Mathematical Foundations

Elementary Probability Theory

Essential Information Theory

Updated 03/2008
Motivations

- Statistical NLP aims to do statistical inference for the field of NL.

- *Statistical inference* consists of taking some data (generated in accordance with some unknown probability distribution) and then making some inference about this distribution.
An example of statistical inference is the task of *language modeling* (ex how to predict the next word given the previous words)

In order to do this, we need a *model* of the language.

Probability theory helps us finding such model
Probability Theory

- How likely it is that something will happen
- Sample space Ω is listing of all possible outcomes of an experiment
- Event A is a subset of Ω
- Probability function (or distribution)

$$P : \Omega \rightarrow [0, 1]$$
Prior Probability

- *Prior probability*: the probability before we consider any additional knowledge

\[P(A) \]
Conditional probability

- Sometimes we have partial knowledge about the outcome of an experiment
- Conditional (or Posterior) Probability
- Suppose we know that event B is true
- The probability that A is true given the knowledge about B is expressed by
 \[P(A|B) \]
Conditional probability (cont)

\[P(A \cap B) = P(A | B) \cdot P(B) = P(B | A) \cdot P(A) \]

- Joint probability of A and B.
- 2-dimensional table with a value in every cell giving the probability of that specific state occurring.
Chain Rule

\[P(A \cap B) = P(A \mid B)P(B) \]
\[= P(B \mid A)P(A) \]

\[P(A \cap B \cap C \cap D \ldots) = P(A)P(B \mid A)P(C \mid A, B)P(D \mid A, B, C \ldots) \]
(Conditional) independence

- Two events A and B are independent of each other if
 \[P(A) = P(A|B) \]

- Two events A and B are conditionally independent of each other given C if
 \[P(A|C) = P(A|B,C) \]
Bayes' Theorem

- Bayes' Theorem lets us swap the order of dependence between events
- We saw that $P(A|B) = P(A \cap B)/P(B)$
- Bayes' Theorem:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$
Example - find web pages about “NLP”

- T: positive test, N: page about ‘NLP’
- P(T|N) = 0.95, P(N) = 1/100,000
 P(T|~N) = 0.005

- System points a page as relevant. What is the probability it is about NLP

\[
P(N | T) = \frac{P(T | N)P(N)}{P(T)}
\]

\[
= \frac{P(T | N)P(N)}{P(T | N)P(N) + P(T | \sim N)P(\sim N)}
\]

\[
= 0.002
\]
Random Variables

- So far, event space that differs with every problem we look at
- Random variables (RV) X allow us to talk about the probabilities of numerical values that are related to the event space

$$X : \Omega \rightarrow \mathbb{R}$$

$$X : \Omega \rightarrow \mathbb{S}$$
The Expectation of a RV is

\[p(x) = p(X = x) = p(A_x) \]

\[A_x = \{ \omega \in \Omega : X(\omega) = x \} \]

\[\sum_x p(x) = 1 \quad 0 \leq p(x) \leq 1 \]

- The Expectation of a RV is

\[E(x) = \sum_x xp(x) = \mu \]
Variance

- The variance of a RV is a measure of the deviation of values of the RV about its expectation.

\[
Var(X) = E((X - E(X))^2)
\]

\[
= E(X^2) - E^2(X) = \sigma^2
\]

- \(\sigma\) is called the standard deviation.
In general, for language events, P is unknown.

We need to estimate P, (or model M of the language).

We’ll do this by looking at evidence about what P must be based on a sample of data.
Estimation of P

- Frequentist statistics
- Bayesian statistics
Frequentist Statistics

- Relative frequency: proportion of times an outcome u occurs

$$f_u = \frac{C(u)}{N}$$

- $C(u)$ is the number of times u occurs in N trials
- For $N \to \infty$ the relative frequency tends to stabilize around some number: probability estimates
- Difficult to estimate if the number of different values u is large
Frequentist Statistics (cont)

- Two different approaches:
 - Parametric
 - Non-parametric (distribution free)
Parametric Methods

- Assume that some phenomenon in language is acceptably modeled by one of the well-known family of distributions (such binomial, normal)
- We have an explicit probabilistic model of the process by which the data was generated, and determining a particular probability distribution within the family requires only the specification of a few parameters (less training data)
Non-Parametric Methods

- No assumption about the underlying distribution of the data
- For ex, simply estimate P empirically by counting a large number of random events is a distribution-free method
- Less prior information, more training data needed
Binomial Distribution (Parametric)

- Series of trials with only two outcomes, each trial being independent from all the others
- Number \(r \) of successes out of \(n \) trials given that the probability of success in any trial is \(p \):

\[
b(r; n, p) = \binom{n}{r} p^r (1 - p)^{n-r}
\]
Normal (Gaussian) Distribution (Parametric)

- **Continuous**
- **Two parameters:** mean μ and standard deviation σ

$$n(x; \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
Consider sampling the height of 15 male dwarfs:

- Heights (in cm): 114, 87, 112, 76, 102, 72, 89, 110, 93, 127, 86, 107, 95, 123, 98.

How to model the distribution of dwarf heights?

E.g. what is the probability of meeting a dwarf more than 130cm high?
Parametric vs. non-parametric - example - cont

- Non parametric estimation: Smoothing

Histogram

Smoothing
Parametric vs. non-parametric - example - cont

- parametric estimation: modeling heights as a normal distribution. Only needs to estimate μ and σ

$$p(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$\mu = 99.4$
$\sigma = 16.2$
Frequentist Statistics

- **D**: data
- **M**: model (distribution P)
- **Θ**: model parameters (e.g. μ, σ)

For M fixed: *Maximum likelihood estimate*: choose $\hat{\Theta}$ such that

$$\hat{\Theta} = \arg\max_{\Theta} P(D | M, \Theta)$$
Frequentist Statistics

- Model selection, by comparing the maximum likelihood: choose \hat{M} such that

$$
\hat{M} = \arg\max_M P\left(D \mid M, \theta(M)\right)
$$

$$
\hat{\theta} = \arg\max_{\theta} P(D \mid M, \theta)
$$
Estimation of P

- Frequentist statistics
 - Parametric methods
 - Standard distributions:
 - Binomial distribution (discrete)
 - Normal (Gaussian) distribution (continuous)
 - Maximum likelihood
 - Non-parametric methods
- Bayesian statistics
Bayesian Statistics

- Bayesian statistics measures degrees of belief.
- Degrees are calculated by starting with prior beliefs and updating them in face of the evidence, using Bayes theorem.
Bayesian Statistics (cont)

\["^* \]
\[
\hat{M} = \arg\max_{M} P(M | D) \\
= \arg\max_{M} \frac{P(D | M)P(M)}{P(D)} \\
= \arg\max_{M} P(D | M)P(M)
\]

MAP is maximum a posteriori
Bayesian Statistics (cont)

- M is the distribution; for fully describing the model, I need both the distribution M and the parameters θ

$$
\hat{M} = \text{argmax}_M P(D | M)P(M)
$$

$$
P(D | M) = \int P(D, \theta | M) d\theta
$$

$$
= \int P(D | M, \theta)P(\theta | M) d\theta
$$

$P(D | M)$ is the marginal likelihood
Frequentist vs. Bayesian

- **Bayesian**
 \[M^* = \arg\max_M P(M) \int P(D | M, \theta) P(\theta | M) d\theta \]

- **Frequentist**
 \[\theta^* = \arg\max_\theta P(D | M, \theta) \]
 \[M^* = \arg\max_M P(D | M, \theta^*(M)) \]

\(P(D | M, \theta) \) is the likelihood
\(P(\theta | M) \) is the parameter prior
\(P(M) \) is the model prior
Bayesian Updating

- How to update $P(M)$?
- We start with a priori probability distribution $P(M)$, and when a new datum comes in, we can update our beliefs by calculating the posterior probability $P(M|D)$. This then becomes the new prior and the process repeats on each new datum.
Bayesian Decision Theory

Suppose we have 2 models M_1 and M_2; we want to evaluate which model better explains some new data.

\[
\frac{P(M_1 | D)}{P(M_2 | D)} = \frac{P(D | M_1)P(M_1)}{P(D | M_2)P(M_2)}
\]

if \(\frac{P(M_1 | D)}{P(M_2 | D)} > 1 \) i.e. \(P(M_1 | D) > P(M_2 | D) \)

M_1 is the most likely model, otherwise M_2
Essential Information Theory

- Developed by Shannon in the 40s
- Maximizing the amount of information that can be transmitted over an imperfect communication channel
- Data compression (entropy)
- Transmission rate (channel capacity)
Entropy

- **X**: discrete RV, p(X)
- Entropy (or self-information)
 \[H(p) = H(X) = - \sum_{x \in X} p(x) \log_2 p(x) \]

- Entropy measures the amount of information in a RV; it’s the average length of the message needed to transmit an outcome of that variable using the optimal code.
Entropy (cont)

\[H(X) = -\sum_{x \in X} p(x) \log_2 p(x) \]

\[= \sum_{x \in X} p(x) \log_2 \frac{1}{p(x)} \]

\[= E \left(\log_2 \frac{1}{p(x)} \right) \]

\[H(X) \geq 0 \]

\[H(X) = 0 \iff p(X) = 1 \]

i.e. when the value of \(X \) is determinate, there is a value \(x \) with \(p(x) = 1 \).
Joint Entropy

- The joint entropy of 2 RV X, Y is the amount of the information needed on average to specify both their values

$$H(X, Y) = -\sum_{x \in X} \sum_{y \in Y} p(x, y) \log p(x, y)$$
Conditional Entropy

The conditional entropy of a RV Y given another X, expresses how much extra information one still needs to supply on average to communicate Y given that the other party knows X.

$$H(Y | X) = \sum_{x \in X} p(x)H(Y | X = x)$$

$$= - \sum_{x \in X} p(x) \sum_{y \in Y} p(y | x) \log p(y | x)$$

$$= - \sum_{x \in X} \sum_{y \in Y} p(x, y) \log p(y | x) = -E(\log p(Y | X))$$
Chain Rule

\[H(X, Y) = H(X) + H(Y | X) \]

\[H(X_1, ..., X_n) = H(X_1) + H(X_2 | X_1) + ... + H(X_n | X_1, ..., X_{n-1}) \]
Mutual Information

\[H(X, Y) = H(X) + H(Y | X) = H(Y) + H(X | Y) \]
\[H(X) - H(X | Y) = H(Y) - H(Y | X) = I(X, Y) \]

- \(I(X, Y) \) is the mutual information between \(X \) and \(Y \). It is the reduction of uncertainty of one RV due to knowing about the other, or the amount of information one RV contains about the other.
Mutual Information (cont)

\[I(X, Y) = H(X) - H(X | Y) = H(Y) - H(Y | X) \]

- I is 0 only when X, Y are independent:
 \[H(X|Y) = H(X) \]

- \(H(X) = H(X) - H(X|X) = I(X,X) \) Entropy is the self-information

- May be written as
 \[I(X, Y) = \sum_{x,y} p(x,y) \log \frac{p(x,y)}{p(x)p(y)} \]
Entropy and Linguistics

- Entropy is a measure of uncertainty. The more we know about something the lower the entropy.

- If a language model captures more of the structure of the language, then the entropy should be lower.

- We can use entropy as a measure of the quality of our models.
Entropy and Linguistics

\[H(p) = H(X) = - \sum_{x \in X} p(x) \log_2 p(x) \]

- \(H \): entropy of language; we don’t know \(p(X) \); so..?
- Suppose our model of the language is \(q(X) \)
- How good estimate of \(p(X) \) is \(q(X) \)?
Relative entropy or KL (Kullback-Leibler) divergence applies to two distributions p and q

$$D(p \| q) = \sum_{x \in X} p(x) \log \frac{p(x)}{q(x)}$$

$$= E_p \left(\log \frac{p(X)}{q(X)} \right)$$
Entropy and Linguistics

- $D_{\text{kl}}(p||q)$ measures how different two probability distributions are.
- Average number of bits that are wasted by encoding events from a distribution p with a code based on a not-quite-right distribution q.
- Goal: minimize relative entropy $D(p||q)$ to have a probabilistic model as accurate as possible.
The entropy of English - character entropy

Given 27 characters (a-z + space) measure the cross entropy $H(p,q) = -\sum p(x) \log q(x)$ of English.

How well does q model the true distribution p.

Here q is modeled as Markov model

$$H(P, q) \sim 1/n \sum_{i=1}^{n} -\log q(w_i|h)$$
The entropy of English – character entropy

q is modeled as a Markov chain also know as n-gram model

<table>
<thead>
<tr>
<th>Model</th>
<th>cross entropy (bits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0^{th} order</td>
<td>4.76</td>
</tr>
<tr>
<td>1^{st} order</td>
<td>4.03</td>
</tr>
<tr>
<td>2^{nd} order</td>
<td>3.32</td>
</tr>
<tr>
<td>2^{nd} order</td>
<td>3.1</td>
</tr>
<tr>
<td>2^{nd} order</td>
<td>2.8</td>
</tr>
<tr>
<td>Shannon exp.</td>
<td>1.34</td>
</tr>
</tbody>
</table>