances. As a preprocessing step,

we binarized each of the instances, which originally contained the word

frequency in each document, and removed words that appeared less

than 3 times. The validation set of the data served in the following
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experiments as T, the test set.

• The Arcene dataset from the NIPS 2003 workshop on feature selec-

tion (Guyon, 2003). The Arcene dataset is a two-class categorization

dataset, describing mass spectrometry analysis of blood serum of pa-

tients with a certain kind of cancer and without it. It is affluent with

features and poor with data instances. For the exact details of how the

dataset was constructed see Guyon (2003). The dataset contains 88

positive instances, and 112 negative instances. The validation set of

the data served in the following experiments as T, the test set.

• I2000, a microarray colon cancer dataset by Alon et al. (1999). The

dataset is a two-class categorization dataset for discriminating between

healthy and ill tissues in colon cancer. The data contains the expression

of 2000 genes with highest minimal intensity across 62 tissues. The

dataset contains 31 positive instances, and 31 negative instances. It

has a very high features to instances ratio, making the task of feature

selection harder.

In principle, CSA can work with any induction algorithm L. However,

due to computational constraints we focused on fast induction algorithms

or algorithms that may be efficiently combined into CSA. We experimented

with Naive Bayes, C4.5 and 1NN. For each of the datasets, we measured the

training set accuracy of each classifier using ten-fold cross validation on the

whole set features. For each dataset, all subsequent work used the induction
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Name # Classes # Features Training Set Size Testing Set Size
Reuters1 3 1579 145 145
Reuters2 3 1587 164 164
Arrhythmia 2 278 280 140
Internet Ads 2 1558 2200 800
Dexter 2 20000 300 300
Arcene 2 10000 100 100
I2000 2 2000 40 22

Table 1: Description of datasets used.

algorithm L that gave the highest cross validation accuracy, as detailed in

Table 2.

Nine different classification algorithms were then compared on the datasets

described above:

• Classification using the induction algorithm L without performing any

feature selection.

• Classification using soft margin linear SVM with the SV M light pack-

age (Joachims, 1999). Datasets that had more than two classes were

decomposed to few one-versus-all binary classification problems.

• Classification using L after performing feature selection by estimation

of the Pearson correlation coefficient. The number of features was

selected by performing ten-fold cross validation on the training set and

averaging the results, each time adding more features with the highest

correlation value to the current features set. After this process, the set

that obtained the best result was selected.
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• Classification using L after performing feature selection by estimation

of mutual information. For datasets with continuous domain (Arrhyth-

mia, Internet Ads, Arcene and I2000), we used binning to estimate the

mutual information. The number of features selected was optimized

like with the Pearson correlation coefficient.

• Classification using L after performing feature selection with Random

Forests (Breiman, 2001). We used the “randomForest” library im-

plementation for the R environment (Bengtsson, 2003). The number

of features selected was optimized like with the Pearson correlation

coefficient.

• Classification using L after performing feature selection with backward

elimination CSA with d = 1. The number of permutations selected was

large enough so each feature is sampled with high probability. This is

equivalent to regular wrapper technique, in which backward elimination

is used to eliminate the features that most degrades the accuracy of the

classifier. This algorithm is chosen to check whether it is sufficient to

examine each feature separately for performing feature selection on the

dataset.

• Classification using L after performing feature selection with forward

selection CSA with d = 1. The number of permutations selected was

large enough so each feature is sampled with high probability. This

is equivalent to regular wrapper technique, in which forward selection
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is used to select the features that most improve the accuracy of the

classifier. This algorithm is similar to that of the backward wrapper.

• Classification using L after performing feature selection with backward

elimination CSA and parameters as described in Table 2. The param-

eters d and t were chosen such that the expected number of times that

each feature is sampled is higher than 5. This number was chosen ac-

cording to error analysis considerations of MSA (Keinan et al., 2004)

and following preliminary experimentation with an artificial datasets.

When computation times allowed, the number of permutations sam-

pled was much larger than the minimal value. The contribution value

threshold for stopping elimination was ∆ = 0. No hyperparameter

selection was performed on either d, t or ∆.

• Classification using L after performing feature selection with forward

selection CSA and parameters as described in Table 2. The parame-

ters d and t were chosen such that the expected number of times that

each feature is sampled is higher than 5. The termination of feature

selection was fixed by choosing a contribution value threshold ∆ = 0.

No hyperparameter selection was performed on either d, t or ∆.

CSA is prone to overfitting on the validation set; when the classifier’s

performance is always evaluated on a possibly small validation set, the curse

of dimensionality appears, and irrelevant features are selected, even if the

classifier itself is trained using techniques that avoid overfitting. It might
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Dataset Induction Alg. (L) s (Fwd.) e (Bwd.) d t
Reuters1 Naive Bayes 1 100 20 1500
Reuters2 Naive Bayes 1 100 20 1800
Arrhythmia C4.5 1 50 20 500
Internet Ads 1NN 1 100 20 1500
Dexter C4.5 50 50 12 3500
Arcene C4.5 100 100 5 10000
I2000 C4.5 100 100 3 2000

Table 2: The parameters and the classifier used with the CSA algorithm for
each dataset. s is the number of features selected in forward selection in each
phase, e is the number of features eliminated in backward elimination in each
phase, d is the permutation size and t is the number of permutations sampled
to estimate the contribution values. For an explanation how hyperparameters
are chosen, see the description of the backward CSA algorithm.

seem at first that evaluating the classifier each time on a different training

set and validation set split can solve the problem. However, this leads to

another problem: the classifier’s performance depends on the split so the

marginal contributions of the different features do not reflect their real value.

In order to avoid both of these problems, we used ten-fold cross validation;

the training set was split into several parts, and the payoff function was

evaluated by averaging a classifier’s performance on the whole training set.

3.3 Feature Selection and Classification Results

Table 3 summarizes the classifiers’ performance on the test set and the num-

ber of features selected in each of the experiments. The accuracy levels are

the fraction of correctly classified test set instances:
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• The Reuters1 dataset. Feature selection using CSA with backward

elimination did best, yielding accuracy level of 98.6% with 51 features.

Koller and Sahami (1996), for example, report that the Markov Blan-

ket algorithm yields approximately 600 selected features with accuracy

levels of 95% to 96% on this dataset.

• The Reuters2 dataset. Wrapper with backward elimination did best,

yielding accuracy level of 95% with 53 features. For comparison, Koller

and Sahami (1996) report that the Markov Blanket algorithm yields

approximately 600 selected features with accuracy levels of 89% to 93%

on this dataset. 3

• The Arrhythmia dataset. This dataset is considered to be a difficult

one. CSA with backward elimination did best, yielding an accuracy

level of 84% with 21 features. Forward selection with higher depth

value (d = 20) did better than with d = 1, implying that one should

consider many features concomitantly to perform good feature selection

for this dataset. For comparison, the grafting algorithm (Perkins et al.,

2003) yields an accuracy level of approximately 75% on this dataset.

• The Internet Ads dataset. All the algorithms did approximately the

same, leading to accuracy levels between 94% and 96% with CSA

slightly outperforming the others. Interestingly enough, with d = 1

3The datasets used in Koller and Sahami (1996) are not identical to the datasets we
used. We were unable to obtain the same datasets, and had to reconstruct them from the
original Reuters-21578 collection.
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the algorithm did not select any feature; in the first phase, the 1NN

algorithm had neighbors from both classes with the same distance for

each feature checked, leading to arbitrary selection of one of the classes,

and the classifier’s performance was constant through all the phase,

yielding zero contribution values. However, when selecting the higher

depth levels, the simple 1NN algorithm was boosted up to outperform

classifiers such as SVM.

• The Dexter dataset. For the Dexter dataset, we used algorithm L

(C4.5 decision trees) only for the process of feature selection, and Lin-

ear SVM to perform the actual prediction on the features selected. This

was done because C4.5 did not give satisfying accuracy levels for any

of the feature selection algorithms, and it is impractical to use SVM

with CSA for large datasets. To overcome the difference between the

classifiers performing feature selection and the classifier used for the

actual classification, we added an optimization phase for the forward

selection algorithm after it stopped. In this phase, a ten-fold cross-

validation is performed on the dataset in a similar way to the one used

to optimize filter methods. The simple mutual information feature se-

lection performed best, followed closely by the Contribution-Selection

algorithm in its backward elimination version and by Random Forests.

This implies that in Dexter the contribution of single features signifi-

cantly outweigh the contribution of feature combinations for the task

of classification. The forward selection algorithm did as well as Linear
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SVM without feature selection, but with a significantly lower number

of features.

• The Arcene dataset. Here, just as in the case of Dexter, we use C4.5 for

the process of feature selection, and Linear SVM to perform the actual

prediction on the features selected. The CSA with backward elimina-

tion obtained better performance than the rest of the algorithms.

• The I2000 dataset. CSA with backward elimination together with fea-

ture selection using mutual information yielded the best results. The

poor performance of CSA with forward selection can be explained by

the poverty of data compared to the number of features; the algorithm

selected in the first phases features which explain well the training data

by coincidence, and avoided from selecting features that truly contri-

bution to the task of classification. This phenomenon is explained in

portrait in Section 3.5.2.

3.4 Significance of the Results

Using McNemmar test (Gillick & Cox, 1989) on the results summarized in

Table 3 has shown no significant superiority of any feature selection method

on any of the datasets. The accuracies are too close to each other compared

to the size of the test sets.

However, in five out of the seven datasets, CSA with backward elimina-

tion achieved the highest accuracy. In the other case it achieved the second
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best accuracy. So even though the results are not significant per dataset,

the overall picture may suggest otherwise. To test whether the backward

elimination version of CSA is indeed superior to the other feature selection

algorithms, we performed a one-sided Wilcoxon Signed-Rank Test (Kanji,

1994). This test takes into account the ranking of feature selection methods

across all datasets, and tests whether the set of rankings significantly devi-

ates from the H0 distribution that assumes that all methods are equal. Table

4 lists the p-values of these tests. As can be seen, the backward elimination

version of CSA has significantly higher performance than most of the other

methods tried.

3.5 A Closer Inspection of the Results

3.5.1 Behavior of the Algorithm With Different Parameters

In order to examine the effect of different parameter values on the algorithm

we ran the CSA on the Arrhythmia dataset with different values of d (size

of subsets analyzed) and values of t (number of permutations examined in

each phase of eliminating new features). The results were averaged over five

experiments for each value of d and t.

Figure 3 describes the result. Figure 3A implies that there are optimal

values of d for which the performance achieved is highest. For small values of

d, not enough interactions between the different features are considered. As

d increases, the performance on the dataset increases as well until it reaches a
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Dataset No FS SVM Corr MI RF
Reuters1 84.1% 94.4% 90.3% (20) 94.4% (20) 96.3% (6)
Reuters2 81.1% 91.4% 88.4% (20) 90.2% (5) 87.2% (21)
Arrhythmia 76.4% 80% 71.4% (20) 70% (20) 80% (40)
Internet Ads 94.7% 93.5% 94.2% (15) 95.75% (70) 95.6% (10)
Dexter 92.6% 92.6% 92.6% (1240) 94% (230) 93.3% (800)
Arcene 83% 83% 83% (6600) 81% (5600) 82% (6000)
I2000 86.3% 72.7% 81.8% (260) 90.9% (1060) 86.3% (100)

Dataset Wrapper Bwd Wrapper Fwd CSA Bwd CSA Fwd
Reuters1 94.4% (35) 92.4% (7) 98.6% (51) 96.5% (10)
Reuters2 95.7% (53) 91.4% (5) 93.2% (109) 90.1% (14)
Arrhythmia 77.8% (17) 70% (5) 84.2% (21) 74.2% (28)
Internet Ads 95% (62) - 96.1% (158) 95.6% (8)
Dexter 92.6% (653) 80% (10) 93.3% (717) 92.6% (100)
Arcene 82% (6800) 58% (7) 86% (7200) 81% (600)
I2000 86.3% (1600) 86.3% (550) 90.9% (1100) 86.3% (500)

Table 3: Accuracy levels and number of features selected in the different
datasets. Upper table: No FS (no feature selection), SVM (linear soft mar-
gin SVM without feature selection), Corr (feature selection using Pearson
correlation), MI (feature selection using mutual information), RF (feature
selection using Random Forests). Bottom table: Wrapper Bwd and Wrap-
per Fwd (Wrapper with backward and forward selection respectively), CSA
Bwd and CSA Fwd (CSA with backward elimination and forward selection
respectively with parameters from Table 2). Accuracy levels are calculated
by counting the number of misclassified instances. The number of features
selected is given in brackets. Notice that the accuracies obtained by our
algorithms on the Dexter and Arcene datasets are inferior to those of the
winners of NIPS 2003, feature selection competition.
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CFwd. WBwd. WFwd. RF MI No FS SVM Corr.
CBwd. 0.015 0.078 0.031 0.093 0.015 0.015 0.015 0.015
CFwd. - 0.672 0.219 0.625 0.218 0.625 0.687 0.156
WBwd. - 0.016 0.031 0.094 0.016 0.016 0.016
WFwd. - 0.156 0.046 0.625 0.437 0.937
RF - 0.562 0.156 0.156 0.156
MI - 0.078 0.437 0.109
No FS - 0.812 0.812
SVM - 0.109

Table 4: Wilcoxon Signed-Rank test p-values. This table specifies the
Wilcoxon Signed-Rank test p-values related to the results in Table 3. The
entry on row i and column j specifies the p-value related to testing whether
the method i is superior to method j. CBwd stands for CSA with back-
ward elimination and WBwd stands for Wrapper with backward elimination.
CFwd and WFwd follow similar naming. p-values were calculated using the
exact distribution for n = 7 tests, which can easily be calculated by enu-
meration. It is can be seen that the backward elimination CSA is better
than the other methods tried with significance level 0.05, except for Random
Forests and Wrapper backward elimination where only a marginal signifi-
cance is achieved. Notice that no other feature selection method was found
to be significantly better than majority of the remaining methods.
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Figure 3: Dependency of CSA performance on its hyperparameters: (A) the
accuracy of backward elimination version of CSA for various values of d, size
of subsets. As expected, for small values of d there is a substantial improve-
ment of performance as d is increased. But beyond a certain point (here
around d = 10), the accuracy stays stable around 83%. ;(B) the accuracy
of backward elimination of CSA for various values of t, the number of per-
mutations sampled. The overall picture is compatible with the the fact that
the estimate of the Contribution value becomes more robust as more samples
taken.

critical value. For values of d larger than that critical value, the performance

stays stable around the critical value’s performance.

Figure 3B implies that the algorithm is rather robust to the number of

permutations analyzed in each phase. For very small t values, the algo-

rithm’s performance is limited. But as t grows to values a little higher, the

performance grows as well, until it stays rather stable.
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Figure 4: Power-law distribution of contribution values. This log-log plot
of the distribution of the contribution values (absolute value) in the first
phase for Arrhythmia and Dexter, prior to making any feature selection,
demonstrates a power law behavior. For both axes natural logarithms are
used. The p-values for the regression were 0.0047 (Arrhythmia) and 0.0032
(Dexter). The corresponding plots for the other datasets show power-law
characteristics with different slopes and were eliminated for the sake of clarity.
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Figure 5: Prediction accuracy and feature contribution during forward se-
lection (A) and backward elimination (B) for the Arrhythmia dataset. Both
figures show how the performance of the C4.5 classifier improves on the
validation set as the algorithm selects (eliminates) new features, while the
contribution values of the selected features decrease (increase). The back-
ward elimination generalizes better on the test set through the algorithm’s
progress. The behavior for the other datasets is similar.
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3.5.2 The Distribution of the Contribution Values

The MSA, intent on capturing correctly the contribution of elements to a

task, enables us to examine the distribution of the contribution values of the

features. Figure 4 depicts a log-log plot of the distribution of the contribu-

tion values in the first phase for Arrhythmia and Dexter, prior to making

any feature selection. This distribution follows a scale-free power law, im-

plying that large contribution values (in absolute value) are very rare, while

small ones are quite common, justifying quantitatively the need of feature

selection. The other datasets were also observed to posses a similar power

law characteristic.

The behavior of the algorithm through the process of feature selection

and feature elimination is displayed in Figure 5; after the forward selection

algorithm identifies the significant features in the first few phases, there is a

sharp decrease in the contribution values of the features selected in the fol-

lowing phases, while with backward elimination, there is a gradual and rather

stable increase in the contribution values of the non-eliminated features. The

peaks in the graph of the contribution values in Figure 5A demonstrate that

the contribution values do change as the CSA iterates . In this case, the

selection of a single feature considerably increased the contribution value of

another feature, pointing at intricate dependencies between features.

Figures 4 and 5 also assist in explaining why backward elimination usu-

ally outperforms several feature selection methods, including forward selec-

tion; due to the high dimensionality of the datasets, a feature that assists
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in prediction merely by coincidence may be selected on the account of other

truly informative features. Forward selection is penalized severely in such

case: among the few significant features, some will not be chosen. However,

backward elimination always maintains the significant features in the non

eliminated set; a feature that truly enhances the classifier’s generalization

will do so for the validation set as well, and will not be eliminated. This

leads to a more stable generalization behavior for backward elimination on

the test set through the algorithm’s progress (Figure 5).

4 Discussion

CSA evaluates on each phase t feature sets for each coalition size in the range

1 to d, leading to O( td
e
n) sets being evaluated. However, in order to obtain

reliable estimates of the contribution values, td should scale linearly with

n. Therefore, in practice CSA requires O(n2) evaluations, just like standard

forward selection or backward elimination (Wrappers). The filter methods,

ranking features by their Pearson correlation (Corr) or by by their mutual

information (MI) with the targets, have both linear time complexity. The

time complexity of Random Forest (RF) is difficult to assess, since in order to

get a reliable estimate of feature importance one should increase the number

of trees, the resulting trees are usually deeper and with each node O(
√

n)

features are being considered.

The O(n2) behavior of CSA poses a real challenge when using it with
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non-trivial problems. To cope with it, fast induction algorithms such as

naive bayes, KNN, or decision trees must be used. Running times can be

further reduced by parallelizing, an advantage not shared by wrapper algo-

rithms which use search methods such as hill climbing; At each phase the

permutations can be computed in parallel and upon completion combined

to obtain an estimate of contribution values. Furthermore, as the algorithm

progresses, the number of candidate features for either selection (forward se-

lection) or elimination (backward elimination) decreases. Consequently, the

number of permutations sampled may be reduced, speeding up the algorithm

significantly. The restriction in selecting the learning algorithm for CSA does

not apply to the prediction once the features are selected. After a set of fea-

tures is found by the CSA, it may be used by any induction algorithm as

demonstrated in section 3.3 with the Dexter and Arcene datasets.

Several learning algorithms, such as KNN with Euclidean metric, Naive

Bayes Classifier and Fisher’s Linear Discriminant, allow an optimization

which dramatically reduces the time spent in the contribution subroutine.

Without such optimizations running times can be considerable: For exam-

ple, using C4.5 as a base learning algorithm, the total running time for the

Arrhythmia dataset was on average 41 minutes on a 1.73 Ghz Pentium 4 for

backward elimination, and 34 minutes for forward selection. The standard

deviations of running times were approximately 8 minutes and 6 minutes re-

spectively. For comparison, the running times for the filter algorithms (Mu-

tual Information and Pearson Correlation) were less than 4 minutes. Forward
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selection and backward elimination wrapper methods took 28 minutes and

33 minutes respectively and the running time of Random Forests on the same

dataset was 12 minutes.

Since the contribution value is based on extensive sampling of feature sets,

the CSA algorithm is capable of identifying intricate dependencies between

features and the target. We therefore expect that CSA will be effective for

datasets where feature independence is strongly violated, as demonstrated

in section 3.1. However, CSA may fail in certain circumstances, for example

when a large coalition should be formed to aid in prediction. In such a case,

it may well be that this coalition will not be sampled - and hence the contri-

bution value of the corresponding features will not be increased. Obviously,

forward selction CSA is more prone to this pitfall. Furthermore, when the

data is scarce overfitting could pose a real problem for CSA – the signifi-

cance of contribution estimates can be rather low, and the resulting noise

can play a substantial role in driving the algorithm. Further incorporation

of regularization into CSA may help to deal with such a situation.

5 Conclusion

The Contribution-Selection algorithm presented in this paper views the task

of feature selection in the context of coalitional games. It uses a wrapper-

like technique combined with a novel ranking method that is based on the

Shapley contribution values of the features to the classification accuracy.
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The CSA works in an iterative manner, each time selecting new features (or

eliminating them) while taking into account the features that were selected

(or eliminated) so far.

We verified that the feature sets selected by CSA are significantly differ-

ent than those selected by other filter methods. It turns out that the first

“strong” features are selected by most methods. But within few iterations,

CSA selects entirely different features than other methods due to the fact

that the contribution values of the candidate features are modified along the

run of the algorithm, sometimes drastically, according to the features already

selected.

The CSA was tested on number of datasets, and the results show that

the algorithm can improve the performance of the classifier, and successfully

compete with an existing array of filter and feature selection methods, es-

pecially in cases where the features interact with each other. In such cases

performing feature selection with a permutation size higher than one, namely

not using the common greedy wrapper approach, can enhance the classifier’s

performance significantly.

The results successfully demonstrate the value of applying game theory

concepts to feature selection. While the forward selection version of the algo-

rithm is competitive with other feature selection methods, our experiments

show that overall, the backward elimination version is significantly superior

to them, and produces features sets which can be used to generate a highly

performing classifier.
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